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This article examines the sensitivity of inferences to perturbations at
various stages of a hierarchically specified prior. For the most part,
a local method of assessing sensitivity is adopted. First, the general
behaviour of sensitivity across levels of the hierarchy is studied. Then
quantitative measures of sensitivity are investigated; these are easily
computed using Markov Chain Monte Carlo methods. Finally, asymp-
totic sensitivity of posterior based inference is considered, under mis-
specification of the first-stage prior distribution. Throughout, the role
of influence functions is emphasized.

1. Introduction. Hierarchical Bayes models have been popular since
the fundamental paper of Lindley and Smith (1972), though their origins can
be traced back further; see Good (1980) and the references cited therein.
The basic idea is to specify a joint distribution for data and parameters
hierarchically, through a succession of conditional distributions. Specifically,
the conditional distribution of a data vector ΘQ given a parameter vector θ\
is specified, followed by the distribution of θ\ given a second parameter
vector #2? and so on. At some point the specification terminates, with the
distribution of θjς+i taken to be degenerate. That is the conditional for
0fc|0fc+i is specified, where 0&+i is a known hyperparameter. After collecting
the data, all statistical inference is based on the posterior distribution of
the entire parameter ( # i , . . .,#&) given the data ΘQ and the hyperparameter
θk+i. Recent developments in Markov chain Monte Carlo methods facilitate
exploration of the posterior distribution in most hierarchical models.

One can delineate at least four broad approaches to robustness which
are applicable to hierarchical models. The present paper focusses on an
essentially diagnostic approach. A single hierarchical model is specified,
and parameter estimation is carried out. Various measures of sensitivity
to assumptions are computed, without explicit modelling of alternate spec-
ifications. The second approach, investigated by Albert and Chib (1994),
involves specification of a small number of competing hierarchical specifica-
tions. Bayes factors are used to determine which specifications are supported
by the data. A third approach involves making part of the specification
nonparametric. For instance, Escobar (1994) replaces a normal prior speci-
fication with a Dirichlet process on all possible prior distributions. Finally,
Angers and Berger (1991) investigate the inherent robustness to outlying
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random effects that can be attained by specifying thick-tailed random effect

distributions.

The focus in this paper is on assessing the change in posterior-based in-
ference induced by a change in prior specification. In multiparameter models
generally, and hierarchical models specifically, it can be fruitful to assess the
change in components of the inference induced by changes in components of
the prior specification. For instance, for each (i, j ) pair one can assess the
sensitivity of the posterior marginal for 0j|#o?0fc+i to the prior specification
for 0, |0, +i. Since the prior is specified stage by stage, it may be important
to know the relative influence of different prior stages. As well, it can be
much easier to implement a sensitivity analysis if only one-dimensional prior
distributions are perturbed.

Several authors have applied global Bayesian robustness analyses to hi-
erarchical models. In particular, Cano (1993) and Polasek and Pόtzelberger
(1988) assess the range of inference produced when the last-stage prior (the
prior for θk in the above notation) varies in a class of distributions. The
work of Sivaganesan (1993) is also related to the present study.

The organization of the paper is as follows. Section 2 investigates the

qualitative behaviour of sensitivity, focussing on the relationship between

sensitivity and the respective levels of inference and perturbation within the

hierarchy. Section 3 then reviews Bayesian local sensitivity techniques, which

are based on infinitesimal perturbations to the prior distribution. These

techniques are easily implemented in hierarchical models; an example is given

in Section 4. Section 5 details an application of local sensitivity techniques

in the large-sample limit.

2. Qualitative aspects. Recall the general hierarchical set-up of the
previous section, whereby θ$ is a vector of observables, the prior is specified
hierarchically in terms of {0t|0»+i}*=i> and θk+i is a known hyperparame-
ter. Goel and DeGroot (1981) and Goel (1983) show quite generally that
the amount of learning about θ{ from the data diminishes as i increases.
More specifically, they show that the divergence between prior and posterior
marginals for θ{ decreases as i increases, for many divergence measures. In
a related vein, Haitovsky and Zidek (1986) truncate the true hierarchical
prior by placing an improper prior on θ{, and show that the resulting ap-
proximation to the true posterior density for θ\ is increasingly accurate as i
increases. One might like to know if similar orderings apply to sensitivity.

