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The role of stability of a Bayes decision problem in quantitative Bayesian
robustness is analyzed. An important consequence of stability is the
differentiability of the optimal Bayes decision for a smooth decision
problem. The applications of the derivative to global and local sensi-
tivity analysis are discussed.

1. Introduction. Statistical inferences are based on, in addition to
the observations, some prior assumptions about the underlying situation. In
the Bayesian decision theoretic framework, these assumptions take the form
of specification of the basic inputs of the decision problem: the loss, the
likelihood, and the prior distribution of the relevant unknowns (param-
eter). These specifications are not supposed to be exactly true - quite often
they are mathematically convenient rationalizations of somewhat imprecise
knowledge of the underlying situation. Such rationalizations are often justi-
fied by appealing to a vague notion of "stability" principle or continuity.

Kadane and Chuang (1978) introduced two precise, well-formulated con-
cepts of stability for Bayes decision problems to address their qualitative
"robustness' and gave sufficient conditions (also, see Chuang, 1984) for sta-
bility in some special cases. The most general results in this direction are
due to Salinetti (1994). In particular, Salinetti gives a complete character-
ization of Strong Stability I (see section 3) for a general decision problem.
The second concept, Strong Stability II, is treated in Kadane and Srinivasan
(1994).

This paper is motivational in nature and its main focus is the role of
Strong Stability in quantitative robustness analysis with respect to pertur-
bation in the prior distribution. The examples given show that it is reason-
ably easy to verify Strong Stability in smooth problems with differentiable
loss functions. The main results of the paper are that Strong Stability leads
to the Gateaux differentiability of the optimal Bayes decision for smooth
problems and the derivatives can be used to carry out both global and local
sensitivity analyses.

There is an extensive literature on sensitivity analysis of Bayes decision
problems with respect to the prior distribution. Early work in this direc-
tion is due to Edwards, Lindeman and Savage (1963). Also, over the last
decade, there has been considerable activity (Berger,1994) in the area of

Research supported in part by NSF Grants ATM-9108177, SES-9123370, DMS-
9303557 and ONR Contract N00014-89-J-1851.

AMS 1991 subject classification. 62C10, 52A20
Key words. Bayes decisions, Stability, Gateaux derivative and robustness.

81



82 J. Jίadane and C. Srinivasan

Bayesian global sensitivity analysis. More recently, the focus has shifted to
(Trusczynska, 1990, Dey and Bimriwal, 1990, Srinivasan and Trusczynska,
1992, Ruggeri and Wasserman, 1993, Gustafson, Srinivasan and Wasserman,
1994,and, Srinivasan and Wasserman, 1994) local sensitivity analysis and,
particularly, applications of the local sensitivity measures to diagnostics.

2. Preliminaries. The formulation and discussion of stability requires
a complete specification of a decision problem. Towards this, suppose the
parameter space Θ C R is a complete separable metric subspace of the real
numbers iZ, the decision space D C R is open and the loss function L(θ,δ)\
θ χ ΰ - > i2 + is continuous in θ for each δ £ D and finite in d for each 0 £ Θ.
Let l(θ\x) denote a bounded continuous (in θ) likelihood function satisfying

(1) l(θ\x) > 0 for aU θ £ Θ;

(2) Z(0, δ)l(θ\x) is bounded in θ for every δ £ D and x.

Here x is the value of the observable which is taken to be fixed through

the discussion.

A few comments are in order about the conditions on l(θ\x) and L(θ,δ).

While (1) does not lead to any loss of generality, the continuity of 2/(0, δ)l(θ\x)

in θ imposes some restrictions. Invariably, (2) is satisfied in statistical con-

texts. Also, the likelihoods of commonly used statistical models for observ-

ables are continuous in their parameters. The continuity of L(θ,δ) in 0,

however, is not always met in all statistical decision problems. While the

subsequent discussion can certainly be extended to address these general

situations, we have chosen to make this assumption to avoid the additional

technical details and, thus, not be distracted from the motivational goals of

this article.

Denoting the class of all prior probability distributions on Θ by V and

its generic elements by P or Q, the posterior distribution of P is given by

(3) dPx(θ) = l(θ\x)dP(θ)/mp(x)

where mp(x) Je l(θ\x)dp(θ).

The concept of stability involves convergence of prior probabilities and,

unless otherwise stated, this is taken to be weak convergence. The notation

"Pn =ϊ Po" will stand for Pn converges to Po weakly.

