
Chapter 6

Stochastic differential
equations on Φ; driven by
Poisson random measures

Stochastic differential equations (SDE's) on infinite dimensional spaces arise
from such diverse fields as nonlinear filtering theory, infinite particle sys-
tems, neurophysiology, etc. In this chapter, we study SDE's on duals of
nuclear spaces driven by Poisson random measures. Namely, we consider
the following SDE

Xt = X0+ ί A(s,Xs)ds+ [ ί G{s,Xs_,u)N(duds) (6.0.1)
Jo Jo Ju

on the dual of a CHNS Φ, where A : R + x Φ' -> Φ', G : R + x Φ' x U -+ Φ',
(£7, £,μ) is a σ-ίinite standard measure space, N(duds) is a Poisson random
measure on R+ X U with characteristic measure μ(du) and N(duds) is the
compensated random measure of N(duds). Motivated by neurophysiological
problems, such equations were first considered by Kallianpur and Wolpert
[27] [28] for finite dimensional equations (corresponding to the case when the
neuron can be regarded as a single point) and for infinite dimensional linear
equations. The general case was studied by Hardy, Kallianpur, Ramasubra-
manian and Xiong [13], most of the results of this chapter being taken from
that paper.

The following assumption will be made throughout the rest of this book:

There exists a sequence {φi} of elements in Φ, such that {φi} is a CONS in

Φo and is a COS in each space Φ n , n E Z.

Let φ? = φiWΦiWn1, neZ,ie N + . It is easy to see that {φ?} is a CONS
in Φ n .
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172 CHAPTER 6. STOCHASTIC DIFFERENTIAL EQUATIONS

6.1 Weak convergence theorems

In this section we establish the existence of a weak solution of (6.0.1) by
weak convergence technique for Φ'-valued stochastic process sequences. The
idea is as follows: Consider a sequence of Φ'-valued process {Xn} governed
by a sequence of SDE's of the type of (6.0.1) with coefficients (An, Gn) tend-
ing to (A,G) in some sense (cf. Assumption (A2) below). Under suitable
conditions, show that the distribution sequence {£(Xn)} is tight and its clus-
ter points are solutions to the martingale problem corresponding to (6.0.1).
By making use of the representation theorem for purely-discontinuous Φ'-
valued martingales introduced in Chapter 3, we then obtain a weak solution
of (6.0.1) from the solutions of the martingale problem.

We define the weak solution of (6.0.1) first.

Definition 6.1.1 A probability measure λ on .D([0,T],Φ') is called a weak
solution on [0,T] of the SDE (6.0.1) with initial distribution λ0 on the
Borel sets o/Φ' if there exists a stochastic basis (Ω, J7, P, {Ft)) and a Poisson
random measure N with σ-finite characteristic measure μ, a Φ'-valued process
X such that λ and λo are the distributions of X and XQ respectively and for
any φ (Ξ Φ, t G [0, T], we have

Xt[φ] = X0[φ]+ ί A(s,X8)[φ]ds+ [ ί G(s,X8-,u)[φ]N(duds) a.s.
Jo Jo Ju

(6.1.1)
If [0,T] can be changed to [0,oo) and (6.1.1) holds for any t > 0, then we
call λ on D([0, oo), Φr) a weak solution of (6.0.1).

The next lemma is useful in calculating the norm \\φ\\-r for r > 0.

Lemma 6.1.1 For any r > 0 and j > 1, we have

\\φj\\r\\Φi\\-τ = l (6-1-2)

Proof: Note that

1 = Φj[Φj\<\\Φj\\-r\\Φi\\r

Σ<Φ,Φk>rφU-
. Jfc J

To show the existence of a weak solution of (6.0.1), we impose the fol-
lowing assumptions (I) for (A,G,μ): VT > 0, 3p0 = Po(T) G N+, such that,
Vp > Poj 3<7 > V a n d a constant K = K(p, g, Γ) such that
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(11) (Continuity) Vί € [0,T], the maps υ G Φ _ p -*• A(t,v) € Φ _ g and

υ € Φ _ p —• G(t, υ, •) 6 L2(U, μ; Φ - p ) are continuous.

(12) (Coercivity) Vί <E [0, Γ] and φ € Φ,

p ) ; (6.1.3)

(13) (Growth) Vί € [0, T] and υ € Φ_ p , we have

and

R e m a r k 6.1.1 The left hand side of (6.1.3) is well-defined as ΘPΦ C Φ.

Proof: We only need to show t h a t for any p, r > 0 and φ G Φ, we have

θpφ e Φ r . Note t h a t

and

I < CXD.

Therefore θpφ e Φ r

Now we consider a sequence of Φ'-valued processes {Xn} satisfying SDE's

of the type of (6.0.1) with coefficients A n , G n , characteristic measures μn

and initial distributions λp. We shall give conditions such t h a t this sequence

is relatively compact and its cluster points are characterized by the SDE

(6.0.1). We fix T > 0 and consider Φ'-valued processes on [0,T].

We make the following assumptions (A) for the sequence (An

} G n , μ n , AQ):

(Al ) ( l ° ) The assumptions (I) are satisfied by (An,Gn,μn) for each n. Fur-

thermore, the continuity in (II) is uniform in n, the indexes p,q,po and the
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constant K in (I) are independent of n.
(2°) For each n > 1, the following SDE

[ An(s)Xs)ds+ ί [ Gn(s,Xs_,u)Nn(duds)
Jo Jo Ju

has a weak solution λn on [0,T] with initial distribution AQ. Let Xn be
a Φ'-valued process on a stochastic basis (Ωn, Tn, P n , (F?)) corresponding
to the weak solution λn. We further assume that there exists an index
p — p(T) > po and a constant K > 0 independent of n such that X? G Φ_ p ,
i^-a.s. ^/te [0,T] and

Epn sup ||XΓI|2-P < K.
0<t<T

(A2)(l°)μ Λ = μ;

(2°) Vt G [0,Γ], v G Φ_ P l and φ G Φ, we have

An{t,υ)[φ]^A(t,v)[φ];

(3°) Vt G [0,T], v G Φ - P l , we have

|Gn(t,υ,u) -G(t,v,u)\\2 μ(du) -> 0.
U'

We need the following definition and Theorem 6.1.1 about real-valued

stochastic processes taken from the book of Jacod and Shiryaev ([22], p317,

Corollary 3.33 and p322, Theorem 4.13).

Definition 6.1.2 A sequence of probability measures { λ n } on D([0,T],R)
is C-tight if it is tight and all cluster points are supported on C([0, Γ], R).

Theorem 6.1.1 For each n, let λ n be a probability measure on D([0,Γ],
R) induced by a real-valued semimartingale ξβ + M t

n + A" on a stochastic
basis ( Ω 7 1 , ^ 7 7 1 , ^ , ( ^ n ) ) , where ξβ is a random variable, Mn G M2(R) and
An G A. If {£o} is tight in "&> {< Mn >} and {A71} are C-tight, then {λn}
is tight.

Let p\ = Pι(T) > p be an index such that the canonical injection from

Φ_ p into Φ_ P l is Hilbert-Schmidt.

Lemma 6.1.2 Under assumption (Al), {λn} is tight in D([0,Γ], Φ_Pl).