Let Sij be a measure of sensitivity of the θj posterior marginal to un-
certainty about the prior specification for the 0i|0;+i prior conditional. One
might postulate that Sij decreases as \i- j \ increases; that is sensitivity will
be lower when there are many stages interceding between the stage of un-
certain specification and the stage of inference. This turns out to be only
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partly true.
Consider two possible hierarchical specifications, P^ and P(2), which

differ only in terms of θi\θi+\. The discrepancy in inference about θj will
be measured in terms of the total variation distance between the resulting
posterior marginals, pW(θj\θ0) and P^\θj\θQ). Recall that dτv(P,Q) =
sup^ |-P(A) — Q(i4)|. The total variation metric is attractive for use in ro-
bustness problems because of its straightforward interpretation in terms of
probability. It also has the following intuitive and easily verified property.

LEMMA 1. Assume that (XL,X2)
 and (^l?^) each have a joint density

on the sample space (X\,X2), with respect to some dominating measure. If

-X1I-X2 = Yi\Y2) then dτv(XiyYi) < dτv{X2^Y2)j with equality if and only

Y

Succinctly, the distance between two different mixtures of the same condi-
tional distribution is less than the distance between the mixing distributions.
The lemma permits investigation of the behaviour of s, j , as i is fixed and j
varies.

RESULT 1. Let d(j) = dτv{P^)(θj\θ0,θk^1),P^){θj\θ^θk+1))} for fixed
i and ΘQ. Then d(j) is a strictly unimodal function, which is maximized at
either j — i or j = i + 1.

PROOF. First consider the case 1 < j < i. The aim is to show that
dj < dj+i Since the distribution of (ΘQ, .. .,0J|0J_J_I) is completely de-
termined by {P(0m|0m+i)}i=o, it foUows that p W ^ I ^ + x Λ A + i ) and

( ) 0 J + 1 , 0 O ? 0 A H - I ) are equal (neither distribution actually depends on
due to the conditioning on #j+i). Applying Lemma 1 gives the re-

sult. Similarly, consider i < j < k. Specifying {P(0m|0m+i)}m=j c o m ~
pletely determines the distribution of 0j+i|0j,0fc+i, which is equivalent to
0J+1|0o,0j, W T h u s P{1)(Oj+1\e0^ek+1) and P(2\θj+I\θ(hθj,θk+1) are
equivalent in distribution, and application of Lemma 1 shows that dj+ι <

Hence for perturbations at a particular stage of the hierarchy, sensitivity
falls off as the level of inference moves away from the level of perturbation,
in either direction. This is in agreement with the postulated behaviour. The
result is a global sensitivity result, in contrast to the rest of the paper which
focusses on local sensitivity.

It is much harder to make general statements when the stage of infer-
ence is fixed and the stage of perturbation varies. It is possible to make
some progress in the special case of a normal location model with known
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variances. In particular, let 0t |0t +i = 0t +i + ^ , where 60,..., £& are indepen-
dently normally distributed, with respective variances σg,..., σ\ (here θk+ι
is known, and e^+i = 0). A local measure of the sensitivity of the posterior
mean of θj to perturbation of the prior on βi is considered. That is, the lo-
cation structure is left intact under perturbation; only the noise distribution
is perturbed. In Gustafson (1996a) it is shown that when j is fixed, and
i varies over {1, . . . , j — 1}, the sensitivity measure and σf share the same
ordering. The same is true as i varies over {j, ...,&}. Thus in this case the
separation \i — j \ does not play a role in the sensitivity ordering. Rather, the
stages of higher nominal prior variances are more influential on inference at
a particular stage. This result indicates that inference will be sensitive to
improper priors, a finding that agrees with Pericchi and Nazaret (1988).

3. Review of local sensitivity. There are many recent papers dis-

cussing local sensitivity measures based on differentiation of posterior quanti-

ties. The method presented here combines elements from Gustafson (1996b),

Ruggeri and Wasserman (1993), and Sivaganesan (1993).

Consider a partition of the fc-dimensional parameter 0, as 0 — (φ,ψ).