As indicated earlier, an important consequence of stability is the differ-

entiability of the optimal Bayes decision with respect to the underlying prior

distribution. The concept of differentiability that is used in this article is

the following Gateaux differentiability. Let V be the linear space spanned

by V and, T : V -> R be a functional.
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DEFINITION: The functional T is said to be Gateaux differentiable at P o 6

V if there exists a continuous linear function 2po( ) : P —• R such that

every / iGP,

Typically, in Bayesian analysis, the class of prior distributions of interest
is a "small" subset Γ of V. In such cases, by Gateaux differentiability of T
we mean (4) holds for all ft £ Γ, the linear space of Γ.

3. Stability. The concept of stability was first introduced in the sta-
tistical context by Kadane and Chuang (1978) as a framework to address
the qualitative robustness of a Bayes decision problem. Roughly, stability
implies that "small" changes in the inputs of the decision problem lead to
a small difference in the optimal risk. The focus of this paper is robustness
with respect to changes in the prior distribution and, therefore, the following
definition of stability is tailored to this situation.

DEFINITION I: The decision problem (Z,/,P0) is Strongly Stable I (SSI) if

for every sequence Pn =>- Po,

(5) lim Urn sup \ ίL(ΘJ0(e))dP:(θ) - inf ίL(θ,δ)dPξ(θ)] = 0

for every δo(e) such that

(6) J L (0, δo(€)) dPS(θ) < mf J L(θ9 δ)dPg(θ) + e.

See Kadane and Chuang (1978) for the motivation of the above definition.

They also introduced a more stringent definition of stability. Though the

main focus of this paper is Strong Stability I, this is stated for the sake of

completeness.

DEFINITION II: The decision problem ( i ,/,P 0 ) is Strongly Stable II (SSΠ)

for all sequences Pn =ϊ Po, Qn => Po >

p / ( M Q n ( ) ) W ) - i n f ίL(θ,δ)dP^(θ)] =0

for every δQn(e) satisfying

(8) J L (0, δQn(e)) dQl{θ) < mf J L(θ, δ)dQ*n(θ) + e.
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It is easy to see, by setting Qn = P o , that SSΠ implies SSI for a decision
problem. The converse, however, is not true in general. Chuang (1984),
and Kadane and Srinivasan (1994) address the converse problem and give a
variety of sufficient conditions for a decision problem to satisfy SSΠ. The no-
tion of SSΠ has several interesting applications. The appropriate framework
for the robustness analysis of computer intensive Bayesian decision theory
based on Gibbs sampling or Monte Carlo techniques turns out to be SSII.
Another interesting consequence of SSII is sharp estimates of oscillations of
the optimal decision with respect to variations in the prior or other inputs
of the decision problem. These estimates in turn can be used to address
the rates of convergence problems in theoretical as well as computational
studies.

Reverting to Strong Stability (i.e., SSI), it follows from the boundedness
and continuity of l(θ\x) and L{θ,δ)l(θ\x) in θ that (5) is equivalent to

(9) lim sup [ / L(θ, δo)l(θ\x)dPn(θ) - inf / Z(0, δ)l(θ\x)dP^(θ)] = 0

where δ0 is an optimal decision of (£, /, P o ). Hence (9) can be used to obtain
necessary and sufficient conditions for Strong Stability. The most general
result, giving necessary and sufficient condition, is due to Salinetti (1994).
The rest of this paper is centered around this result and the appropriate
version in the framework of this paper is as follows.

THEOREM 3.1 (SALINETTI) Suppose L(θ, 6) is jointly lower semi-continuous
in θ and δ. Then {(Z,/,Po)} is Strongly Stable (i.e., SSI) if, and only if,
for every sequence Pn =ϊ Po and every e > 0 the sequence {(Z,/,Pn)} has a
bounded sequence {δpn(c)} of e-optimal decisions.

The joint lower semi-continuity of L(θ, δ) typically holds in most statisti-
cal contexts. However, the existence of bounded 6-optimal solutions depends
very much on the loss function and the class of prior distributions under con-
sideration and may turn out to be difficult to verify. Kadane and Srinivasan
(1994) give general sufficient conditions for the existence of a bounded se-
quence of 6-optimal decisions.