Proof: For any φ G Φ, let

= f
Jo
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and

M?= f ί Gn(s,X?_,u)[φ]Nn(duds).
Jo Ju

Then Ve > 0, 3δ = δe > 0 such that

sup Pn( sup \C2-C$\>e)
n \0<β-a<S )

= s u p P n I sup
n \0</3-α<*

An(s,Xΐ)[φ]ds > €

sup \An(s,X?)[φ)A

sup
o<s<τ

The set

Mm > 1 and \s -1\ <

is relatively compact and

Pn(Cn > 1,
m = l

i.e. {C71} is C-tight. Similarly we can prove the C-tightness for {< Mn >} .
Furthermore, the sequence {XQ[Φ]} is tight in R as

Hence, it follows from Theorem 6.1.1 that, Vφ £ Φ, the sequence of semi-
martingales Xt

n[<j6] = XQ[Φ] + C? + M t

n is tight in D([0,T],R). It then fol-
lows from assumption (Al)(2°) and Theorem 2.5.2 that {λn} is tight in

Let λ* be a cluster point of {λn} in D([0,T], Φ_ P l ) . To characterize
λ*, we need a connecting idea which is the martingale problem formulated
below. Let

3 h e C o °° ( R ) a n d * € φ s u c h

t h a t F ( υ ) = Λ
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For F € ϊ>o°(Φ'). consider the map CSF : Φ' ->• R defined by

jβsF(v) = A(s,v)[φ]h'(v[φ])

iKυ[φ] + G(s, υ, u)[φ]) - h(υ[φ]) - G{s, υ, u)[φ]ti(υ[φ])}μ(du).[
U

For

MF{Z)t = F(Z(t)) - F(Z(0)) - f CsF(Z(S))ds. (6.1.4)
Jθ

Definition 6.1.3 A probability measure λ on D([0,T],Φ/) is called a solu-
tion on [0} T] of the £-martingale problem with initial distribution XQ if,
VF G X>g°(Φ;), {MF(Z)UO< t < T} is a λ-martingale and\oZ{Q)~ι = λ0.
// λ is a probability measure on D([0,oo),Φ') such that VF E X ^ Φ ' ) ,
{MF(Z)t)0 < t < 00} is a λ-martingale and λ o Z(O)"1 = λo, we call λ
a solution of the C-martingale problem with initial distribution λo

Now, we proceed to prove that {MF(Z)t,0 < t < T} is a λ*-martingale
for every F G V^(Φ'). We define MF(Z)t in a similar fashion as in (6.1.4).
From assumption (Al) and Itό's formula, it is easy to see that {MF(Z)t, 0 <
t < T} is a λn-martingale. To pass to the limit, we need the following
Lemmas.

Lemma 6.1.3 Under assumption (Al), MF is a \n-martingale and

Eχn\MF(Z)t\
2 < \\h'\\lK\\φ\\2

p(K + 1)T, VF G ̂ ( Φ ' ) and n > 1,

where Wh'W^ = sup s 6 R |Λ'(a:)|.

Proof: Applying the Itό's formula (Theorem 3.4.4) to (6.0.1), we have

= f {
Jo Ju

Therefore MF(Xn) is a Pn-martingale and hence, MF(Z) is a λn-martin-

gale. Further

= Epn f I \h(X?_[φ]+Gn(s,XΪ,u)[φ])-h(X:_[φ])\2μn(du)ds
Jo Ju

< Wh'WlE^ f ί \\Gn(s,XΪ,u)[φ}\\2μn(du)ds
Jo Ju

< \\h'\\lEpn f ! \\Gn(s,X7,u)\
Jo Ju
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Lemma 6.1.4 Under assumption (Al), we have

Ex* sup \\Zt\\2_pi < K. (6.1.5)
0<ί<T

Proof: As λ* is a cluster point of {λn}, without loss of generality, we may
assume that λ n converges to λ* weakly. By Skorohod's Theorem, there exists
a probability space (Ω, T, P) and .D([0, Γ], Φ_Pl)-valued random variables ξn

and ξ on it, such that ξn and ξ have distributions λ n and λ* respectively,
and ξn converges to ξ a.s. It follows from (Al) that

E sup ||ίΓ||2_Pl < E sup |KΠ|2-p = Epn sup ||Xf I|2-P < K.
0<t<T 0<t<T 0<t<T

Let n —> oo, using Fatou's Lemma, we have

Ex* sup \\Ztf_pi = E sup ||6|Γ_P1

0<ί<T 0<ί<T

< Uminf £? sup ||eΓ||2-P l
n-̂ °° o<ί<τ

< liminf£Jpn sup \\X?\\lp<K. ,
n^°° o<t<τ •

The following corollary will be used in Chapters 8 and 9.

Corollary 6.1.1 Under assumption (Al), we have Zt G Φ_ p , λ*-α.s. Vt G
[0,Γ]. Further

Ex* sup \\Zt\\2_p<K.
0<t<T

Proof: Using the notations of Lemma 6.1.4, we have

oo oo

Eλ* sup ΣZt[φr? = E sup

< liminfS sup

= l iminf£; p n sup IIX"!!2 _ < K. .
n-*°° o<t<τ t M - p - •

The following two lemmas are elementary and we leave their proofs to
the reader.

Lemma 6.1.5 For h 6 Cg°(R), let

H(x, y) = h{x + y) - h(x) - h'(x)y, Vx, y € R.
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Then, for any x, y, x\, x2, j/i andy2 € R, we have the following inequalities:

\H(χ,y)\<\\h"\\ooy
2;

\H(xu y) - H(x2, y)\ < ||Λw||ooy2|aϊi - x2\; (6.1.6)

\H(x,yi) - H(x,y2)\ < ||Λ"||oo(|yi| + N ) | Σ / I ~ ίftl (6.1.7)

Lemma 6.1.6 Let Co be a compact subset ofΦ_Pl. Under assumptions (A),
we have that for any t G [0, T] and φ G Φ,

sup\(An(t,υ)-A(t,v))[φ]\-^0,
veCo

and

sup / \\Gn(t,v}u) - G(Slv,u)\\2_piμ(du) -* 0.

The following lemma is the major step in passing to the limit.

Lemma 6.1.7 Suppose that (A,G}μ) satisfies assumptions (I) and {(An,
G n ,μ n )} satisfies assumptions (A), Let ξn and ξ be D([0,T],Φ_Pl)-valued
random variables on a probability space (Ω, T, P) such that £ n converges to
ξ a.s.

Then, for F G 2>8°(Φ') and t e [0,T]\.Λ/\ M%(ξn)t converges to MF(ξ)t

in probability, where Λί = {t: P(ω : ξt φ ξt~) > 0}

Proof: As £n converges to ξ, then, for any e > 0, there exists a compact
subset C of D([0, T], Φ_P1) such that

P{ω:ξneC)>l-€ and P{ω : ξ G C) > 1 - 6. (6.1.8)

It follows from Theorem 2.4.3 that there exists a compact subset Co of Φ_P l

such that

CC{Z6 £>([0,T],Φ_Pl) : Zs e Co, Vs e [0,Γ]}.

Let M > 0 be such that

CoC{x£ Φ- P l : llϊH-p, < M}.

For F € £>S°(Φ')> l e t A € Cg°(R) and φ € Φ such that F(υ) = Λ
for υ e Φ'. By the definition of Mξ(Z)t and MF(Z)U for α> such that
and f (u>) G C, we have (suppressing ω for convenience)

h(ξo[φ])\

- A(s,ξs)[φ]h'(ξs[φ])\dsΓ
Jo

f I \H(£[φ],Gn(s,C,u)[φ])-H(ξs[φ]Ms,ξs,u)[φ))\μ(du)ds
o Ju
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Note that

h < f I \H(£[φ],Gn(s,ξΐ,u)[φ])-H(ξs[φ},Gn(s,g,u)[φ])\μ(du)ds
Jo Ju

+ J* Jv \H(ξs[Φ], Gn(s, C, u)[φ]) - H(ξs[φ], G(s, C, u)[φ])\μ(du)ds

+ f t \H(ξs[φ],G(s,C,v-)[Φ})-H(Uφ},G(s,^,u)[φ])\μ(du)ds
Jo Ju

< f I W"\\oo\Gn(s,ξ^u)[φψ\^[φ] -ξs[φ]\μ(du)ds
Jo Ju

\Gn(s, ff, u)[φ] - G(s, C, u)[φ]\μ(du)ds

\G(s, C . v)[Φ] ~ G(s,ξ., u)[φ]\μ(du)ds

= /31 +132 + /33» s a y ?

where the second inequality follows from (6.1.6) and (6.1.7). For ω such that
ξn(ω) and ξ(ω) £ C, we have (again suppressing ω),

hi < i m i o o i φ + M2)\\φ\\2

pi J* \g[φ] - ξs[Φ\\ds -+ 0, α.5.;

rt r

Jo Ju
< ||/ι//||oo4i(:Γ(l + M 2 ) | | ^ | | ^

/ sup / I
Jo VECQ JU

and

f f \\G(s,C,u)-G(s,ξs,u)\\2_piμ(du)ds->0.
Jo Ju

Hence, for ω such that fn(α;) and ξ(ω) G C, we have 73 —> 0. The same

arguments yield that I2 -> 0. It is easy to see that, for t g λί, we have that

h -> 0 a.s. So, combining with (6.1.8), we see that, for t <£ λf, M%(ξn)t

converges to MF(ξ)t in probability. I

The next result characterizes λ*.



