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Bayesian model comparisons are known to be undetermined when im-
proper priors are employed. The Intrinsic Bayes factor (IBF) is a gen-
eral automatic procedure for model comparison proposed in Berger
and Pericchi (1993) which addresses the difficulties that arise when im-
proper priors are employed. An appealing justification of the IBF is
that it asymptotically corresponds to actual Bayes factors of particular
priors. Such priors are called instrinsic priors and can be obtained as
solutions of two functional equations. In this paper we consider issues
related to the robustness of the IBF in the nested model situation.

1. Introduction. The problem of comparing two models is addressed,
from a Bayesian perspective, in the following way: consider a set of data X
that have density fi(~x\θi) under model Mβ ,i = 1,2,0; £ 8ft* , and suppose
that prior distirbutions τr;(0;) are selected for the parameters of each model.
Select prior probabilities for each model and update them using the Bayes
factor defined as

The same tool is not available for comparing models with improper priors,
since these are defined only up to a multiplicative constant, leaving the Bayes
factor undetermined. Berger and Pericchi (1995) introduced the idea of
intrinsic Bayes factor (IBF) to address this problem. The method consists
of using a subsample of minimal size to obtain a proper posterior distribution
that is used as a proper prior to compute a Bayes factor for the remainder
of the data, the results are averaged over all possible training samples to
produce the IBF. More precisely, letting L be the number of all training
samples, the arithmetic version of the IBF is defined as

(2) * # = * £ T Σ *£(
L 1=1

where B& = mf(x)/mf(x); £&(x(0) = mf (x(/))/τ<(x(Z)) ,
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π^ denotes the noninformative prior of the ith. model, and x(/) is a mini-
mum training sample, that is, a subsample of minimal size such that 0 <
m^(x(/)) < oo i = 1,2 and no subset of it satisfies the condition.

In Berger and Pericchi (1995) the authors later found that, under certain
regularity conditions, the IBF is asymptotically equal to the actual Bayes
factor for a particular prior distribution, which they coined an intrinsic
prior for the problem. Intrinsic priors, and hence their Bayes factors, are
not uniquely determined, in the second section of this paper we explore the
robustness of the Bayes factors for nested models as the prior distributions
are varied over the class of intrinsic prior distributions.

In the third section we consider the case where the Bayes factor is seen
to be highly sensitive to the choice of the proper prior under one of the
models, a situation pointed out in Berger (1985) and references therein,
and we address the problem using an IBF approach. In the last section of
this paper we consider how the choice of the improper prior for the scale
parameter of a normal linear model affects the resulting IBF and intrinsic
priors. Finally we present some conclusions and open problems.

An alternative solution to the indeterminacy of the Bayes factor, when

improper priors are used, is the fractional Bayes factor (FBF) proposed in

O'Hagan (1995): in De Santis and Spezzaferri (1995) some robustness prop-

erties of the FBF are studied. However it is unclear if it exists for the FBF

a class similar to the class of intrinsic priors.

2. The class of intrinsic priors. Given default priors π^(θ{) as in

(2), the class of intrinsic priors is given by those measures τr/(0;) for which

the corresponding Bayes factor B2\ tends to B2\ as the sample size n tends

to infinity. This is a procedure for automatic assessment of a class of priors,

a difficult issue in robust Bayes.

The interest of studying such a class has several layers. In the first place
the properties of such a class are to be described and we can judge if the
class appears to be reasonable. In the second place understanding the class
sheds light on the conditions for which the asymptotics are valid. In the
third place, the extent of the robustness achieved within the class has to be
evaluated for finite sample sizes.

Letting θ\ and θ2 denote the MLE of /i and / 2 respectively, under ap-

propiate regularity conditions for the likelihoods to concentrate around the

MLEs, and for continuous priors TΓI and 7Γ2, the Laplace expansion of (1)

yields

(3) Bn = B^f'%>(! +40) .
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Equating (2) and (3) gives

Notice that the right hand side of this expression is a U-statistics, as pointed
out by Dmochowsky (1994, Theorem 2), for exchangeable observations. Then

FM - f
- J

where /(x(/))|0) is the true sampling density. For πi and π2 to produce a

Bayes factor that tends to the arithmetic IBF with n, and assuming that

either Mi or M<ι is the sampling model, the priors must obey the following

equations: under Mi,

and, under M2,

where ψi(θj) denotes the limit of the MLE of model i when model j is the

true one.