In many practical applications, however, the decision problems are rea-
sonably smooth in the sense the loss L(θ,t) is differentiate in t and the
class of possible prior distributions may possess rich properties. It is often
easy to verify, as the examples below show, Strong Stability for such smooth
problems. The following elementary result, based on Taylor expansion, plays
a crucial role in these examples.
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PROPOSITION 3.2

Suppose L(θ,t) is differentiable in t with derivative 1/(0, i). Then for
any sequence Pn => Po, {6pn} is bounded if there exists a compact set
K C Θ such that

I Tf(θ iλ I 1
W s u p

 JΎV^ = Q (ΰϊ) f o r a U

K MM) \t\

and

(π)liminf inf / | L'(θ,t) | t(θ I x)dPJΘ) > 0.

P R O O F : Assume the conditions and suppose | δpn |—• oo. Then, by
condition (i), there exists a constant c > 0 such that for all sufficiently
large n

ί I L'(θ, δPn) I *(0 I x)dPn{θ) < \ £ - \ l L(θ, δPn)ί(θ I x)dPn(θ)

I *Pn\ J

< M C

where M = sup^G θ L(θ,δo)ί(θ \ x). Therefore

MC
Pn ' " li ^ | L'(θ,t) \ ί(θ \ x)dPn(θ) < °°

for all sufficiently large n. This contradiction completes the proof. •

The condition (i) on the loss function is satisfied by all the commonly used

loss functions. It is a tail condition which prevents the loss from approaching

zero as | t |—• oo for θ in a compact set.

This proposition, as the following examples illustrate, leads to an easily

verifiable sufficient condition for Strong Stability in "smooth" neighborhoods

of prior distributions popular in robustness analysis. The reader is referred

to Berger (1994) for a discussion of these. In the examples that follow,

L(θ,t) is jointly lower semi-continuous, differentiable in t G D, and satisfies

the condition (i) of the proposition.
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EXAMPLE 1 ^-CONTAMINATION CLASS) Let

% = Po + €(Q-Po): 0 < e < 1, Q e

where Q is a class of probability distributions on θ and introduce the mode
of convergence PQ -» P o if € —> 0. Clearly, this implies PQ =>> Po as e —• 0.
Under this notion of convergence,

limjnf inf | mf jf. |J'(*,

Therefore, ( Z , / , P Q ) is Strongly Stable for an e-contamination neighborhood
ifif
(10) inf / \L'(θ,t)\l(θ\x)dPo(θ)>0.

Another class of prior distributions extensively used in the robustness
literature is the Density Ratio Class, first introduced by DeRobertis and
Hartigan (1981). The following addresses Strong Stability in this case.

EXAMPLE 2 (DENSITY RATIO CLASS) Let U and V be two finite positive
measures on Θ satisfying V < U i.e., for every borel set B C Θ, V(B) <
U{B). The density ratio class of probability distributions Γ^^, is given by

(ID ΓOΛ = {*„ = J | j : V < μ <

Equip TDR with weak convergence and suppose Po G Γ. Let {Pβn} be a
sequence from Γ such that Pμn =Φ- Po. Then for every n,

and hence

B ^ M jκ i m «

Therefore, a sufficient condition for Strong Stability of ( i , /, Po) under Den-
sity Ratio neighborhoods is

(12) inf ( \L\θ,t)\l(θ\x)dV(θ) > 0.

The next example treats the class of unimodal prior distributions with
specified quantiles discussed in OΉagan and Berger (1988).
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EXAMPLE 3 (UNIMODAL QUANTILE CLASS) Let the parameter space Θ = R

be partitioned into m intervals / i , / ^ -,1m where Ij = [α,j-ι,αj], 1 < j <

m. Assume, without loss of generality, αo < α\ < < αm. Also, let

7 = (71, ?7m) be an element of m simplex (i.e., 7; > 0, ^ 7; = 1) such
1

that the constants ςrt = /O.J%.—y, i = 1,2,..., m, satisfy the condition

(13) qi <Q2 < •• qk-i <qk> qk+i > • > ?m

for some fc. Assume 2̂ > 0 a n d qm-\ > 0.
The unimodal quantile class Γ[/j7 consists of all absolutely continuous

unimodal prior distributions with αt as I Y^ 7^ ) 100 percentile, i.e.,
V 1 /

{ rcLi λ

p(θ) : / p(θ)dθ = 7 t , 1 < i < m and p is unimodal > .
Jαi-! J

This class is non-empty due to the condition (14). Moreover, every p G Tu,Ί

has (see O'Hagan and Berger, 1988) the following properties:

(i) p is increasing in every interval / j , j < k — 1;

(ii) p is decreasing in every interval / j , j > k + 1;

(iii) p( α i - i ) > ?j-i for j < fc - 1;

(iv) p(αj) > qj+ι for j > k + 1;

(v) p is unimodal in 7* and p(αk-ι) > g^-i, p ( ^ ) > qk+i

Equip TUΛ with weak convergence. Suppose Po G Γ[/?7 and Pn => PQ where
Pn G Γ^ 7 . Letting J9n denote the density of P n , the above properties imply

ί \L'(θ,t)\l(θ\x)pn(θ)dθ > Σθi-1 I \L'(θ,t)\l(θ\x)dθ
J K ?'=1 JKnlj

/ \L'(θ,t)\l(θ\x)dθ
j=k+i

Therefore, setting q* = min(g2,93, , Ίm-i),

inf / \L'(θ,t)\l(θ\x)Pn(θ)dθ>q*m{ ί \L'(θ,t)\l(θ\x)dθ.
1 JK i •/(α1,αm_i)nA'
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Hence, (i,/,Po) is Strongly Stable for the unimodal quantile class if

inf / \L'(θ,t)\l(θ\x)dθ>0.

t Jκn(αuαm)

The last example considers Gustafson's classes (P. Gustafson, 1994) of

prior distributions. These classes possess many interesting properties and

are well suited for local sensitivity analysis.

EXAMPLE 4 (GUSTAFSON'S CLASSES) Suppose P o has density p0 with re-
spect to the Lebesgue measure. Gustafson's linear class is given by

where 1 < q < oo. Clearly P o £ Gq

L(Po;a) Suppose Pn G Gq

L(Po;a) and is

given by the density —*r0+tt"v JΔ The mode for convergence introduced by
l+J un(θ)dθ

Gustafson for this class is Pn —• Po if / ί ^ J dPo —> 0 as n —> oo. This is

a fairly strong notion of convergence and, in particular, implies Pn =ϊ Po

Suppose P n —• Po. Then, by Jensen's inequality, for all large n

inf J \L'(θ,t)\l(θ\x)dPn(θ) > inf J \L'(Θ,

Hence,

(14) inf ί \L'(θ,t)\l(θ\x)po{θ)dθ > 0
t£.D JJζ

implies ( i ,/ ,P 0 ) is Strongly Stable for the class Gq

L(po;α).

Gustafson also introduced a nonlinear class as a model for prior uncer-

tainty. It can be shown that Strong Stability follows for the nonlinear class

if (14) holds.

4. Differentiability of Bayes Decisions. A remarkable consequence
of Strong Stability is the Gateaux differentiability of the optimal decision
with respect to the prior distribution when the loss is reasonably smooth.
These derivatives have applications in global and local sensitivity analyses
of the underlying decision problem.

In this section we establish the differentiability of the optimal Bayes
procedures for a special class of loss functions and sketch the application
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to global sensitivity analysis. The general results in this direction are more
technically involved and will appear elsewhere.

Suppose Θ = D = R and L(θ, δ) = L(θ - δ) is a strictly convex twice
continuously differentiate loss function. In addition, assume the following
conditions hold.

(Al) For each δ, L'(θ-δ)l(θ\x) and L"(θ-δ)l(θ\x) are bounded in θ. Here
V and L" are, respectively, the first and second derivatives of L.

(A2) The level sets of L are bounded.

The next two propositions establish the smoothness of the optimal deci-
sions δpn of (Z,/,Pn) for a sequence of priors Pn converging weakly to Po.

PROPOSITION 4.1 Suppose Pn =ϊ PQ as n —» oo and {δpn} are bounded.
Then (δPn - δPo) -> 0 as n -> oo and (δPn - δPo) = O(Pn - P o ) .

PROOF: Let B be a compact convex set containing {δpn} and <!>o Since
L'\θ — δ) is continuous, it is uniformly continuous on any compact set and,
hence, the family of functions {£"(• - ί) : ί 6 5} are equi-continuous at every
θ G Θ. Therefore, by a result of Rao on uniformity classes (Bhattacharya
and Rao, 1975, Corollary 2.7),

(15)lim sup
n-+°° δB

/ L"{θ - δ)l(θ\x)dPn(θ) - f L'\θ - δ)l(θ\x)dPn(θ) = 0.