180 CHAPTER 6. STOCHASTIC DIFFERENTIAL EQUATIONS

Theorem 6.1.2 Suppose that (A,G,μ) satisfies assumptions (I) and
(?n,μn)} satisfies assumptions (A). Then λ* is a solution on [0,T] of the
C-martingale problem.

Proof: Let ξn and ξ be as given in the proof of Lemma 6.1.4. By Lemma 6.1.3,
for fixed t, we can easily see that {MF(£n)ί}neN ι s uniformly integrable.
Hence, for any bounded continuous #5-measurable function f on D([0,T],
Φ_ P l ), we have that {f(ξn)MF(ξn)t}nefq is uniformly integrable. So, by
Lemma 6.1.7, for tys £ ΛΓ and s < £, we have

Ex*MF{Z)tf{Z) = F Ϊ

= lim EχnMζ(Z)tf{Z) = lim EχnMζ{Z)af{Z)
n n

= lim EMF(ξn)sf(ξn) = EMF(ξ)sf(ξ)

= Ex*MF(Z)sf(Z).

i.e.

Ex*MF(Z)tf(Z) = Ex*MF(Z)sf(Z). (6.1.9)
For general 5 < ί, as λί is countable, we can find two sequences sn and tn

decreasing to s and t respectively such that sn}tn ^ λί and sn < tn. Then,

(6.1.9) still holds with (s,t) replaced by (sn,tn) as f is also #Sn-measurable.

By the right continuity and the uniform integrability of MF(Z)tnf(Z) and

MF(Z)Snf(Z), passing to limit, we see that (6.1.9) still holds for any t > s.

Define two signed measures on Bs by

Vt(A) = Ex*MF(Z)tlA{Z) and V,(A) = Ex*MF{Z)S1A{Z).

Then, from the above, we see that the integrals of f with respect to signed

measures V* and V5 coincide for any bounded continuous #s-measurable func-

tions f. Hence V* = V5 on B8. i.e. {MF(Z)t} is a λ*-martingale. I

It remains to prove that λ* is a weak solution on [0,T] of the SDE (6.0.1).
The idea is to show that the martingale Mφ(t, Z), defined in Lemma 6.1.9 be-
low, can be represented as a stochastic integral with respect to a Poisson ran-
dom measure. We do this by proving that Mψ(t,Z) is purely-discontinuous
in Theorem 6.1.3 and characterizing the jump process ΔMφ(ttZ) in Lemma
6.1.11.

Lemma 6.1.8 There exist two sequences of real functions {pm}, {9m} on
R and a constant L such that, Vra G N, pm G CQ°(R) and
(1) Pm(x) = x when \x\ < m - 1 and \pm(x)\ < L\x\ for any x G R;

(2) \\ρ'm\\oo < L, H/Clloo < L/m, and ||pmp^||oo < L;
(3) 9m G CΌ(R) are nonnegative functions increasing to x2 as m tends to
00.

Furthermore, for each m, there exists <fm such that gm(x) = 0 when \x\ < dm.
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Proof: Let pm be a sequence of odd functions defined in R as follows:

x as 0 < x < m

Prafx) = I 0 as x > 2m

m: - i—2" 1- + y

 m

 } + 1 as m < x < 2m.
\ m m ) — —

Then pm G C7^(R) and for any

lA'rn^ i 2̂  J-^Fh IrmV^ l — °^ a n α \Pm\X)\ -^

Let J be the Friedrichs mollifier given by

, v J fc exp{ — (1 — a?2)"1} for |aj| < 1

I 0 for \x\ > 1,

where A: is a constant such that / J(x)dx = 1. Let

pm(x) = (/δm * J)(x) = I J(x- y)prn{y)dy.

Then />m G C Q ° ( R ) . AS pm G C Q ( R ) , integrating by parts, we have

pf

m(x)^jj(x-y)p/

rn(y)dy (6.1.11)

and

Then, for \x\ < m — 1,

/COO = j J(χ-y)Pm(y)dy = J J{y)pm(χ-y)dy

= jj(y)dy=l.

As p m (0) = 0, we have

pm(x) — x as |x| < m — 1.

In addition, by (6.1.10) and (6.1.11), we have

2S4
< 64 and | | ^ | U < — .

ΊIL

Furthermore, by (6.1.11) again, ρf^{x) — 0 as \x\ > 2m + 1. Hence

234 234
||/wC||oo< sup 6 4 ^ 1 — < 6 4 | 2 m + l | — < L .

|x|<2m+l m m
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(3) Let gm be an even function given by

( 0 if 0 < x < ± or x > m;

(x - m " 1 ) 2 if m " 1 < x < m - 1;
(m - m " 1 - l) 2 (ra - z) if m - 1 < x < m.

It is easy to check the condition (3) for gm. I

L e m m a 6.1.9 V<£ G Φ, let

Mφ(t, Z) = ZtM - ZoM

Under the conditions of Theorem 6.1.2, {Mφ(t}Z)}t<τ is a \*-square inte-
grable martingale.

Proof: Let pm be given by Lemma 6.1.8. Let Fm 6 £>o°(Φ') be given by
) . Let

] , Φ . P l ) : | | Z t | | _ P l < ( m - l ) ! ^ " 1 , Vt G [0,

Then, for Z G A', we have |Z 5[^]| < m — 1 and hence,

MF™(Z)t = Mφ{t,Z) - f ί Hm{Zs[φ]}G{s,ZSJu)[φ])μ{du)ds, (6.1.12)
Jo Ju

where Hm is defined as in Lemma 6.1.5 with h replaced by pm. Hence, by

(6.1.12), Lemma 6.1.5, assumption (13) and (6.1.5), we have

Eλ*\MF™(Z)t-Mφ(t,Z)\lx(Z)

Eλ * f ί \\p'Jn\\0O\G(8,Z.,u)[φ]\2μ(du)ds
Jo Ju

m

On the other hand,

< —tK(l + K)\\φ\\lΛ -^ 0 as m -> oo.

as ?n —» oo. So, Vβ > 0, we have

λ* [Z G D([O,T],Φ_P1) : |M F -(Z) t - Mφ{t,Z)\ > e}

< A*(*c) + ±Ex'\MFm(Z)t - Mφ(t, Z)\1X(Z) -H- 0.
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i.e.

MFrn(Z)t -+ Mφ(t, Z) in probability λ*. (6.1.13)

Next, by assumptions (I) and the properties of pm, it is easy to show that
there exists a constant C independent of m such that

ςC'(l+ sup \\Zt\\2_pi). (6.1.14)

Hence, by Lemma 6.1.4, the left hand side of (6.1.14) is integrable with
respect to λ* uniformly in m. Then, by (6.1.13),

But {MFm(Z)t} are λ*-martingales, so {Mφ(t,Z)} is a λ*-martingale. Fi-
nally, by assumptions (I), it is easy to see that there exists a constant C"
such that

\Mφ(t,Z)\*<C»(l+ sup \\Zt\\2_pi).

Hence, by Lemma 6.1.4 again, {Mφ(t, Z)} is a λ*-square-integrable-martin-
gale. I

Lemma 6.1.10 Let < Mφ > (£, Z) be the quadratic variation process of the
square integrable martingale Mφ. Under the conditions of Theorem 6.1.2,
we have

<Mφ>(t}Z)= ί [ (G(s, Zs, u)[φ])2μ(du)ds. (6.1.15)
Jo Ju

Proof: Vφ G Φ, let

Nφ(t,Z) = Zt[φ}2-Zo[φ\2-2fA{s,Zs)[φ]Zs[φ}ds
Jo

- f [ (G(s,Zs,u)[φ])2μ(du)ds.
Jo Ju

Then, by a similar argument as in the proof of Lemma 6.1.9, {Nφ(t}Z)}t<τ
is a λ*-martingale. By the definition of Mφ, it is easy to see that

AZs[φ] = AMφ(s, Z) and < M% >t=< Z[φ]c > t, (6.1.16)

where Mφ and Z[φ]c are the continuous parts of the semimartingales Mφ

and Z[φ] respectively. It follows from Theorem 3.4.2 that

[Z[φ]]t = ̂ 2(AZs[φ])2+ < Z[ΦT >t= [MΦ]t. (6.1.17)
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By (6.1.16), (6.1.17) and Itό's formula, it is easy to show that