To analyse the nested model situation we first consider some notation:

we shall say that Mi and M 2 are nested if Θ2 = (ξ,η) and fι(x \ #1,7/0) =

Λ(^ I £ = θiiV — Vo) where % is a specified value of n. Observe that

φ2(θι) — (#i, 770), thus (4) is redundant and, as noted in Dmochowski (1994),

it is seen that the general solutions to the instrinsic equation are

/ τrί(^) = ^{h)u{h)
{ ' { *2

/(ί,»7) = ^(C

where an / superscript denotes the intrinsic prior and u is an arbitrary
nonnegative continuous function.

Equation (5) shows that a particular intrinsic prior depends on a partic-
ular choice of a function u, thus the class of intrinsic priors can be set as the
class of solutions of (5) when u ranges in the class of continuous functions.

In Berger and Pericchi (1995) the idea of intrinsic priors was first in-
troduced by studying the simplest solution to (5) which is obtained when
u = 1. In that paper the authors prove that if π^Γ(#i) is proper then so
is ^2(^,77) and it is shown in several examples that even if ^ ( f l i ) is the
improper reference prior, 7Γ2 (^?|̂ ) is proper.
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2.1 Properties of the class of intrinsic priors. The following remarks il-

lustrate some properties of the intrinsic priors in the nested model situation:

REMARK 1 Once a specific u is set, it fixes both π[{θ\) and π^iζiW)-
Thus (5) establishes automatically a relashionship between the two priors.
Notice the prominent role played by E%2J[Bi2(x(l))] and φi(ξ,η)) in such
relationship.

REMARK 2 Given the large choice of possible functions w, the class of

intrinsic priors is truly big. This anticipates a general robustness result: the

arithmetic IBF can be considered robust, with respect to large classes of pri-

ors on 0i, provided that the corresponding π"2(£?*?) a r e assigned according

to (5).

REMARK 3 Given two solutions of (5), say (πf'°, 7Γ2'0) and ( T Γ ^ 1 , ^ ' 1 ) ,

any convex combination (λπ('° + (1 - λ ) ^ ' 1 , λπ^'0 + (1 - λ ) ^ ' 1 ) , λ G [0,1],

is also a solution. This result holds also for separate models and establishes

that the class of intrinsic priors is convex.

Notice that when a simple null hypothesis with no free parameter is con-

sidered, that is Mi : η = η0 and M^ : η φ 770 the only possible prior under

M\ is that which concentrates all its mass in the null hypothesis, thus there

is only one solution to the intrinsic equations and (it can be proved that) it

is always proper.

2.2 Intrinsic priors and expected IBF. The expected IBF is obtained from

(2) when the average is substituted by the expected value of B^2{x(i)) under

M2, yielding

(6) ^

To explore the relationship between this and (5) write

(7) *21 =21 = " ^TΠΛ

I /I (X 01 ) 77 7Γ-I
I J 1 V I ' ηr N( ύ \ A

this yields the approximation

where the hats denote the MLE under the corresponding model.
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The approximation in (8) may seem odd, since it appears to be different
to (6) whenever u is not a constant. However both approximations coincide,
as the following lemma shows.

LEMMA 1 Assume that the likelihood f\ is unimodal and that M\ is nested

in M2. Denote by Θi the range of θ\ and by Q2 the range of(ξ,η). Then

Proof: First notice that

(9) {θι

by definition of ψ\. On the other hand ψι(ξ = #1,770) = #i, since Mi is
nested in M2, therefore the inclusion in (9) is an equality, and thus φ\ is
onto. On the other hand, since f\ is unimodal, then φi^^η) = θ\. Finally,
due to the invariance of the MLE, ψ\{ξ,η) = Ψι(ξ,ή), which completes the
proof.