Now, using the Taylor expansion,

J L'{({W}po)l{θ\x)dPn{θ)

' L"(θ - 6*n)l(θ\x)dPn(θ)

L"(θ-δ*n)l(θ\x)dP0(θ)+ I L"(θ-δ*n)l(θ\x)d(Pn-P0)(θ)

Take limit as n —• oc and note that the left side of (16) converges by (Al) to
/ L'{θ - δPo)l(θ\x)dPo(θ) = 0. Also, by (15), the second term on the right
side converges to zero. Combining these facts, δpn —> δp0 follows from the
assumption L(θ - δ) is strictly convex and, hence, L"(θ - δ) is everywhere
positive continuous function.

Finally, (δPn - δPo) = O(Pn - Po) follows from (16) since

(δPn-δPo) = 0 (j L'(θ - δPo)l(θ\x)dPn(θή

= 0 ( / L'(θ - δPQ)l(θ\x)d(Pn - Po)(0))

= O ( P n - P 0 )
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by the assumption (Al) and the strict convexity of X.

PROPOSITION 4.2 Suppose (X,/,P0) is Strongly Stable. Then for any se-

quence Pn =>• Po, the sequence {δpn} is bounded.

P R O O F : Let pn(δ) and po(δ) denote the integrated risks with respect to
Pn and Po, respectively. By assumption (A2) the strictly convex function
Po(δ) has bounded level sets and, therefore, it follows (see Rockafeller, 1967,
Theorem 27.2) that for e > 0 there exists η > 0 such that \δη - δpo\ < e for
every 77-minimal solution δη of ρ0 i.e., po(δη) < po(δpo) + η => \δη - δPo \ < e.

Under the conditions of this section, it is known (Chuang, 1984, Kadane

and Srinivasan, 1994) that (X,/,P0) is Strongly Stable (i.e., SSI) if, and only

if, it is Strongly Stable II. Therefore, by setting Qn — Pn and Pn = Po in the

definition of SSΠ (see Section 3), po(δpn) —> po(δpo) as n —> 00. Hence, for

all sufficiently large n po(δpn) < p(δp0 ) + η and, consequently, \δp0 — δpQ \ < e.

This concludes the proof.

A version of the preceding proposition could have been established di-

rectly from Salinetti's theorem, guaranteeing the existence of a bounded

subsequence of {δpn}. Such a result is sufficient for the purposes of this

paper. We chose the above version to indicate the usefulness of Strong Sta-

bility II. Another point worth noting is, since e is arbitrary, the convergence

of δpn to δp0 follows from this proposition.

The main result of this section is the following theorem which establishes

the differentiability of δp0 and gives a representation for its derivative.

THEOREM 4.3 Suppose (X,/,Po) is Strongly Stable. Then δp0 is Gateaux
differentiate and the derivative in the direction of Q £V is

c, ( m = -2 f L'(θ - SPo)l(θ\x)dQ(θ)
P o W fL"(θ-δPo)l(θ\x)dPo(θ) •

P R O O F : Let {Pn} be a sequence of priors, converging to Po (i.e., Pn => Po),
of the form Pn = (1 - e n )P 0 + enQ where Q is some probability distribution
on Θ and en I 0 as n —> 00. Then, by Taylor series and Propositions 4.1 and

4.2,

L(θ - 6Pn)l(θ\x)dPn(θ) -JL(Θ- δPo)l(θ\x)dPn(θ)

= ( « P » - ^ ) / L'(θ - SPo)l(θ\x)dPn + (g*»-/Va / L"(θ-δPo)l(θ\x)dPn

where Rn, the remainder term, is O ((δpn - δp0)
2). Therefore, by Strong

Stability of (L,1,PQ), the left-side goes to zero as n —* oo and it is of the
order O {(δPn - δPo)

2) because O(Pn - Po) = O(δPn - δPo), and / L'(θ -
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δPo)l(θ\x)dPo(θ) = 0. Divide by (δPn - δPo) to conclude

Jdm^ [ | L'(θ - δPΰ)l(θ\x)dPn(θ) + ( ^ " ^ P o ) J L"{θ - δPo)l(θ\x)dPn(θ)\ = 0 .