Zt[φ]2 = Z0[φ]2 + 2 f A(s,Zs)[φ]Zs[φ]ds
Jo

+2 f Zs_[φ]dMφ(s) + [Z[φ]]t. (6.1.18)
Jo

Hence, by the definition of Nφ(t, Z) and (6.1.18), we have

Nφ(t,Z)

= 2 ίtZs4φ]dMφ(s) + [Z[φ]]t- f f(G(s,Zs,u)[φ])2μ(du)ds
Jo Jo Ju

= 2 f Zs.[φ]dMφ(s) + [Mφ]t - f ί (G(s, Zs, u)[φ]fμ{du)ds.
Jo Jo Ju

Therefore

<Mφ>(t}Z)- [ ( (G(5, Zs, u)[φ])2μ(du)ds (6.1.19)
Jo Ju

= (< Mψ > (ί, Z) - [Mφ]t) + Nφ{t, Z) - 2 /* Zs_ [φ]dMφ(s).
Jo

The right hand side of (6.1.19) is a martingale as all three terms are mar-
tingales. On the other hand, the left hand side of (6.1.19) is in Λ and
predictable. (6.1.15) then follows from the Doob-Meyer decomposition the-
orem. I

Theorem 6.1.3 Under the conditions of Theorem 6.1.2, Mφ(t, Z) is purely-

discontinuous.

Proof: Let g G Co(R) be non-negative and such that g(x) — 0 when \x\ < a

for some a > 0. Let Yn and Fn be functionals defined on £>([0, Γ], Φ_P 1) by

Yn(Z) = f f g(Gn(s,ZSJu)[φ])μ(du)ds
Jo Ju

and

F"(Z)= Σ g(AZs[φ])-Yn(Z)
0<s<t

Similarly, we define functionals Y and F on D([0,Γ], Φ - P l ) . Let ξn and ξ be
as given in the proof of Lemma 6.1.4. By the same arguments as in the proof
of Lemma 6.1.7 it follows that Yn(ξn) converges to Y(ξ) in probability. By
Corollary 2.4.2

g(UΦ]) a.s.,
0<s<t 0<s<t
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and hence, Fn(ξn) converges to F(ξ) in probability.
On the other hand, from

fΆn(s,X?)[φ]ds+ f ί Gn(s,X?_,u)[φ]Nn(duds)
Jo Jo Ju

we have

ΔX?[φ] = Gn(s}X?_,p»

where pn( )> Dn are the point processes and jump sets corresponding to the
Poisson random measures Nn. Hence

So

Σ g(AX?[φ]) = Σ 9(Gn(s,X:_,pn(s))[φ]lDn(s))
0<s<t 0<s<t

= Σ g(Gn(S,X?_,pn(s))[φ])lDn(s)
0<s<t

= f f g(Gn(s,XΪ_,u)[φ])Nn(duds).
Jo Ju

= f f g(Gn(s,Xΐ_,u)[φ])Nn(duds).
Jo Ju

Hence
E{Fn(ξn)} = Epn{Fn{Xn)} = 0

and

E{Fn(ξn)2} = Epn{Fn(Xn)2}

= Epn f ί g\Gn(s,Xΐ,u)[φ])μ(du)ds
Jo Ju

< Epn f ( Kg(Gn(s,XΪ,u)[φ]γμ(du)ds
Jo Ju

d)ds< KgE
pn f I \\Gn{s,X:,u)\\lpi\\φ\\liμ{du)ds

where Kg is a constant such that \g2{x)\ < Kgx
2. So, {Fn(ξn)} is uniformly

integrable and, passing to the limit, we have E{F(ξ)} = 0. i.e.

E Σ 9(ΔUΦ\) = E f I g{G{s,ξs,u)[φ])μ{du)ds.
0<s<t J θ J U
0<s<t

So

Ex* y ; g(AZs[φ}) = Ex* f ί g{G(s}Zs^u)[φ])μ{du)ds. (6.1.20)
n ^ * ^0 JU0<S<t
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Let gm be given by Lemma 6.1.8, then (6.1.20) still holds with g replaced by

<7m. As gm(x) t χ2 when m f oo, it follows from the monotone convergence

theorem and Lemma 6.1.10 that

)2 = Ex* Σ (AZs[φ]γ
0<s<t 0<s<t

= Ex* f ί(G(S,Zs,u)[φ])2μ(du)ds
Jo Ju

= Ex* < Mφ> (t, Z) = Ex*[Mφ]{t, Z).

Hence, by (6.1.16) and (6.1.17)

i.e. Vt, < M£ > (ί, Z) = 0 a.s. Then, by the continuity of < Mc

φ > (t, Z)

in t, we get < Mc

φ > (t,Z) = 0 Vt, a.s.. This proves that Mφ(t,Z) is

purely-discontinuous. I

We next identify the compensator of the point process AZS.

Lemma 6.1.11 Let

Γ = I A G £(Φ_P1 \ {0}) : Ex* Σ 1A(ΔZS) < oo, V0 < t < T \ .
( 0<s<t J

Then, for A £Γ,

V 1Λ(ΔZ.) - /

is α λ*-martingale.

Proof: Let h be a bounded non-negative continuous /?5-measurable function

on D([Q,T], Φ-P l) and let f be a smooth function on R+ given by

_ ί exp(VΪ/(v£ - 1)) for 0 < t < 1;
" I 0 for ί > 1.

Let 0 < a < a' and

For any closed subset F of Φ_P l contained in 5α>α/ and k > 3, we define
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where p(x}F) is the distance from x to set F in Φ_P 1. Let {Xn}, {ξn}
and ξ be as defined in the proof of Lemma 6.1.4 and Fζt be functional on
D([O,T],Φ_P1) given by

FkAZ)= Σ Λ ( Δ ^ ) - J J fk(Gn(s1ZS}u))μ(du)ds.

Define the functional F^t similarly. Then, for fixed k,

£ Λ(Δtf) - Σ •
0<s<t 0<s<t

f I fk(Gn(s,£,u)) -
Jo Ju+

The first term converges to 0 a.s. and, for the second term, let bn =
p(Gn(s,C,u),F) Άndb = p(G(s,ξs,u),F). Then

/ / fk(Gn(s, £\ u)) - fk(G(s, ξs, u))μ{du)ds
Jo Ju

J J \fk(Gn(s,ξ2,u)) - fk(G(s,ξs>u))\lbn<zιb<*μ(du)ds

+ ί ί fk{Gn{s,g,u))lbn<zb>zμ{du)dS
Jo Ju

< ll/'l / /
o Ju

Jo Ju
ib<ί

< ll/'l

\\G(s,ξs>u)\\_pl)μ(du)ds

Rh2
Rh2 tι Γ

^ψ Jo Ju
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which converges to 0 in probability by the same arguments as in the proof

of Lemma 6.1.7. It follows as in the proof of Theorem 6.1.2 that, for fixed k

and t, {F£t(ξn)} is uniformly integrable and

Letting n tends to oo, we get

Eh(ξ)(Fk,t(0 - Fk

Hence, we have

Ex*h{Z)\ £ Λ(ΔZ r )- f ί fk{G{r,Zr,u))μ{du)dr\ = Q.
\s<τ<t Js JU J

Since fk decreases to IJP as k —> oo, by the monotone convergence theorem,
we have

Eχ*h(Z) Σ MAZr) = Eλ*h(Z) ί ί lF{G{r,Zr,u))μ(du)dr (6.1.21)
s<r

for any closed subset F of 5αjΛ/. As both sides of (6.1.21) define two measures
o n SΛiat and coincide for all closed sets, (6.1.21) holds for any Borel subset
of Saia' Letting a -» 0 and a! -> oo, (6.1.21) holds for any Borel subset of
Φ_ P 1 . This proves the lemma. I

Theorem 6.1.4 Under the conditions of Theorem 6.1.2, λ* is a weak solu-

tion on [0, T] of the SDE (6.0.1).

Proof: From Lemma 6.1.11 we know that the point process Δ M 5 = Δ Z 5 has
compensator N^M^dtdv) = g(ί, dv,ω)dt while

q(t,E,ω) = μ{u : G(t,Z t_,u) G E}.