2.3 Robustness for fixed sample size. In 2.2 we have seen that the Bayes
factor corresponding to priors within the class of intrinsic priors, tends to
BfiAI as n —• 00. The following result is related to the fixed sample case.

LEMMA 2 Suppose that /1 and f2 are such that f2(x | £, η) = fι(x \ £, ? ) 7 (
η) for some g2, Ψi(ξ,η) = θu E^[B12(x(l))] = h(η), for some h, and

τr^(£, η) = /π'i*(ζ)π22(1Ί)> ^hen any solution of (5) will produce the same
Bayes factor, independently of the choice of u.

P R O O F : The conditions imply that π2{ζ,η) = ^((O71"^!7?)? s o Fubini's
theorem can be used to see that B2ι = / g2(x | η)π22(η)dη.

The following model illustrates the result. Consider 2/1 ...2/2n an i.i.d.
normal sample of size 2n such that y{ ~ N(θ + δ/2,1) for i = l , . . . , n
and yi ~ N(θ - ί/2,1) for i = n + 1,.. .,2n. Let Mi be the model that
corresponds to δ = 0 and 7^(0) = 1 and M2 the model that corresponds to
6 φ 0 and π^(0, δ) = 1. Calculations for the Bayes factor yield

n _ 2y y )

where 1yi is the average of the ith group. The minimun training sample y(Z)
is a subsample of size 2 containing one observation per group and
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On the other hand the MLE of θ under Mλ is ( Σ ? = 1 yi + Σl=n+ι Vi)/(2n) a n d >
when M2 is the right model, (Σ?=i Vi)/n -^ θ + δ/2 and (Σ;=n+i Vi)/n ">
θ-δ/2, thus ψ\(θ,δ) — 0, implying that the intrinsic priors are π{(0) = u(θ)
and π^θ^δ) = u(θ)N(6\0,4). For this choice of priors the Bayes factor, J92i,
is a ratio where the denominator is

and the numerator is

exp ( -1i((δ + (y2 - ft))2 + (y2 - yλf)) N{δ\Q,4)dδ
— OO

so that ^2i does not depend on the choice of u for any sample size.
2.4 Non-pαrαmetric classes. An analysis of the robustness of B21 for a

finite sample size can be achieved by considering classes of priors within the
class of solutions of (5). One possibility is to consider band classes. Suppose
that the change of variables (ξ,η) •—> (ί, s) with t — ψι(ξ,η) is one to one,
then (8) yields

Ju(t)I(t)dt
2 1 f u(θ1)kι(θ1)dθ1

for appropriate I(t) and k\. B21 is thus expressed as a ratio of linear func-
tionals of u and, if θ\ is a real parameter, it is possible to obtain the sup
and inf of .621 within a class, say U = {u(t) : a(t) < u(t) < b(t)} for some
functions a(t) and b(t). Note however that such a class allows wildly dis-
continuous functions w, an undesirable feature that may destroy the identity
between the right hand sides of (8) and (6).

Given the convexity of the class of intrinsic priors, it is very natural to
explore its robustness in terms of convex combinations of priors. Given two
solutions of (5), say ( π ί ' 0 , ^ ' 0 ) and (πf'1, TΓ^'1)? that correspond respectively
to two functions u$ and u\, consider the class

C = {On, τr2) = (λπί'° + (1 - λ)τrί \ λπ1/ + (1 - λ ) ^ 1 ) , A € [0,1]} .

It is easily seen that the maximum and the minimum of B21 are attained at
the extremes of the class.

As an illustrative example consider the normal location-scale problem,
that is a set of n independent observations having density iV(0, σ\) and prior
τri(^i) = &Ϊ1 under M\ and density JV(0,σ2) with prior 7Γ2(0,σ2) = σ̂ ~2

under M2. It is proved in Berger and Pericchi (1995) that ψ\(θ, σ) = θ2 + σ2

and
l - e x p ( - 0 2 / σ 2 )
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Consider Uo(σ2) = 1 and
πί'° =

= exp(-l/(/?σ2))/(/?ασ2αΓ(α)) so that
and τr1'

1 is an inverted gamma. This choice of uλ guarantees that
both Tiy and π 2 ' x are proper densities. Table 1 shows the values of 2?^,
#2! and Bf2

A for imaginary samples with x = 0.1 and x = 0.5 supposing
s2 = β = a = 1. The results show a very robust behaviour of the Bayes
factor for this class.