Let P(φ,ψ) be the nominal joint prior on 0. In terms of perturbations to

the prior, the marginal P(φ) is allowed to vary, while the conditional P(ψ\φ)

remains fixed. Sometimes the φ prior marginal is denoted as Pφ. Typically

φ will be one-dimensional; that is sensitivity to each one-dimensional prior

marginal is assessed, in turn. For a likelihood function L(θ) and a function

of interest </(0), define

τ ( m = J g(θ)L(θ)dP(ψ\φ)dQ(φ)
W ) J L(θ)dP(φ\φ)dQ(φ) •

Thus Γ maps the prior marginal for φ to the posterior mean ofg(θ). Perhaps
the simplest local measure of sensitivity is the directional derivative of T at
Pφ in direction Q, which exists under weak conditions, and can be expressed
in an influence function representation (Hampel, Ronchetti, Rousseeuw and
Stahel, 1986) as follows:

(1) = f IFP(z)d[Q - Pφ]{z).
e=0 J

From Gustafson (1996a), the influence function IFp is given by

(2) IFP(Z) =

In the above expression, and throughout the remainder of the paper, Px and

Ex denote posterior distributions and expectations under the nominal prior

P, while pg = E*(g(θ)).
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The influence function representation is useful since IFp does not de-
pend on the direction Q, and so encapsulates the local sensitivity to per-
turbations in all directions. Equation (1) only defines the influence func-
tion up to an additive constant. It is convenient to standardize by re-
quiring f IFp(z)dPφ(z) = 0. By taking Q = δzy it then follows that
eΙFp(z) is a first-order approximation to the change in T that arises upon
6-contamination of Pφ by a point mass at z. This gives a graphical interpre-
tation for the influence function. Note that (2) is already in standardized
form.

The Frechet derivative is considered next. Temporarily extend the do-
main of T to all signed measures having total mass one. Let Γ be all signed
measures U having total mass zero, and consider a norm \\U\\ on Γ. If there
is a linear functional T(Pφ) such that

(3) T(PΦ + U) = T(Pφ) + t(Pφ)U + o(\\U\\)

uniformly on U in bounded (in norm) subsets of Γ, then T(Pφ) is the Frechet
derivative of T at Pφ. This is a stronger notion of derivative than (1). If
the Frechet derivative exists, however, it must coincide with the influence
function. That is f(Pφ)U = /IFP(z)dU(z). To ensure that Pφ + U is a
probability measure, let TR be the class of all directions of the form U =
e(Q — Pφ), for some probability measure Q and some e £ [0,1]. Then the
restricted norm of the derivative,

n ί ( J W ι ι = SUPύgR \\u\\ '
reflects the maximum change in the posterior expectation relative to change

in the prior marginal.

A useful specification of a norm on Γ is

1/2
/ r I dπ i" \

\\U\\ = (/[sH
the L2 norm, with respect to Pφ, of the 'density' dU/dPφ. (Since P^ is always

a fixed nominal measure, there is no harm in letting the norm depend on

Pφ.) In this case, the restricted norm of the derivative is simply

1/2

(4) ' "

which would be reported as a single number summary of the sensitivity of

the posterior mean of g(θ) to perturbation of the φ prior marginal.
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Table 1: Topical cream data. Successes / Number of cases.

Clinic
Active
Control

1

11/36
10/37

2

16/20
22/32

3

14/19
7/19

4

2 /16
1/17

5

6 /17
0/12

6

1/11
0/10

7

1/5
1/9

8

4/6
6/7

The advantage of the Frechet derivative over the weaker directional
derivative is that the former yields an approximation to a global robust-
ness quantity:

sup T(Q) =
r

where Γ ^ = {Pφ + U : U G Γ^, \\U\\ < 6} is the class of all e-contaminations
of Pφ within a 6 radius of P under χ 2 distance. Without the uniformity in
(3), such an approximation is not valid. The above-specified norm on U
yields the χ2 distance. It is a compromise between the extreme richness
of total variation neighbourhoods (based on L\ distance) and lack of rich-
ness of density ratio neighbourhoods ( based on L^ distance), and yields
asymptotically sensible sensitivity measures (Gustafson 1996b).