Therefore by Theorem 3.4.7, on an extension (Ω, J*, P, ft) of the stochastic
basis

(ZH[0, Γ], Φ _ p J , β(D([0, T], Φ_ P l )), λ*, β t ) ,

there exists a Poisson random measure N with characteristic measure μ such
that

Mt= f [ G(s,Zs-,u)N(dsdu).
Jo Ju

Hence

[ A(s,Zs)ds+ [ [ G(s}Zs-,u)N(duds).
JO JO JU
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6.2 Existence of a weak solution

In this section, we use the basic results of last section to derive the existence

of a weak solution of the SDE (6.0.1). The idea is as follows: first, we prove

the existence of the weak solution on [0,T] of (6.0.1) when the nuclear space

Φ is finite dimensional, say R d . Then, employing the Galerkin method, we

project the coefficients of the equation (6.0.1) to a sequence of finite dimen-

sional subspaces and consider the corresponding SDE on these subspaces.

We get the desired existence by proving that this sequence of equations sat-

isfies the assumptions (Al) and (A2) of Section 6.1. Applying the results to

the intervals [0,T], [2T,3T], , we get a sequence of solutions of (6.0.1) in

these intervals and, connecting them, we obtain a solution on the interval

[0,oo).

First of all, let us consider (6.0.1) when Φ = R d . In this case, Φ p = R d

for all p. The SDE (6.0.1) can be rewritten as

xt = ξ+ I a(s,xs)ds + I I c{s,xs-,u)N(duds) (6.2.1)
Jo Jo Ju

where α : R+ X R d —> R d and c : R+ X R d X U —> R d are two measurable
mappings, N is a Poisson random measure on R+ x U with respect to a
stochastic base (Ω, J7, F, (Ft)) a n d ζ is a .Fo-nαeasurable Revalued random
variable.

In the present setup, we make the following assumptions (P): VT > 0,

there exist constants K\ and K2 such that

(Fl) (Continuity) Vt G [0, T], a(t, •) : ΈLd -> ΈLd is continuous; Vt G [0, Γ] and

x G R d , c(tj x, •) G L2(Uj μ; R d ) and, for t fixed, the map x —> c(ί, cc, •) from

R d to L2(U, μ\ R d ) is continuous.

(F2) (Coercivity) Vt G [0,Γ] and x G R d ,

2 < a(t, x), x >< Kι(l + \x\2).

(F3) (Growth) Vt G [0,T] and x G R d ,

\a(t,x)\2 <K2(l + \x\2) and / \c(t,x,u)\2μ(du) < K^l + |cc|2)
JU

where < , > and | | are the inner product and norm in R d respectively.

Remark 6.2.1 If we replace K\ and K2 by K = max(i<Ί, K2), the assump-
tions (F) are just restatements of the assumptions (I) of Section 6.1 in the
present setup. We distinguish K\ and K2 for technical reasons which will
become clear later on (See Remark 6.2.2 below).
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To solve the SDE (6.2.1), we make the following additional assumption

(6.2.2) which will be removed later: There exists a constant L such that for

any t G [0,T] and x,y G R d ,

|α(t, x) - α(ί, y)\2 + ί |c(t, x, u) - c(t, y, u)|2μ(cfu) < £ |z - 2/|2 (6.2.2)

The estimate (6.2.3) given below is of crucial importance for this chapter.

Lemma 6.2.1 Under assumptions (F) and (6.2.2), if E\ζ\2 < oo, then there

exists a solution x of (6.2.1) such that

E sup | z t |
2 < K (6.2.3)

0<ί<T

where K = K(Kι,T, E\ξ\2) is a finite constant.

Proof: Let x® = ζ and

[ [ n > 0.* + 1 =ξ+ ί a(s}x?)ds+ [ [ c(s}x^_}
Jo Jo Ju

Under the condition (6.2.2), it is easy to see that {xn} converges to a stochas-

tic process x in the following sense:

E sup \x? - xt\
2 -• 0.

o<t<τ

Further, it is clear that x is a solution of (6.2.1). We only need to prove the

estimate (6.2.3). Applying Itό's formula to (6.2.1), we get

| ^ | 2 = |f |2 + 2 / < x81 α(s, xs)>ds+ ί [ | φ , xS} u)\2μ{du)ds
Jo Jo Ju

+ ί /{ |φ,s 5_,u)| 2 + 2 < z5_,c(s,zs_,u) >}N(duds). (6.2.4)
Jo Ju

Let r m = inf{ί < T : \xt\ > m} be a sequence of increasing stopping times.

By (6.2.4), we have

ftΛτm

< 2KX \ (1 + \xs\
2)ds

Jo

+ / / {\c(s,xs-,u)\2 + 2< xs-,c(s,xs-,u) >}N(duds).
Jo Ju

Let
fm{t) = E sup |x r |

2
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and

Aft = I I < xs-,c(s, ss_,u) > N(duds). (6.2.5)

Then

/m(ί) < E\ξ\2 + 2K1t + 2K1 f fm(s)ds + 2E sup Mr

JO r < t Λ τ m

+E sup / / \c(s,xs-,u)\2N(duds). (6.2.6)

Note that

E sup / / |c(s, xs-,u)\2N(duds)
CtΛτm«/O JU

< E sup \ \c(s,xs-,u)\2N(duds)
r<tΛτm WO JU

+ \c(s,xs-)u)\2μ(du)ds\
Jo Ju )

ftΛTm

= 2E /

< 2K1t + 2K1E ί fm(s)ds. (6.2.7)
Jo

On the other hand, M, defined in (6.2.5) is a martingale with quadratic
variation process

[M]t = / / < zs_,c(s,ίcs_,tt) > 2 Nίduds).
Jo Ju

It follows from the Burkholder-Davis-Gundy inequality that

2E sup Mr<8E[M]lHm

r<tΛτm

U tΛTm f Λ 1/2

/ < xs, c(s, xs, u) >2 N(duds) >

/ |a;5|
2|c(s,ίrSJ^)|2iV(^d5)V

/ f ftΛTm f ^^2\
< &E[ sup | x r | < / / \c(s,xs,u)\2N(duds)\

\r<tΛτm UO JU ) )
/ \2

1 o fm f

< -E sup | z r |
2 + 32£M / \c(s}xSJu)\2N(duds)

2 r<tΛτm Jθ JU

f fm{s)ds. (6.2.8)
Jo
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Hence, by (6.2.6)-(6.2.8), we have

fm{t) < 2 ΪE\ζ\2 + 36JCit + 36Kχ J fm(s)ds\ ,

i T

fm{t) < 2(E\ξ\2 + 36K1T) exp(36K!(T - s))ds
Jo

and so

<oo.

Letting m —> oo, we get our estimate. I

The following theorem yields the existence of a weak solution on [0,T] of
the SDE (6.2.1) without the condition (6.2.2).

Theorem 6.2.1 Under assumptions (F) and E\ξ\2 < oo, the SDE (6.2.1)
has a weak solution X on D([QyT],Jld) such that

E sup \xtγ < K{KUT,E\£\2) < oo (6.2.9)
0<t<T

where x is a TO*-valued process on a stochastic basis (Ω, T, P, (ft)) corre-
sponding to the weak solution λ.

Proof: Let J be the Friedrichs mollifier given by

_ ί
"1

for | s | < 1
f o r | x | > l ,

where A: is a constant such that / J(x)dx = 1. Let

n( \ _ j J α(t, % - n~1z)J(z)dz for |cc| < n
^ ' 1 αn(t,?iίc/|ίc|) for |cc| > n

and
έ, x - n~xz, u)J(z)dz for \x\ < n

<y)/*»/|/γ»| Λ / ^ f o r \Ί*\ ^> 1Π
, lujjf \JLι\m LL I L\JL I tls I ^ ^ /ί'

cn(

It is easy to verify that, for each n, (αn,cn,μ) satisfies the assumptions
(F) and (6.2.2) with Ku K2, L replaced by ZKλ + 4 ^ ^ , 3K2 and Ln

respectively, where Ln is a constant depends on n. Hence, by Lemma 6.2.1,
the SDE

x? = ξ+ ί an(s,xn

8)ds+ j I cn(s,xn

s_,u)N(duds)
Jo Jo Ju
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has a solution xn such that

E sup \x?\2 < K (Mi +±\fK~2,T,E\ζ\2) < oo.