3. The Expected IBF is more robust than proper Bayes fac-
tors. Large classes of priors for the parameters under test, produce lack of
robustness. Consider an i.i.d. sample of n normally distributed obervations
and let yι ~ 7V(0,1) for i = 1.. .n under Mλ and y{ ~ N(θ, 1) under M2,
θ φ 0 and 7Γ2(0) = N(θ\0,τ2). Clearly in this case no non-informative prior
is used and so no correction term for the Bayes factor should be needed. It
has been noticed in Berger (1985, p. 151) that the resulting Bayes factor
for comparing Mi with M2 lacks robustness with respect to r 2, an annoying
feature, since the value of τ 2 is typically difficult to elicit. In fact

J92i = exp
1

nτ2

and thus J52I —• 0 when r 2 —• oo. Note that this is the case for any fixed n,
so B21 is not robust even asymptotically. However, consider and imaginary
observation y ~ ΛΓ(0,1), then, still using τr2(0) as above.

:exp —

and this implies that the expected IBF is

B EAI _
21 — :exp

y 2r 2(n 2r 2(2n - 1) + n2 - 1)
2(nr2 + l)(2r2 + 1)

TABLE 1: Upper and lower bound of B2i for the normal location-scale
problem

x — υ x»2i

x = 0.5 -B̂ i

fjEAI
•°21

n = 10

0.2134

0.2134

0.2236

0.6468

0.6467

0.6650

n

0.

0.

0.

1

1

1

= 20

1542

1543

1581

.416

.417

.438

n

0.

0.

0.

5

5

5

= 35

1178

1179

1195

.747

.749

.798

n - 50

0.0990

0.0990

0.1000

25.70

25.71

25.86
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since limT2_o o BfιAI = exp(y2n/2)/\/2n > 0, r 2 has a bounded influence
over BfιΛI. Figure 1 illustrates the behaviour of BfιΛI and B21 for values of
r 2 > 1. The corresponding intrinsic prior

l + r 2 / β2(r4 + 2 r 2 + 1)^

K J ~ ^ V(2r2 + l)r 2 ^ \ 2r2(2r2 + 1)

is a 7V(0|O,r2(2r2 + l ) / ( r 4 + 2r 2 + 1)), so that the original variance r 2 is
reduced by a factor of (2τ 2 + l ) / ( r 4 + 2τ 2 + 1) and this achieves the desired
robustness. Using k observations the resulting reduction is (2fcr2 + l)/(& 2r 4 +
2kτ2 + 1)), since robustness is already achieved for k = 1, the later seems to
be the optimal choice. Note that, when r 2 —> oc, the intrinsic prior tends to
a 7V(0|O, 2) and this corresponds to the intrinsic prior that is obtained when
a uniform prior is assumed and a minimal training sample is considered.

This robustifying effect of the IBF strategy is quite a general feature in
problems where, given a class of priors 7ΓT(0) r G T and a reference prior
TΪ\R(0)? TΓT(0|X(/)) Λ 7Γβ(0|x(/)). The reason being that for a reference prior
the expected IBF is neither zero nor infinity, but depends on the data at
hand.

4. Change in prior measures. Consider the normal location-scale

problem as in the previous section letting the more general choice of priors

TΓJVi) = σ1~
( 1 + r ) under M1 and π^(0,σ 2 ) = σ~ ( 1 + 9 ) under M2. This

problem can be considered as a particular case of the problem of comparing

nested linear models analysed in Berger and Pericchi (1994), the analysis

below is indeed valid for the linear models case, but it will be presented in

terms of the normal location-scale problem for the sake of clarity.