Now substitute the representation Pn = (1 — 6n)P0 + €nQ, appeal to the
fact / 2/(0 - δPo)l(θ\x)dPo = 0 and the assumption / 2/'(0 - δPo)l(θ\x) is
bounded continuous to get

U m I 2 f L'(θ - δPΰ)l(θ\x)dQ(θ)

J L"(θ - δPo)l(θ\x)dPo(θ)

cf (Qλ _ , tPn ~ δPo _ 2J L'(θ-δPo)l(θ\x)dQ(θ)
PόW) ~ n™o €n - j L,,y _ δPΰ)l(θ\x)dQ(θ) •

This establishes the differentiability as well as the representation of the
derivative.

As indicated earlier, the derivative can be used in global robustness anal-
ysis of the optimal decisions. The global analysis involves computation of
the range of a relevant posterior quantity as the prior varies in a class of
prior distributions, say Γ, and making judgments about the robustness of
the posterior quantity. The derivative of a posterior quantity can be used
to derive an algorithm called "Linearizing Algorithm" to compute its range.
The algorithm is essentially an infinite dimensional linear optimization.

The following elementary fact plays a crucial role in this development.
Let Γ be a class of prior distributions and T : Γ —• R be a functional. As-
sume T has extrema in Γ with f = Γ(P) = max Γ(P), and T = Γ ( P ) =

PROPOSITION 4.4 Suppose T(P) is Gateaux differentiate everywhere in Γ
and, for any Pi,P 2 G Γ, 0 < α < 1,

(*) min(T(P0),T(P2)) < T(αP1 + (1 - α)P2) < max(T(Pi),Γ(P2))-

Then

and
sup TUP -P) = sup T'p{P) = 0.
Per Per

PROOF: See Srinivasan and Truszczynska (1992).
If Γ is convex, the condition (*) in the above proposition can be dispensed

with and the conclusion holds without any additional conditions.
Suppose now the problem ( i , /, P) is Strongly Stable at every P G Γ and

the interest is in the range of 6p as P varies over Γ. Let 6 and 6_ be the
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maximum and minimum of <$p, respectively.

THEOREM 4.5 Assume either the condition (*) holds for 6p or Γ is convex.
Suppose (Z, /, P) is Strongly Stable for every P £ Γ. ΓΛen

(%) £ is given 6?/ ^ e solution of

infr f L'(θ,t)l(θ\x)dQ(θ) = O

and

(ii) δ_ is given by the solution of

sup [ L'(θ,t)l(θ\x)dQ(θ) = O
Qer J

P R O O F : By Strong Stability, δp is differentiable at every P G Γ. The

theorem follows by appealing to Proposition 4.4.

Thus the computation of δ ( δ_) is reduced to minimization (maximiza-
tion) of a linear function and solving for "ί" in the minimum. Since L(θ -1)
is strictly convex, £'(•) has exactly one sign change and this makes the search
for the solution fairly easy.

In the context of global analysis the authors (Kadane and Srinivasan,

1994b) have argued for examining the range of the optimal risk. The au-

thors have preliminary results in this direction and are currently examining

their computational feasibility.

5, Local Robustness. Stability, in addition to providing qualitative

results regarding the "robustness" of a decision problem, offers tools for

quantitative assessment of sensitivity. The purpose of this section is to

briefly sketch a program, currently pursued by the authors, that may lead

to a formal theory of quantitative Bayesian robustness.

Suppose the ( i , / , P ) is Strongly Stable at PQ £ Γ, a class of prior dis-
tributions and the optimal decision is differentiable. Since the derivative
quantifies the local sensitivity, a natural local index of decision robustness is

) |
Qer

This is analogous to the "Influence Function" in the frequentist robustness
theory. If the index I(P0',T) is not too "large", the decision δpQ may be
considered "robust" for the class Γ. This interpretation immediately suggests
the problem of finding decisions with smaller index of robustness if I(Po] Γ)
is too "large". To formulate a well-posed problem, one has to eliminate from
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consideration "constant" decisions with zero derivative which are, in a sense,

trivial procedures. A way to avoid these trivial decisions is to focus attention

only on optimal decisions. Define

V — {δpL- δpL is the optimal decision of ( i , /, P) for some P £ V and

L}.