The above discussion focusses on perturbations to prior marginals, even
though hierarchical models are specified in terms of conditional distributions.
The motivation for this is twofold. First, it is much easier to think about
perturbations to a single distribution (marginal) than to a family of distri-
butions (conditional). Second, it is often desirable to retain the conditional
structure and perturb only the noise distribution. For instance, if the nom-
inal specification is 0t |0ί+i ~ JV(02 + i ,σ 2 ) , it may make more sense to write
0, |0t + i = 0t + i + €i where cz ~ JV(0, σ 2), and then perturb the marginal prior
distribution of €t in order to assess sensitivity to the conditional specification
for0t | 0 ί + 1 .

4. Quantitative aspects. In this section, influence functions and
derivative norms are computed in a practical hierarchical model, to show
how local sensitivity measures can be obtained from Markov chain Monte
Carlo output. The example is a mixed effects probit model, applied to a
data set from Beitler and Landis (1985) (given here in Table 1). The data
arose from a multicentre clinical trial comparing the efficacies of two topical
creams, one active and one control, in curing infection.

Let Yijk represent a patient's binary outcome (l=success, 0=failure),
with i = 1,2 indexing treatment (Inactive, 2=control), j — 1,...,8 in-
dexing centre, and k = 1,.. .,n2 j indexing patient within treatment/centre.
Conditioned on parameters μ, α, and r, all patient responses are assumed
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independent, with P(Yijk = 1) = Φ (μz + TOLJ), where Φ is the standard nor-
mal distribution function. A priori, μ, α and r are assumed independent.
The components of μ are taken to be iid 7V(λ,σ2), reflecting a prior belief
in the exchangeability of treatments. The components of α are taken to be
iid 7V(0,1). Finally, as (the square root of) a variance component, r (which
is assumed to be nonnegative) is assigned a half-Cauchy prior density with
scale parameter TQ. Thus τ has its prior mode at 0, which seems reasonable
for a variance component. For the sake of illustration, hyperparameter val-
ues λ = 0, σ2 = 4, and τ0 = 0.375 are selected. To roughly interpret these
hyperparameters, the average (αt = 0) success probabilities approximately
have prior quartiles 0.1 and 0.9, while when μt = 0, the prior quartiles for
the random effects are approximately 0.4 and 0.6, when translated to the
probability scale.

More typically the model might be expressed hierarchically, by first spec-
ifying the success probability conditional on the random effect rαj, then
specifying the normal random effect distribution with variance component
r 2 . The parameterization given above is useful because it is expressed in
terms of the quantities to which we would like to assess sensitivity. That is
we can separately assess sensitivity to the prior marginal for α which gives
the distributional form of the random effects, as well as to the prior marginal
for T which represents belief about the magnitude of the random effects.

The posterior distribution of parameters is explored via Gibbs sampling.
Following Carlin and Poison (1992), latent variables are introduced to fa-
cilitate Gibbs sampling. Consequently all required conditional distributions
have standard forms, except for τ which can easily be sampled by the re-
jection method with draws from a normal distribution. All inferences and
sensitivity calculations are based on a sample of size 5000 from the Gibbs
sampler.

Straightforwardly, the influence for any one-dimensional prior marginal
and function of interest is given by (2). As discussed in Gustafson (1996a),
there are identities which are useful for calculating influence functions from
Markov Chain Monte Carlo output. Generically, consider a partioned pa-
rameter, θ = (φjφ). To compute an influence function for sensitivity to
perturbation of the φ prior marginal, a function of the form

(5) α{z) = Ex{h{θ)\φ = z)p%{z)

is required. (Here p°φ denotes the posterior marginal density of φ.) The
following identity can be helpful in computing α:

(6) α(z) = Ex[h(z,φ)px

φlφ(z\φ)}.