This proves that the sequence {(αn,cn,μ)} satisfies the assumption (Al)

with

K = max(3ΐCi + 4y/KΪ, 3ϋΓ2) and K = K{ZKλ + 4 v ^ , Γ,

The assumption (A2) is easy to check. Hence, by Theorem 6.1.4, the SDE

(6.2.1) has a weak solution on [0,T]. (6.2.9) follows from (6.2.3) and

Lemma 6.1.4. I

Now, we come back to our original problem and project the SDE (6.0.1)

onto a sequence of finite dimensional subspaces. Let λo be a probability

measure on Φ_ r o such that

#λoIMI-ro < oo (6.2.10)

Let p = max(po, ro) and π : Φ_ p -> R d be a mapping given by

and let AQ = λo ° ft"1 be the induced measure on R d . We define ad :

R + x R d -» ΈLd and gd : R + x Rd x U -> Kd by

and

Σ XJΦ]PI
 u [ΦPk\-

L e m m a 6.2.2 Under assumptions (I) and (6.2.10), the SDE

xd = x

d+ ί a

d(s1x
d)ds+ I ί gd(s)x

d

s_)u)N(duds)
Jo Jo Ju

on ΈLd with initial measure λd has a weak solution λd such that

Epd sup \xd\2 < K (K,T,EXQ\\V\\2_P) < oo

0<ί<T V '

\
0<ί<T

where xd is a ~Rd-υalued process on a stochastic basis (Ωd, Td, Pd, (J7?)) cor~
responding to the weak solution λd.
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Proof: For each d, it is easy to see that assumptions (F) are satisfied by
(ad,gd

}μ)with

Kd = K and Kd = m^x[\\φk\\l\\φk\\-2:l<k<d)κ. (6.2.11)

The assertion of the Lemma follows from Theorem 6.2.1. I

Remark 6.2.2 As Kd in (6.2.11) depends on d while K\ does not, we use
different notations for them in the assumptions (F) and obtain estimate
(6.2.9) depending on K\ only (cf. Remark 6.2.1).

For the weak solution xd, we define the corresponding Φ_p-valued r.c.1.1.
process Xd by

Then

supϋ? sup \\Xd\\lp<R(κ,T,E\\XQ\tp).
d 0<t<T V '

\
d 0<t<T

Let ηd : Φ' —• Φ' be a mapping given by

and let λd = λ 0 o ( 7 d ) " 1 be the induced measure on Φ'. Let Ad : R + xΦ' -> Φ'

and Gd : R+ X Φ' X U —• Φ' be two sequences of measurable mappings given

by
Ad{s,v) = ηdA{s,ηdv) and d

Then Xd is a solution of the SDE

Xd = Xd+ ί Ad(s,Xf)ds+ ί ί Gd(s}Xf_}u)N(duds)
Jo Jo Ju

on the stochastic basis (Ωd, Td, P d , (?%)) (given in Lemma 6.2.2) with initial

measure AQ.

Theorem 6.2.2 Under assumptions (I) and (6.2.10), the SDE (6.0.1) has

a Φ-Pl-υalued weak solution λ* on D([0,T],Φ_P l) with initial distribution

λo and
E sup \\Xt\\2_p<k(K,T,E^\\v\\lp)

where Xt is the Φ - P l -valued process on a stochastic basis corresponding to
the weak solution λ*.
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Proof: By Theorem 6.1.4 and Corollary 6.1.1, we only need to check that
(Ad, Gd, μ, AQ) satisfies the assumptions (Al) and (A2). By the continuity of
A(t, •) on Φ_ p , Mw G Φ-p, V6 > 0, 3δ(w), W G S(w, ί ) , we have \\A(t, w) -
A(t,wf)\\-q < e, where

S(w, δ) = {wf G Φ_p : \\w - w'\\-p < δ(w)}.

For fixed VQ G Φ - P , let C — {7^0 : d G N} U {^o}. As C is a compact subset

of Φ_ p and {5(tϋ, δ(w)/2) : tϋ G C} is an open covering of C, there exist
wii' ') wn £ C such that

Let δ = min{δ(wk)/2 : k = 1, , n). For w G C and w' G S(w} 5), we have
k such that w G S(wkj δ(wk)/2) and hence

ll̂ jfe - w'\\-p < \\w - Wk\\-P + \\w - w'\\-p < δ(wk),

so that

\\A(t,w)-A(t,w')\\.q

< \\A(t,w) - A(t,wk)\\_q + \\A(t,wk) - A(t, ti OH-,

< 2e. (6.2.12)

Note that
υ\ΦV[Φlq = v[$]φ~p, Vυ e Φ',p, ? > 0. (6.2.13)

J J J J ^ '

Therefore, for any υ G % , ί )

<* 2

l|2 _ V ^ / " ^ ^ Λ/d4Λ _ J/V Λ A,_^^ Γ/A«l/A-9

where the last inequality follows from (6.2.12), jdυ0 G C and

This proves that for t G [0, T] and d G N, Ad(ί, •) is a continuous map from

Φ_ p to Φ_ g and the continuity is uniform in d. Note that for any t G [0,T]

and φ G Φ,

= 2

dφ)[θΊd= 2A{t,Ί

dφ)[θPΊdΦ\ <

\\φ\\lp).
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Further, for any ί 6 [0,T] and v G Φ- p, we have

-p

d

-q
2

-q

<\\A(s,7

dφ)\\2_q

k-l

where the second equality follows from (6.2.13).
We can derive the corresponding properties for {Gd} in a similar fashion.

Therefore the assumption (Al)(l°) holds. The condition (Al)(2°) follows
from Lemma 6.2.2. The condition (A2) can be verified easily. Thus the
proof of the theorem is complete. I

Finally, we construct a weak solution on [0, oo) for (6.0.1). First of all,
let us construct a sequence of measures λn on D n = -D([0, nT], Φ_Pl(nτ)) by
induction. Taking λi = λ* (given by the previous theorem) and assuming
that λn on D n has been constructed, we now construct λn+χ on D n + 1 .

For 0 < t < Γ, v e Φ' and u e U, let

i(έ, υ) = A(t + nT, v) and G(t} v, u) = G(t + nΓ, v, u). (6.2.14)

Then A and G satisfy the assumptions (I) with po and K(p, g, T) replaced
by Po((n+ 1)Γ) and K(p, <j, (n+ 1)Γ) respectively. With initial distribution
λo = λnoZ~τ, the SDE

Xt = X0+ [ A(s,Xs)ds+ [ [ G(5,Xs_,u
Jo Jo Ju

has a Φ_P l((n+i)τ)-v alu ed weak solution λ* on [0,T]. As

is a Polish space, the regular conditional probability measure

exists. Let
π : V(π) C D n x D n + 1
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be given by

W 7 i 7iλ _ / Zl asO <t<nT

where ϊ>(π) = { ( ^ \ £ 2 ) € Dn x D1-
Define a measure λ;+ 1 on D n x D 1 > n + 1 by

λ*n+1(AxB)= ί λ*zl
J A n

for A C D n and B C D 1 ' " * 1 . It is easy to show that λ*+1(2?(τr)) = 1 and
hence, λ*+ 1 induces a measure λ n +i = λ*+ 1 o π"1 on D n + 1 .

The λ n ' s can be regarded as probability measures on D([0, oo), Φ') and
satisfy

where Bnτ is the natural σ-algebra on D([0, oo^Φ7) upto time nT. Hence,
the following set function

λ(B) = λn(B) foτBeBnT.

on the field UnBnτ is well-defined and σ-additive. Therefore λ can be ex-
tended to a probability measure on the σ-field VnBnT = B. Denoting this
extension also by λ, we have

Now we proceed to show that λ is a weak solution of the SDE (6.0.1).

L e m m a 6.2.3 λ is a solution of the C-martingale problem.

Proof: We only need to show that, for any F G X>o°(Φ'), 0 < s < t < oo and
5 6 βsj we have

/ (uF{Z)t - MF(Z)S) λ(dZ) = 0. (6.2.15)

We prove (6.2.15) by induction. If t < Γ, (6.2.15) follows from Theo-
rem 6.1.2. Suppose (6.2.15) holds when t < nT. We prove it still holds
when t < (n + 1)Γ.

First, assume that nT < s < t < (n + 1)Γ. Let L and MF be defined
by (6.1.4) with A and G replaced by A and G of (6.2.14). As B <E Bs,
π ~ 1 ( 5 Π D n + 1 ) G β^/ Γ χβ^_ n T , it follows from standard arguments of measure
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theory that we may assume that T Γ " 1 ^ Π D n + 1 ) = C x D with C € B\τ

and D G B2_nT in the following calculations:

J (MF(Z)t - MF(Z)S) λ(dZ)

F{Z*))t_nT - MF{Z\.nT)) 1D(Z2)\Z2

O = Zl

^E* (E% ( (MF(Z2)t_nT - MF{Z2)s.nT)

= 0.