It is then clear that the minimum training sample consists of two different
observations and that, letting Ίc = Σxi/n and s2 — Σ(xi — ~x)2/(n — 1),

.Doi = (A =./—2(«-p-1>/2-
21 mf(x) Vn T(ψ)((n-l)8ψ+<1-^2 '

In the appendix it is shown that,

^ 2 ) σ

(10)

where λ = 202/σ2 and M(α, 6, c) denotes Rummer's function (see, for exam-

ple, Abramowitz and Stegun, 1965, Chapter 13). Thus the intrinsic equa-

tions are
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Figure 1: Bayes factor and expected IBF as a function ofτ2 (y = .1 , n = 10,)

where

Iίqr —
2)/2)Γ(g

and it is clear that when u = 1, π( is an improper density. Thus the question
arises, is

a proper density for w = 1? This is an important question, since at least
the prior for the parameter under test should be well calibrated for τr((σ) =
π|(σ).

The answer to this question is, in general, no, since, for q > - 1 ,
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(see the appendix) and this expression is equal to one only if either r — q
or r = 0. This suggests that the intrinsic prior is well calibrated if either
both models have essentially the same prior for the scale parameter or the
reference prior is used for the null model. A remarkable feature of the former
identity is that it holds for linear models of general dimensions, as can be
seen in the appendix, and the constant does not depend on the dimension
of the regressors.

It is possible to gain knowledge about the behaviour of 7Γ2(θ\σ2) by
analysing the asymptotic expansion of M. It is then seen that r governs
the tails of the intrinsic prior, in fact π2(θ\σ2) behaves as a Student-t with
r + 1 degrees of freedom for large θ.

To assess the robustness of the IBF with respect to the choice of q and
r, consider the expected IBF, that is .621 times formula (10) evaluated at
λ = 2nx2/((n — l)«s2). Then, using the fact that the Rummer's function can
be written as the moment generating function of a beta distribution (see,
Abramowitz and Stegun, 1965, 13.2.1) the following bound can be obtained

p (~slM c -
where

Using Stirling's formula to approximate the Gamma function it is seen that,
when r = 0 and q —• 00 then C —> 00 and thus the expected IBF tends to
infinity, for any value of the data. When r = q the situation is different since
the behaviour of C for large q depends on t2/(n — 1) = ήx2/((n — l )s 2 ) . In
this case it is seen that C —> 00 except when t2/(n — 1) is very small and so
the data strongly favors the null hypothesis; in such cases C —> 0 as q -> 00.

In the light of the preceeding results, extreme prior measures (large q
or r) are clearly undesirable. Given that r governs the tails of the intrinsic
prior, the choice of r = 0 and q small seems best.

4.1 Are intrinsic priors well calibrated? In the tradition of Jeffreys' con-
ventional priors (Jeffreys (1961, Ch. 5)), a reasonable proper prior is as-
signed for the parameter under test, conditional on the other parameters,
and a reference improper prior is employed for the 'common' parameters.
An argument for this is that, since the parameters are 'common' to both
models, their proportionality constants cancel out in the Bayes factor. This
argument is suspect, for 'common' parameters may have different meaning
in different models.
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We approach the problem following the IBF strategy of calibrating the
priors by minimal training samples, as follows. Let π(η\ξ) be a proper density
and τr(£) = π(0χ) improper. Consider a minimal training sample x(/), so
that both π(ξ,η\x(l)) and π(0i|x(/)) are proper. The conditional proper
prior approach will be regarded as well calibrated whenever the correction
factor generated by x(Z) cancels out in the Bayes factor.

Let us illustrate the approach with the normal location-scale problem.
We have seen that starting with ^ ( σ i ) = σ̂  +r^ and τr2 = σ2 , for
r = 0 and q > - 1 or r = q > 0, we obtain π|(0|σ2) = EM2[B12{x{l))]σq

2~
r

as in (11). Let now the priors be τri(σi) = σ^r ' and π2(σ2) = σ2

 Ύ

(note that 7Γi(σi) = TΪ\{G\) and τr2(σ2) = τr2 (σ2)σ2~r). Since τr2(0|σ2) is a
proper density the minimum training sample is of size one and

where

m2{x{l)\σ2) =

/ exp ί -v-^n/Hi;,^ _
1α\ Γ"\ 2 ' 2 'σ?