In particular, given a sample from the posterior distribution of parameters, as
can be approximately produced by a Markov chain Monte Carlo scheme, the
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Table 2: Posterior means and standard deviations of the functions of inter-
est.

quantity of interest g\ g2 #3 g\

posterior mean 041 026 041 0.35

posterior standard deviation 0.12 0.10 0.11 0.11

sample average of the quantity in square brackets is an unbiased estimator of
a(z). In the special case of h = 1, this reduces to the usual "Rao-BlackwelP
estimator of a marginal density. The above is helpful when the posterior
conditional of φ\φ has a closed form. If this is not the case, one can resort
to using

a(z) = Ex

where / is any family of densities indexed by φ. This is a generalization of
an identity advocated by Chen (1994). In practice / can be taken to be the
generating density, if φ is updated either by a Gibbs sampling step using the
rejection method or by a Metropolis step.

In the present context, four inferential quantities are considered: g\{θ) =
Φ(μi), g2(θ) = Φ(μ2), 9s(θ) = Φ(μi + rz0) - Φ(μi - τz0), and g4(θ) =
Φ(μ2 + rz0) - Φ(μ2 - τz0). Here z0 = φ - ^ J δ ) « 0.674. Note that all
posterior quantities are on the probability scale: g\ and g2 are success prob-
abilities for an average patient (α t = 0) on active and control treatments
respectively, while #3 and #4 are within-treatment interquartile ranges for
the success probabilities. The estimated posterior means and posterior stan-
dard deviations for these quantities of interest are given in Table 2.

Influence functions of the form (2) can be computed for all combinations
of prior marginals and functions of interest. For the sake of brevity only
the influence functions for the μi, μ2, and r prior marginals are plotted
in Figure 1. (The last row of plots should be ignored for now.) Relative
sensitivity statements can be made directly from the plots. For example, the
priors on μi and μ2 have more influence on the average success probabilities
(#1 and g2) than on the interquartile ranges (#3 and #4). Conversely, the
prior on r has much more influence on the interquartile ranges than on the
average success probabilities, as is to be expected. To make comparisons on
a numerical scale, the derivative norms (4) are computed and reported in
Table 3. (Again, ignore the last row for now.)

Sometimes it is necessary to be careful about the meaning of parame-
ters when distributions are perturbed. For instance, in the present model
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Figure 1: Influence functions in the topical cream data example. The rows
correspond to perturbed prior marginals for μlf μ2, r, and a. That is the last
row corresponds to simultaneous perturbation of all random effect marginals
in the same direction. The columns correspond to functions of interest gι,
92, 93, and g4.

τ2 can be interpreted as the variance of the random effects acting on the
probit scale. But when the prior on αt is perturbed, this is no longer true in
general. Thus it may be desirable to constrain certain prior summaries un-
der perturbation. This can be accomplished via the usual influence function,
used only in conjunction with contaminations that preserve the desired sum-
maries. However, direct graphical interpretation of the influence function is
more difficult in this situation. In fact constraints can be incorporated in
the influence function directly. This is done by forming the 6-contamination

Table 3: Derivative norms for clinical trial data set. The rows index the
perturbed prior marginal, while the columns index the quantity of interest.

T

a

9ι
0.248
0.188
0.010
0.500

92

0.165
0.192
0.010
0.400

93

0.052
0.037
0.151
0.608

94

0.108
0.117
0.138
0.677
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of a nominal distribution P by Q as usual, and then rescaling the resulting
distribution to ensure it satisfies the constraints. For instance, if two con-
straints are placed on the prior density p, then the e-contamination of p by
q is taken to be:

(7) qe( ) = b(e)[(l-e)p{b(e)(.-α(e))} + eq{b(e)(.-α(e))}},

where α(e) and (b(e) are implicitly defined to ensure that Qe satisfies the
desired constraints. Using the above, the directional derivative is given as
follows.

RESULT 2. Let the φ marginal of a prior with density p(φ, φ) be perturbed
according to (7). Then the derivative of T(Qe) with respect to e, evaluated
at e = 0, has an influence function representation of the form

(8) IF(z) + Coυx(g(θ),p*(φ))a*(z) + Covx(g(θ),φp*(φ))b*(z),

where IF( ) is the unconstrained influence function, and α* satisfies α'(0) =
/ a*(z)d[Q-P](z), with the analogous relation holding for b'(0) andb*. Also,

= -P\Φ)IP(Φ).