Finally, if s < nT < t < (n + 1)Γ, then

E\MF(Z)t\B.) = E\E\MF(Z)t\BnT\Bs)

= E\MF(Z)nT\Bs) = MF(Z)3 λ-a.8.

Similar arguments yield the following Lemma.

Lemma 6.2.4 (1°) For any φ € Φ, {Mφ(t, Z)}t>o given by Lemma 6.1.9 is
a X-square integrable purely-discontinuous martingale.
(2°) Let

Γ = { A e 5(Φ' \ {0}) : Eχ Σ 1A(ΔZ.) < oo, Vi > 0 } .
0<5<t

Then, for A G Γ , we have

Σ lϋ(ΔZ,)- Γ / U(σ(β l^>ti))μ(cίu)ώ
0<5<t J θ J U

is a λ-martingale on [0, oo).

Theorem 6.2.3 Suppose that the assumptions (I) hold and \/φ £ Φ

\υ[φ]\2λ0(dυ) < oo.

Then (6.0.1) has a &-valued weak solution satisfying the following condition:
VT > 0; 3pi = pi(Γ) such that

E sup
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Proof: Let

α \ 1/2

_# \υ[φ]\2λ0(dυ)J , V ^ Φ .

Then, it is easy to check the conditions of Lemma 1.3.1 and hence, we have

an index r such that, Mφ G Φ, V(φ) < θ\\φ\\r. i.e.

/ \υ[φ]\2λ0(dυ) < Θ2\\φ\\2

r. (6.2.16)

By the definition of nuclear space, there exists an index Γo > r such that

Σfc WΦkWr < oo Hence, by (6.2.16), we have

/ IMI-nΛW = X) / \v[Φl°]\2Mdυ) < Σθ2Wk\\l < oo.
Jφ _ Jφ1 ,

The rest of the the proof follows from exactly the same arguments as in the
proof of Theorem 6.1.4. I

6.3 Existence and uniqueness of the strong solu-
tion

In this section, we shall impose an additional condition to ensure that the
SDE (6.0.1) has a unique strong solution. This will be achieved by estab-
lishing pathwise uniqueness and extending the Yamada-Watanabe argument
to this setup.

To implement the Yamada-Watanabe argument, we need to realize the
driving processes (the Poisson random measures in our case) in a common
space. This space is to be chosen such that the regular conditional proba-
bility measures exist for any probability measures on it. Unfortunately, this
property is not enjoyed by the space of all measures on R+ X U. Based
on these considerations, we shall establish an equivalence relation between
the SDE (6.0.1) and another kind of SDE driven by an ^-valued martin-
gale which will be called a Good process. As the Good processes can be
realized on the Polish space J D ( [ 0 , Γ ] , ^ 2 ) , the Yamada-Watanabe argument
is applicable and we obtain the uniqueness of the solution for the new equa-
tion. Hence, by the equivalence, we get the uniqueness of the solution for
the SDE (6.0.1).

We first state some basic definitions.

Definition 6.3.1 Let (Ω, .F, P, (^t)) be a stochastic basis and N(duds) a
compensated Poisson random measure on [0,Γ] X U. Suppose that Xo is a
Φ-p-υalued random variable such that ί?||Xo||-p < oo. Then by an Φ_ p -
υalued strong solution on Ω to the SDE (6.0.1) we mean a process Xt
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defined on Ω such that

(a) Xt is a Φ-p-υalued Tt-measurable random variable;
(b) X € D([0,Γ],Φ_p) a.s.;
(c) There exists a sequence (σn) of stopping times on Ω increasing to infinity,
such that, V n

E /
fTΛσn p

/ / \\G(s}XS)u)\\2_pμ{du)ds < oo. (6.3.1)

αrce/

^ TΛe SDE (6.0.1) is satisfied for all t € [0,T] and a/mos* all ω € Ω.

Definition 6.3.2 (pathwise uniqueness) We say that the Φ-p-υalued so-
lution for the SDE (6.0.1) has the pathwise uniqueness property if the fol-
lowing is true: Suppose that X and X1 are two Φ-p-valued solutions defined
on the same probability space (Ω,.?7, P) with respect to the same Poisson
random measure N and starting from the same initial point Xo G Φ _ p , then
the paths of X and Xf coincide for almost all ω G Ω.

Now, we impose the following monotonicity condition
(M): Vt G [0,T], υuv2 G Φ_ p , we have that

< A(t

ί \\
Jjj

- A(t}υ2)Jυ1 - υ2 >-q

\\G(t}υuu)-G(t,v2}u)\\2_qμ(du)<K\\v1-v2\\2_q
\

jj

where q is introduced in assumptions (I).

Lemma 6.3.1 Under assumptions (I) and (M), SDE (6.0.1) satisfies the

pathwise uniqueness property.

Proof: Let X and X1 be two Φ_p-valued solutions. Without loss of generality,
suppose that the same sequence {σn} of stopping times satisfies (c) of the
Definition 6.3.1 for X and X'. For φ G Φ, we have

(Xt-Xί)[φ\ = l\A(s,Xs)-A(s,X's))[φ]ds
Jo

(G(s,Xs-,u) - G(s,X's_,u))[φ]N(duds).Γ f
Jo JuJo Ju

It follows from Itό's formula that
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= 2E / e-Ks(Xs - X's)[φ](A(s, X.) - A(s, X's))[φ]ds
Jo

tΛσn

Ke-κ°((Xs-X's)[φ])2ds
0
tΛσn+E f ^ ί e-κ*((G(s,Xs,u)-G(s,X's,u))[φ])2μ(du)ds.

JO JU

Letting φ = φ^ k € N and adding, we have

= 2E / e~Ks <XS- X's1 A(s, Xs) - A(s, X's) >_, ds
Jo

ftΛσn

-E Ke-Ks\\Xs-X's\\2_qds
Jo

+E / / e-κ°\\G(s,Xs,u) - G(s,X's,u)\\2_qμ(du)ds
Jo Ju

< 0. (6.3.2)

Hence, by the right continuity of X and X1 and (6.3.2), X = X1 a.s. I

Definition 6.3.3 (Uniqueness in law) We say that uniqueness in law
holds for (6.0.1) if, for any two stochastic bases (Ω*5, Tk, F f c, (ft)), two Pois-
son random measures Nk onHxU with the same characteristic measure μ
and two Φ-p-υalued solutions X, X1 of (6.0.1) with the same initial distribu-
tion on Φ_p; (k = 1,2), we have that X and X1 induce the same probability
measure on D([0, Γ], Φ_p).

The following assumption will be made throughout the rest of the book:
(ί7, E, μ) is a separable measure space.

Now, we introduce the Good processes which will play an essential role
in the implementation of the Yamada-Watanabe argument.

Definition 6.3.4 Let (Ω,^7, P, (Ft)) be a stochastic basis. An ί2-valued pro-
cess Ht on (Ω, T', P, [Tf)) is called a Good process with respect to a CONS
{fn} of L2(U} £, μ)if3a Poisson random measure N(duds) on R+ x U with
characteristic measure μ such that

Ht = Σ~ / fn(u)N(duds)en (6.3.3)
^Zχ n Jo Ju

where en = (0, ,0,1,0, •) G I2;.
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It is easy to see that the series in (6.3.3) converges and, with respect
to the same CONS {/n} of L2(Ϊ7, £,μ), all Good processes have the same
distribution on (D([0,Γ],^2),β{D([0,T],^2)}) which will be denoted by PG

and called the Good measure .
For any s £ [0, T] and υ G Φ-Pl, we define an unbounded linear operator

ψ(s,υ) from V(ψ(s,υ)) C i2 to Φ_P1 by

V(<ψ(s, υ)) = I a e f : £ k\ < α, ek >t2 \ < oo i

and

a, ek >ι2 / G(s, v, u)fk(u)μ(du).