Restricting attention to the decisions in the class £>, the problem can be

posed as follows:

"Given 0 < α < 1 and e > 0, find a δι G V such that

(17)

and

(18) #i is an e-optimal decision of ( i , / , P 0 ) . "

The problem as posed above may not have, in general, a solution if α and e

are too small. However, as the following example illustrates, it has a solution

for moderate values of α and e if I(PQ', Γ) is "large".

EXAMPLE 5.1 Let L(θ - δ) = (θ - <5)2, l(θ\x) = e-H'-*) 2 and P o have

density po(θ) = e~*θ . The optimal decision of (i,/,Po) is δpo(
x) = f

its derivative in the direction of Q is

- f) e-*('-«>a dQ(θ)

Consider now the loss

LΊ(Θ -t) = (l- Ί)(θ -t)2 + Ί\θ-tl 0 < 7 < 1.

For any absolutely continuous prior P, the optimal decision δΊip of ( i 7 , /, P)
is given by the solution of

-2(l- 7 ) J(θ - t)l(θ\x)dP(θ) + Ί- y*^ l(θ\x)dP(θ) - J™ Wx)dP(θ)] = 0

and, therefore, δΊ^0 = | = δp0. Consequently, δΊjpQ is (X,/,P0) optimal.
Moreover, δΊip0 is differentiable (Srinivasan and Truszczynska,1992) and its
derivative has the representation

δ'Ί<Pΰ(Q) = C(Ί)δ'Po(Q) + (1 - C(7))δ'MιPΰ(Q)

with

_ (l-Ί)JWx)dP0(θ)
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and

6M'

Hence, for any Q,

and

/(^,Po Γ) < C(Ί)I(δPo; Γ) + (1 - C ( 7 ) ) / ( % P 0 ; Γ) .

This implies,

(19)

if

(20)

Now suppose Γ is the class of all unimodal densities with mode at zero.
Then (20) always holds and SΊ,p0 is more robust compared to δp0. If, on the
other hand, Γ is the class of all symmetric unimodal densities, then for small
values of |x|, the two indices in (20) are close, and as |x| gets larger, 6M,P0

becomes more robust relative to δpQ. Thus, by appropriately choosing 7, it
is possible to construct a more robust procedure, relative to δp0, with risk
close to that of δp0 when (X, /, Po) holds.

Another important issue in the context of the above problem is the ex-
istence of the most Γ-robust decision among all decisions in V (or a smooth
subclass of V) satisfying (18). The following example indicates the possibil-
ity of finding such a most robust decision. The example is based on a result
due to Trusczynska (1990).

EXAMPLE 5.2 Let l(θ\x) be a likelihood with maximum likelihood estimator

θ and Po be an absolutely continuous prior with positive density. Consider

the loss LAO(Θ,6) = (IAQ(Θ) - δ)2. The optimal decision of (X^0,/,P0) is

δpo,Ao — I lAo(θ)dPo(θ) = 70. For any probability Q on θ , the derivative

of δpOyAo i n the direction of Q is

KlAo-lo)l(θ\x)dQ(θ)

and its index of robustness over the class of all priors is

0 )

Suppose we want to find the most robust decision, say <$*, among all decisions
δ e V satisfying

J LAo(θ,δ*)dPZ(θ) = j LAo(θ,δPo,Ao)dPZ(θ)
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i.e.,

/(«•) =

where VΊo = {δPθiA: δPθiA is (i^,/,Po)-optimal and δPo,A = 7o}
It is proved in Trusczynska (1990) that <5* exists and is given by the likelihood
region

where C is such that / lA*(θ)dPg(θ) = 70. Thus, the most robust decision
on the basis of the "local" index / is δ* = ^PO,Λ* Interestingly, δpo,A* is
also the globally "robust" (Wasserman, 1988) in the sense that it has the
smallest range among all decisions in VΊo.

The authors have developed general results based on the ideas of the
preceding examples and they will appear, hopefully, in the near future.
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For a Bayesian Decision Problem (BDP), Strong Stability (SS), in its
different types and versions as introduced by Kadane and Chuang (1978) in
the statistical, context, is a relevant formalization of qualitative robustness
which analyses the stability of the problem through the behavior of the
posterior expected loss.

In the more specific situation considered in the paper, in presence of
uncertainty in the elicitation of the prior Po, with fixed loss L and likelihood
ί9 the decision problem (L,£,Po) is strongly stable if for any sequence {Pn}
of probability measures weakly converging to Po, Pn —• Po, w e have

]imsup[p(Pn,δPo)- mΐ p(Pn,δ)] = 0,
oξV

where δp0 is the Bayes decision of (Z,.£, Po) and p(P, δ) denotes the posterior
expected loss of a decision δ of the problem (Z,-£, P ) .