Using the definition of M, m2(x(/) can be written as

e ( 0 / ( I ) σ Γ ( g + 3 / 2) ^ Γ(g + 1 - r + 2j)/2) 1 Γ g
qτ

 Λ/2TV^ Γ( ? + 1 - 0 / 2 ) ^ Γ(9 + 3 + 2j)/2) j \ [σ2

where the expectation is taken with respect to a normal with mean x(l)/3
and variance σ|/3. JE(0/σ2)

2 7 is a function of ^(/)2/cr2 and so m2(#(/)|σ2)
can be written as σ^1 Hqr(x(l)2/σl)/Λ/^K where

. β-«(Oa/(H) Γ((g + 3)/2)
= Kqr -^

thus, since / m2(a;(/)|σ2)da;(/) = 1, (recall that 7r|(0|σ2) is proper) m2(a;(Z)|σ2)
is a symmetric scale likelihood for x(l).
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The former discussion leads to

roo ]_s: 2σf "
ί°°

Jo

1

o \/27rσ2

 ? Γ I σ\
σ2

and, for the correction factor of the IBF to be one, each of the J3^(a;(/)) has
to be one, that is

The previous condition is naturally satisfied using lemma 2 when r — 0
for any g. Thus the use of τri(σ) = 1/σi and ^2(^,^2) = l / ^ ^ K ^ I ^ ) guar-
antees that the comparison of M\ with M2 is well calibrated. It is still being
studied if for r — q > 0 the above identity holds.

5. Open problems and conclusions. The issues discussed in this
paper have led us to the following conclusions: 1) The IBF method is a
way to automatically elicit a class that is fairly robust with respect to the
problem of comparing two nested models. The class is convex and the in-
trinsic equations establish the conditions that the prios must satisfy so that
asymptotic robustness holds. When there are free 'common' parameters the
class appears to be rich. 2) Bayesian model comparisons are inherently non-
robust with respect to wide classes of priors of the parameters under test.
However the expected IBF is considerably more robust than proper Bayes
factors, for large classes of priors. 3) Various robustness considerations point
out that, for the linear model, using the reference prior for the null model is
an optimal choice. Is this the case in more general settings?

Important future tasks are the study of robust comparisons for separate
models and for mixtures of several models.

Acknowledgements. The authors are grateful to Prof. Jim Berger and
to Prof. Alain Etcheberry.

Appendix

Consider the models Mj : Y = Xjβj + Sj where Sj ~ JVn(0,σJln). βj G

5?*̂  and σj are unknown and Xj is the (n X kj) design matrix (kj < n).

βj = (Xj Xj)~1X* Y is the least squares estimator of βj and Rj = |Y -

Xj/3j|2 is the residual sum of squares. Consider default priors π^(βj,σj) —
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σJ > Qj > - l The following results are a generalisation of those
obtained in Berger and Pericchi (1994) for specific values of qj.

To compare Mi with M2 (k2 > &i), the correcting factor is

{ }

C *

where q2 = q and qλ = r, C = 7Γ^/2Γ((r + p + l)/2)/(2^- r)/ 2Γ((g + l)/2))
and p = k2 - fa. Write β\ = (βo,β*Y where /?0 G 3?fcl corresponds to /?!
under Mi. To obtain τr2(/?*|/?o,0"2) and the expected IBF, the expectation
of (12) is needed, to this end note that

EM2

where W and V are independent and W ~ χ\ and V ~ Xp(λ/(/?*)), a non-
central chi square distribution with non-centrality parameter

X2(/)/?2

as defined in Berger and Pericchi (1994).

Note that

\
{W k\

where

τk =
2(g-p-r)/2 Γ

then the expectation of (12) is

Mg

and, using the definition a Rummer's function M, this last expression is

Γ

T (2+£±2 J

j
έ ί lχί(0Xi(0l1/2

) / 2

2 ' 2
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Now, 7Γ2(/?*|A),0"2) is equal to (13) multiplied by σr

2~
q and an obvi-

ous choice of gt(β*) gives τr2(/3*|/30,cr2) = l/LΣιLi9ι(β*) T o calculate
/gι(β*)dβ* consider the change of variables /?* ι-> λ/(/?*). This has a Jaco-
bian

|X<(Z)X2(0l1/2 Γ(p/2)

and thus

9ι(β*)dβ*

where F is the hypergeometric function, and 15.1.20 in Abramowitz and

Stegun (1965) has been used.
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On the Robustness of the Intrinsic Bayes Factor for Nested

Models

discussion by
WALTER RACUGNO

University of Cagliari

Robustness analyses for the evidence of model M\ versus M2, with re-
spect to several inputs is certainly a relevant topic in Bayesian inference.