As an example, say the constraints are Qc((—oo,&i)) = P((—oo,&2 )) for
i — 1,2, with k\ < k2. This implicitly determines a(e) and 6(e), and leads to

a*{z) = 1

b\z) =

k2 - h

1

p{k2)

P(kι) p(k2)

The analogous expressions for moment constraints are similarly determined.
In our example, constraints are introduced to preserve the quartiles of the

prior on α, so as to preserve the interpretation of gs and g4 as interquartile
ranges. Thus k\ — Φ~1(0.25) and k2 — Φ~1(0.75). More precisely, the aim is
to simultaneously perturb the prior on each α? in the same direction, while
preserving the quartiles. This addresses sensitivity to different specifications
of the random effect distribution rather than sensitivity to outlying random
effects. In turns out that in this case the influence functions add; that is the
influence to misspecification is the sum of the influence to perturbations of
the prior components individually. In the unconstrained setting, this is noted
by Sivaganesan (1993), and made rigorous in a Frechet derivative sense by
Gustafson (1996a). To be clear, in the present example the influence function
for perturbation of the random effects distribution is given by

IFa(z) =
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(9)

where IFαi is the (unconstrained) influence function for perturbation of the
cti prior marginal only. These "overall" influence functions are plotted in
the last row of Figure 1. The jaggedness observed in the plots is due to
the sum of contributions from the IFαi, as well as the discontinuities in
the integrands of the expressions for α'(0) and b'(0). The derivative norms
in the last row of Table 3 are large compared to the individual marginal
counterparts, suggesting that potentially misspecification is more influential
than a single outlying random effect.

5. Asymptotic aspects. The local approach to sensitivity in hierar-
chical models can be applied in the large-sample limit. The hope is that this
can shed some light on the asymptotic behaviour of the posterior distribu-
tion, when the first stage of the prior is misspecified. Neuhaus, Hauck and
Kalbfleisch (1992) and Neuhaus, Kalbfleisch and Hauck (1994) investigate
this issue in some specific models, using different methods.

Consider modelling data {Xi}™=ι as independent given the first-stage
parameters {λj }™=1, with densities {p(^t|λί )}^_1. This arises naturally when
λi is a random effect acting on the distribution of observable X{. In turn the
random effects are postulated to be independent and identically distributed
from a distribution belonging to the parametric family FΊ. Thus upon inte-
grating out the random effects, the distribution of the data depends only on
the parameter vector 7. The components of 7 = (μ ,v) are assumed to be
the mean and variance of the random effect or mixing distribution.

In the large n case, what happens when in reality the random effect
distribution does not belong to FΊΊ This question is addressed in the special
case of nominal first-stage prior that is conjugate to the model specification,
with the true first-stage prior obtained as an e-contamination of the nominal
prior.

Let 7* = (μ*,v*) be the true mean and variance of the mixing distri-
bution. Assume that rather than arising from JP7*, the random effects are
independent and identically distributed with distribution function

Ge( ) = (1 - e)FΊ.(b(e)(- - α(e))) + eG(b(e)(- - α(f))),

where α(e) and b(e) are chosen to yield mean μ* and variance 1/*, along the

lines of the previous section. Now let 7(6) be the value of 7 which minimizes

the Kullback-Leibler divergence between the assumed and underlying models

for a single Xt , given by:
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Under weak conditions the posterior distribution on 7, as well as the maxi-
mum likelihood estimator for 7, will converge to 7(6) as n increases to infinity
(White, 1982). Note that 7(0) = 7*. It is typically hard to compute 7(6)
since the random effects cannot be integrated out analytically, unless e = 0.
However, it is feasible to compute the directional derivative of 7(6) evaluated
at e = 0, and give an influence function representation.

First, the derivative of (10) with respect to 7 evaluated at 7* is equated
to zero. Then differentiation with respect to e leads to the following:

RESULT 3.

(11) 7ί(0) =

where

(12) bi{Ί*,z) = E[h(1*;X)\λ =

In the above l(~/;X) = f p(X\λ)dFΊ(λ) is the nominal log likelihood
function for a single Xt , with l{ and Zt j indicating partial first and second
derivatives of / with respect to the components of 7. Furthermore, / is
the usual information matrix, with Iij(j) = —EΊ(lij(η\X)), and, as before,
/*(λ) = -/ / (λ)//(λ). The integrand in (11) can be viewed as an asymptotic
influence function which measures the robustness of the limiting inference
to the misspecification of the random effect distribution.