This amounts to say that for every e > 0, ίp 0 , optimal for (Z,^, Po),
is €-optimal for all but finitely many ( Z , ί , P n ) . Since, under reasonable
conditions we also have p(Pn,δp0) —• /)(P0,<5p0, SS is also equivalent to

m{p(P0,δ)-mΐp(Pn,δ)

which explicitly connects the stability to the continuity of the posterior ex-
pected loss of the problem.

Along these lines the paper sensibly enlarges the set of sufficient condi-
tions for SS of a BDP, provides "applicable" sufficient conditions and, based
on them, verifies SS for the most interesting neighborhood classes of priors
considered in Bayesian robustness.

Starting from SS as qualitative robustness, the paper proceeds then to-
wards the quantitative analysis of robustness and delineates interesting de-
velopments along which constructing a formal, local and global, theory of
robustness for BDP's.

In this direction the key result is the Gateaux differentiability at P o of
the Bayesian functional P —> δp mapping the prior P into the Bayesian de-
cision δp for (X,£,P). The result is derived from SS when the loss function
is reasonably smooth (Theorem 4.3). A "natural" measure of local sensitiv-
ity with respect to a class Γ containing Po is then proposed, based on the
differential £po( )> in the form supgG Γ | δpQ(Q) |.

97
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As first comment, technical in a sense, it can be of some interest to evi-
dentiate that SS (with all its topological involvements) can be an unnecessary
requirement to get a directional derivative. In fact, in the conditions of The-
orem 4.3, without appealing to SS, but simply referring to the structure of
the problem inf S^D p{Pc, δ) —»inf seD p(Pciδ)> o n e c a n ge^

mi p(Pc,δ) -> inf p(P0,δ) and δPc -> δPo

δζlJ ofeU

where Pc — (1 - e)P0 + eQ. These relations and the regularity assumptions
on the loss L and its first and second derivatives give the Gateaux differential
of P ->p at P o .

However it has to be added that the type of argument used in the proof
of the theorem and based on SS, could actually lead to a stronger differential,
consistent with the metric chosen in the space of the priors to formalize the
uncertainty about Po

The second comment concerns the measure supgGΓ | δpQ(Q) | proposed
for the local sensitivity and based on the variations of the Bayesian decision.
In fact, coherently with the decision scheme where decisions are compared
and chosen for their losses, and in line with the corresponding notion of
SS as qualitative robustness and based on the behavior of the posterior
expected loss, it could be more appropriate to measure the local sensitivity
of the BDP through the differential of a Bayesian functional related to the
posterior expected loss.

In accordance with SS and in view of the observations at the beginning
of this discussion, natural candidates could be the differential />po( ) of the
Bayesian function P —> mί^D p(P, δ) and supg€Γ | p'p (Q) | as measure of
local sensitivity.

In fact it can be shown that, under rather mild conditions, certainly
in the conditions of the paper, the functional Prightarrow inίsen p(P,δ) is
differentiate and the differential is

where m(P) = fίdP (Conigliani and Salinetti, 1995). Rewritten as linear
functional in the form

PJPoM)

computing the measure of local sensitivity supgGΓ | p'po(Q) \ substantially
reduces to the maximization of a linear functional over Γ.
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REJOINDER

J. KADANE AND C. SRINIVASAN

We thank Gabriella Salinetti for her careful reading of our paper, and
for her thoughtful comments. Taking each point in turn,

1. We agree that strong stability is redundant for Theorem 4.3 . However,
Theorem 4.3 remains true if (Al) and (A2) are relaxed but strong
stability is maintained. Getting the conditions exactly right requires
a longer and more technical treatment than what we were able to do
here.

2. We also agree that robustness with respect to the expected loss is a
very important criterion for Bayesian robustness in a decision-theoretic
context. In fact, we have argued this ourselves in Kadane and Srini-
vasan (1994b).

3. We agree with the result cited from Conigliani and Salinetti (1995).
This result can also be found in Truszczynska (1990) and in Srinivasan
and Truszczynska (1992), where it is Lemma 4.2.

We believe that the study of strong stability promises considerable pos-
sibilities for further progress in understanding Bayesian robustness.
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