Sansό, Pericchi and Moreno approach the argument using as a measure of
evidence the intrinsic Bayes factor (IBF), introduced in Berger and Pericchi
(1993), to allow the use of improper priors; this guarantees, in a certain
sense, an "objective" or automatic procedure through default priors.

The work appears as a remarkable effort to construct "inherently" ro-

bust situations in the comparison of nested models; in addition, it presents

interesting ideas. For example, from a conceptual point of view, relating

the robustness to the width of the class of priors (in the specific case intrin-

sic priors) producing Bayes factors asymptotically equivalent to arithmetic

intrinsic Bayes factors (AIBF), and reversing ("dualizing"), the standard

attitude towards robustness is very interesting.

But, here too, the whole building stands on the "quicksand" of improper

priors and the IBF itself is not sufficient to rid the Bayesian inference of all

the problems introduced in the procedure by impropriety.

To support my point of view I am going to show an example, by F.

Bertolino and myself (1995), and I will present a few other points about the

paper.

A. Let X — (Xi,. . . ,X n ) denote a sample and suppose the X{ are i.i.d.

Po(X),Xe Λ+, under Mi, and i.i.d. NegBin (i/,0), with v = 1 and θ e (0,1),

under M2.
Assume, respectively, the priors

πi(λ) = ciλ-* and τr2(0) = c2(θ(l - Θ))~β',

with α,/3 G [0,1] and cχ,C2 unspecified constants.
The AIBF is defined by

where

N c2B(n-β
21 " Γ2 1
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and for a minimal training sample of size k — 1

C l ( l/a(l) !)Γ(a(l)-α + l)
c2B(2-β,x(£)-β+l) •

Let us consider the data sets x^ = {1,1,1,1,1,1,1,1,2,2},
xW = {0,0,1,1,1,1,1,1,2,2}, a?(3) = {0,0,0,0,0,1,1,2,3,5} and
a;(4) = {0,0,0,0,0,0,0,0,0,1}. For different values of a and β, we have

Table 1

a

0

1

1

.99

.99

1

β
0

0

.01

0

.01

1

B2l(*
W
)

.040

.040

.040

.040

.040

.028

B
2i(

χ(2)
)

.182

.171

.170

1.267

1.260

.119

B
n(

χ{?)
)
 j

19.404

16.041

15.992

248.890

247.500

10.228

B
2
Y(ΪW)

1.818

.455

.457

14.001

14.039

1.000

When a — β = 0, the conclusions appear comparatively sensible: for x^
and χ(2\Bζ[ gives more evidence to M\ w.r.t. M2 and vice versa for χ(3\
χ(4). But when we assume a or β equal 1, B^(x(£)) is not determined for
x(ty = 0. In this case the AIBF can assume very discordant values, depend-
ing on the choice of a and β. The values in table 1 show that the instability
of B2ι(x) increases as the number of zeros in the sample is large.

B. As is known, Bι2 = j; ΣίLi ^12{X(^)) c a n be extremely unstable, partic-
ularly in nonnested situations. Without discussing the merit of the potential
adhoc solutions (such as geometric average, α-trimming or the elimination
of particular observations), let us consider an example used by Berger and
Pericchi (1993 p. 22) showing the origin of instability.