A variant of this asymptotic influence function, without mean and vari-
ance constraints, is investigated for some common models in Gustafson
(1996c). In particular, in the normal-normal, beta-binomial, and gamma-
Poisson cases, the effect of misspecification is found to be small in general.
As a further example, consider the case of Xij being iid exponential vari-
ates (jί = 1,.. .,ra) with common hazard λ;. Nominally the random effects
λi,λ2,... are assumed to arise from a gamma distribution with mean μ*
and variance 1/*. With some effort the asymptotic influence function can be
computed in this case (numerical integration is required for the first term in
(12), but all other required quantities can be evaluated analytically).

Asymptotic influence functions are plotted for μ* = 10 and 1/* = 5,
1/* = 10, and 1/* = 20 in Figure 2, for each of m = 5, m = 25, and m = 125.
The three values of v* correspond to random effects which explain 5%, 10%,
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Figure 2: Asymptotic influence functions in the gαmmα-exponentiαl ex-
ample. The rows correspond to true parameter values (μ,v) = (10,5),
(μ,ι/) = (10,10), and (μ,ί/) = (10,20). The first column gives the nom-
inal random effect density. The second and third columns gives influence
functions for the mean and variance respectively. The solid line corresponds
to m = 5, the dotted line to m — 25, and the dashed line to m — 125.

and 20% of the variance of an observation respectively. Note that the scale
of the plots is fixed across values of ι/* for the influence on inference about
μ, but scales with v* for the influence on inference about v. Thus the plots
suggest that inference about the random effect variance is equally robust
across values of the true variance, as measured by the relative change in
the limiting posterior distribution. In contrast inference about the mean
becomes slightly less robust as the true variance increases. Clearly inferences
become more robust to misspecification as the within cluster sample size m
increases. This is more noticeable for the mean than the variance.

6. Discussion. Infinitesimal perturbations at various stages of a hier-
archical prior are useful in assessing sensitivity quantitatively, qualitatively,
and asymptotically. This amounts to a diagnostic approach to robustness
in hierarchical models. There would be less need for diagnostics if inher-
ently robust procedures could be employed. As mentioned earlier, Escobar
(1994) pursues this approach by using a Dirichlet process as the first-stage
prior distribution for a collection of normal means. If smoother priors are
desired, one might consider using a mixture distribution, with the mixing
distribution taken to be a Dirichlet process. This would mimic the approach
to Bayesian robustness advocated by Bose (1994).

A potential shortcoming of the diagnostic approach is that the degree
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to which perturbed specifications are supported by the data is not taken
into account. This is desirable for the subjective part of a hierarchical prior,
but not for the structural part. Sivaganesan and Berger (1993) cite this as a
reason why the range of inference over a class of first-stage prior distributions
may not be of interest. Also, Weiss (1996) emphasizes this point in discussing
non-hierarchical influence diagnostics. Unfortunately it seems difficult to
incorporate the degree of data support into local diagnostics while retaining
the simplicity of implementation. In particular, thought is required as to
how to extend the higher-stage prior to reflect the plausibility of various
first-stage perturbations.
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discussion by
SUDIP BOSE

The George Washington University

First of all, let me congratulate Professor Gustafson on an excellent pa-
per. He has examined very thoroughly, Bayesian robustness of several fea-
tures of hierarchical models. He has, for the most part, focused on local
sensitivity. Before discussing specific sections of the paper, let me make a
few remarks about local sensitivity vs. global sensitivity (robustness). The
existing work on global robustness has mostly concentrated on determining
ranges of posterior expectations of real parametric functions as the prior is
allowed to vary over a neighborhood class. Special techniques have been
presented, each typically pertaining to a specific type of neighborhood class.
In some sense, there is no universal method - the linearization algorithm
is probably the closest there is. On the other hand, the local sensitivity
approach is almost by definition, a universal approach. Another advantage
of the local sensitivity approach is that it can better deal with additional
imposed constraints - something that is often very difficult with global ro-
bustness. Global robustness appears to have the advantage of greater ease of
interpretation - the range of posterior expectations may be precisely the set
of possible answers to the inference question, or the possible answers may
be derived very simply from it. With local sensitivity, following Hampel,
Ronchetti, Rousseeuw and Stahel (1986), one can interpret the value IFp(z)
as the effect of an infinitesimal contamination at the point z on the poste-
rior expectation, standardized by the mass of the contamination. Also, the
gross-error sensitivity