Two models are entertained for the real variable X, M\ : exp(0) and M2 :
log7V(μ,σ). For Mi and M2 the standard noninformative priors τri(0) oc
0"1 and 7Γ2(μ,σ) oc σ"1 are assumed, respectively. For a sample set X —
(Xi,..., Xn) and for k = 2, the predictives m^ and m^ in B^2(x(l)) are

- (2xiXj
\ - l

Problems arise when data rounding causes two observations to be equal or
very close. Rather than try and avoid these difficulties by specific solutions,
it could be useful to study the problem in the following way: besides the
sample x = (#i , . . . , xn) let us consider a "similar" sample x' = (x[,..., x'n),
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where x\ G (x% — ε,x% + ε). The Bayes factor i?2i(#), calculated assuming

proper priors, must be very close to the Bayes factor B2i(xf) with the same

priors, since when ε is sufficiently small the two samples are practically equal.

If we now consider two sequences of proper priors π^a\θ) and TΓ̂  (σ) that

tend to the impropers π\(θ) and 7Γ2(σ), if i?2i is stable for x and xf (as is

easily expected), then the instability of other measures of evidence is not

acceptable.

C. By means of a specific example, Sansό, Pericchi and Moreno suggest an

expected intrinsic Bayes factor (Bf-^1) in situations in which the Bayes factor

(52i) does not have the wanted robustness w.r.t. a prior class. They consider

Mi : JV(0,1) and M2 : N(θ, 1) and assume π2(0) = iV(0,τ2). The resulting

Bayes factor to compare Mi with M2 for a sample X = (-XΊ,..., Xn) is

B21 = (nτ2 + 1)-I'2exp(

which, as is seen, lacks robustness w.r.t. τ 2 . In order to have a more
robust measure of evidence S.P. and M. consider an immaginary training
sample of size k = 1,X ~ N(θ, 1), and obtain

In the case n = 10, x = 0.1, the behavior of 2?2i and BfιAI for r 2 > 1
is illustrated in figure 1 of the paper, which shows the greater robustness of
B2iΛI as compared to i?2i.

If we now consider the ratio r = B^xjB^1 for r 2 and n fixed, we observe
that it varies in a significant way with x. This shows a different sensitivity
of i?2i and B^1 to the data. Moreover for n —> oo, B^1 increases more
rapidly than B21, sending r to zero.

If it is true that BfiA1 is more robust than #21 w.r.t. r 2 , it is also true
that it can lead to very discordant inferential conclusions.

I would not like the analysis of robustness to be used as a Procrustean
bed: we cannot cut its feet off to make it fit.
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REJOINDER

B. SANSO, L. R. PERICCHI AND E. MORENO

The discussant considers three different aspects of the robustness of the
IBF and illustrates them with some very provocative examples that are used
to put the IBF methodology under test. It appears that the IBF performs
quite well, however.

The discussant begin by insisting in the use of proper priors. Then the
IBF, offers him a method of assessment, the intrinsic priors. To our knowl-
edge this is the first general method of assessment of (conditionally) proper
priors for model selection. This is particularly relevant in his second exam-
ple. Berger and Pericchi (1993) calculated a conditionally proper intrinsic
prior in this situation, and using it the problem dissapears. Alternatively, use
of the Expected IBF or trimming 'almost' singular training samples would
work as well. It is true that this potential instability has to be dealt with in
practice, but we have offered different ways out of it.

His first example, is very challenging to any method of inference and
the IBF methodology performs quite well: two separate discrete models are
compared in absence of any prior information, and the sample information
is just 10 observations. Two quite different alternative improper priors are
considered. The sensitivity of the answers with respect to the parameters
in the prior is mild for x^ and dramatic for χ(A\ with the other cases
somewhere in between. It could not be otherwise since the data in x^
provide only one training sample and all the data are zero except for the last.
It would be surprising that a sensible estimation of the parameters could be
done, let alone model discrimination. The conclusion is that no robustness
can be expected from a model comparison method when the information
contained in the data is almost nil.

His third example is related to the method proposed in section 3 that
consists of modifying a class of priors to yield a more robust Bayes factor
in hypothesis testing problems. The feature pointed out by the discussant
is that, given a specific prior, the 'robustified' Bayes factor tends to favour
the alternative hypothesis quicker that the original Bayes factor, as the data
gives more evidence against the null. Why is it an undesirable feature for the
decision rule to react more quickly when the data show conflicting evidence
with the null hypothesis? It appears that our method of section 3 is both
more robust and more powerful.
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