7 = sup \IFP(z)\
z

measures the worst possible influence of a small amount of contamination
of fixed size. Even when one has determined these quantities, whether they
are 'large' or 'small' requires extra effort to judge. This is not meant as a
criticism of local sensitivity and the influence function; rather to point out
that we probably need to provide guidelines to practitioners to help them
interpret, and appreciate the worth of, our sensitivity calculations.

In the rest of the discussion, the title of a section precedes the comments
pertaining to it.

Qualitative aspects
It is reassuring to see that if one holds the stage of perturbation, i fixed,

the effect (of the same perturbation) increases as the stage of inference, j
moves away from i in either direction. It is worth noting that this result
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is different from the other results in that the effect is not just a local phe-
nomenon.

For the case of j , the inference stage fixed, and i, the perturbation stage
allowed to vary, the result about the normal hierarchical model is a bit
of a surprise to me. The fact that | |Γ(P)| | should depend on the stage of
perturbation only through the variance σf seems somewhat counter-intuitive.
One possible explanation is that the usual intuition regarding hierarchical
models does not apply since all the parameters θ{ are one-dimensional. This
is in contrast to the usual case where the dimension of 0t decreases as i
increases, or in other words one has fewer parameters at the higher stages of
the hierarchy. It is also noted that | |Γ(P)| | increases with σf - it makes me
wonder whether this is true under other forms of perturbation. In particular
it may be instructive to see what happens in the following two cases.

(i) Let €t ~
 CΓ

2~
1/(^L) and allow / to vary in the neighborhood of JV(0,1).

(ii) Let the distribution of €{ vary in a neighborhood of iV(0, σf) with the
mean and variance constrained to be 0 and σ?, respectively.

Quantitative aspects
The author uses the representation

fl«(.) = 6(ε)[(l - e)p{b(e)(. - α(e))} + eq{b(e)(. - a(e))}}

in expression (7), where a(e) and b(e) are implicitly defined so as to ensure
that the resulting measures satisfy the constraints. What is the motivation
for choosing this particular representation? Is it somehow natural? Also
how does the author propose to extend this to deal with more than two
constraints?

In the multicentre clinical trial example that the author has analyzed, it
is interesting to see that the influence functions of the α -s add. I wonder,
just how general is this additivity of influence functions?
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I would like to thank Professor Bose for his comments. I agree that there
is a need to calibrate local sensitivity measures. McCulloch (1989) considered
calibration of one particular local sensitivity measure, via a coin-tossing
analogy. As well, the calibration issue was addressed by S. Sivaganesan in a
talk at this conference.

With regard to the Qualitative aspects, the point about dimensionality
is well taken. It would be of some interest to analyze the sensitivity over
a simple "tree-like" normal hierarchy, where the number of parameters de-
creases with the stage of the hierarchy. In the one-dimensional case, the
class (i) suggested by Professor Bose will yield exactly the same results as in
the paper. This is because the underlying metric used is invariant to scale
transformations. That is starting from a fixed distribution, we can either
make a scale transformation and then form a class of size e under the metric,
or we can form the class first, and make the scale transformation to each
member of the class. Either way, the resulting class is the same. It is not
known if the constrained class (ii) gives the same sensitivity orderings as the
unconstrained class. While the sensitivity with respect to (ii) can be com-
puted numerically, it is hard to determine if orderings apply to all possible
data sets and all possible nominal variances.

The location-scale transformation is used to adjust for constraints be-
cause it is simple, and because it is common to have two constraints on a
prior distribution. There is no obvious way to proceed with an influence
function representation if three or more constraints are present.

The additivity of influence functions is quite general. It manifests itself
whenever a density giving rise to iid parameters or observations is perturbed.
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