Lemma 6.3.2 Let X be an Φ-.Pl-valued r.c.l.l. process such that (6.3.1)
holds. Then JQ^{s,XsJ)dHs is well-defined by

I ^ φ(s, Xs-)dHs = V f φ(s, Xs-)ekd < Hs, ek >p,Vn> 1.
J o fc=iJo

(6.3.4)
Further, we have

ί ί G(s,Xs_1u)N(duds)= I <ψ(s,XsJ)dHs. (6.3.5)
JO Ju Jo

Proof: For simplicity of notation, we assume that σn = oo in (6.3.1) and
(6.3.4). Then

E sup
o<ί<τ k

™ rt

> sup
TΛ 0<t<T

Γ) / ψ{s,XsJ)ekd < Hs,ek >#
= 1 Jo

r* r ~ I I 2

- / / G(s,Xs-}u)N(duds)\\
Jo Ju I I - P l

m ft f / r \

Σ ( G(s,X.-,v)[4?]Mv)μ(dυ))

^ Jo Ju \Ju J /

fk(u)N(duds)- f ί G(8,X.-,υ)[<lφ]N(duds)
Jo Ju

-G{s,X.,u)[φ\2μ(du)ds

= AΈE Σ ( G{3,X.-,υ)[φfk{υ)μ{dυ)) ds-+0
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for 7?2 —• oo, s ince

k=

and

( G(s,Xs-,v)[φ]fk(v)μ(dv)) < \G(s,X.-,υ)[<l?]\2μ{dυ)
\JU / JU

f > / ί \G(s,Xs_,υ)[<ήψμ(dv)ds
• -i Jθ JU

= E f ί \\G(s,Xs.,υ)\\2_piμ(dυ)ds < oo.
Jo Ju

As a consequence of (6.3.5), the SDE (6.0.1) can be written in a different
form

Xt = X0+ ί A(s,Xs)ds+ ί φ{s,Xs_)dHs. (6.3.6)
Jo Jo

Now, we demonstrate how to couple two solutions of (6.0.1) and discuss

some properties of the coupled process.

Suppose X1 and X" are two solutions of the SDE (6.0.1) on stochas-

tic bases (Ω',.F', P' , (JΓ/)) and (Ω",;F", P", (JFt")) with initial random vari-

ables XQ and XQ (having the same distribution λo on Φ_P 1) and Pois-

son random measures Nf and Nff (having the same characteristic mea-

sure μ on U) respectively. Let Hf and Hn be defined in terms of (6.3.3)

with respect to the same CONS {/n} of L2(U,ε,μ) with N replaced by

N' and N" respectively. Then (Xf,Hf

}X^) and (X",H",XX) are two so-

lutions of the SDE (6.3.6) on the stochastic bases (Ω', T\P\ (J7/)) and

(Ω", T", P"} {T")) respectively. Let Y and λ" be the Borel probability mea-

sures on £>([O,T],Φ-P1) X D([0,T],£2) x Φ_ P 1 induced by \x\H',X'o) and

(X", H", XQ) respectively. Define a mapping

TΓ : L>([O,T],Φ_P1) x D([0,T]J2) x Φ_P 1 - D([0,Tlί2) x Φ_
_ P l

by 7r(tt;i, iϋ2, x) = (w2, x). Then, λ' o π " 1 = λ" o π " 1 = PQ ® λo
Let \'W2*x(dwι) and \tlW2>x{dw\) be the regular conditional probability of

w\ given w2 and x with respect to λ' and λ;/ respectively. This is possible
since JD([0, Γ], Φ_P l) is a Polish space. On the space

Ω - L>([O,T],Φ_P1) x £>([O,Γ],Φ_P1) x L>([0,ϊV 2) x Φ _ P l ,
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we define a Borel probability measure λ by

λ(A) = J j [J jlA(wliw2,w3,x)X^%dw1)λίί^(dw2ή
PG(dw3)λ0{dx) (6.3.7)

for A 6 #(Ω). Then, it is easy to show that (wι}w3,x) and (X\H',XQ)

have the same distribution and so do (w2,w3lx) and ( X " , i f " , X Q ) .

Lemma 6.3.3 For any A € Bt(D([0,T],Φ-pl)), we define two functions /i
and f2

/i(tι/, x) = λ'™'x(A) and f2{w} x) = λ"w>x(A).

Then /i and f2 are measurable with respect to the completion of the σ-field
Bt(D([0,T]y£

2)) x #(Φ_ P 1 ) under the probability measure PQ ® λ0.

Proof: We only prove the result for / x . For fixed t > 0 and A G Bt(D([Q, Γ],
Φ_ P 1 )), let λ^'^^A) be defined as λ/w>x(A) with λ' replaced by its restriction
to the sub-σ-field

β t(D([0,T],Φ_P l)) x Bt(D([0,T],f)) x β»(Φ_ Λ ) .

Then (w, a) ι-+ λtω 'x(A) is measurable with respect to the σ-field Bt(D([0, T],

I2)) X β ( Φ _ P l ) . Now, we only need to show that

λ't
w x(A) = h(w, x) for PG ® λo-a.s (w, x).

i.e. for any C € B(D([0,T],£2)) x ^ ( Φ - p ) , we have to show that

/ λ't
w'x(A)PG(dw)λ0{dx) = λ'(A x C). (6.3.8)

Jc

Consider a continuous mapping p : D([0,t],i2) X D([0,T - t],£2) ->•

D{[0,T],£2) given by

w l if S < ί

From the definition of PQ, we have

€ D([0,T],£2) : w(t-) φ w(t)} = 0

and hence, p has a continuous inverse p " 1 . So, we only need to prove (6.3.8)

for C of the form

C = {we D([0,7V2) : p-λw e Aλ x A2} x D,
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where At e £(£>([0,ί],^2)), 4 2 G #(£>([0,T - t],l2)) and JD G #(Φ- P l ) . AS
Good processes are of independent increments, Pgop = Pi®P2, where Pi and
P 2 are probability measures on D([0,t],£2) and D([0,T- t],^2) respectively.
Furthermore, as \'™'X(A) is βt(D([0,Γ],^2)) X #(Φ_Pl)-measurable, we can
find a measurable function g in Z}([0,i],<£2) X Φ- P l such that

where p~1(w)1 6 D([0, t],£2) is the first component of p~1(w) in the product
space D([0,t],ί2) x D([0,T - t],ί2). Hence

Jc

= f g(w\x)Pι(dw1)P2(dw2)λ0{dx)

= ί g(w1,x)P1(dw1)λo(dx)P2(A2)
JAiXD

= Jλ'? x(A)lp-HwVeAllD(x)PG(dw)λo(dx)P2(A2)

= λ'(A x {(p-'w)1 G Ar} x I>)P2(A2)

= P' {x1 e A, H'\[Oιt] eA1,x'oeD} p ' {H'(t + •)- H\t) € A2)

= p ' {x' e A , H'\[Oft] eAuX^eD, H\t + • ) - H\t) e A2}

Lemma 6.3.4 Let B't be the completion of

β t(D([0,Γ],Φ_Pl)) x Bt(D([0,T],*-Pl)) x Bt(D([0,T],£2)) x

Then ws is a Good process on an extension (Ω, β, λ, Bt) of (Ω, B\ λ, B't).

Proof: By the definition of PQ, there exists a stochastic basis (Ω, J7, P,
and a Good process H on it such that PQ is the distribution of H. We prove
our lemma in four steps.
Step 1. ws is an ^2-valued λ-square-integrable martingale.

Let AUA2 e Bs(D([0,T],Φ-Pl)), A3 € Bs(D([0,T],e2)), A4

and a £ £2. Then we have

Ex{exp(i < a,w3(t) - w3(s)

/ exp(i < α, w3(t) - w3(s)
JAzxA±
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exp(ΐ < α, w3(t) - w3(s) >p)fi(w3, x)

= Eλexp(i < a,w3(t) - ™3(s) >/2)λ(Ai x A2 X A3 x A4)

where /1, f2 are defined in Lemma 6.3.3. Hence, w3 is of independent incre-
ments. Since

E\w3)t = EpHt = 0,

and

n=l

w3 is an ^2-valued λ-square-integrable martingale.
Step 2. \/a e £2, the quadratic variation of the square-integrable martingales

i a >p is given by

2

< ^3 >t (α> Q>) = 12J —\-

We only need to prove that

2

-R* = < (W3)ti a >/2 —ί / —?•
n n

is a λ-martingale. In fact,

£ λ (Λ t - RS\B'S)

= Ex( < (w3)t - (103),, a >% +2 < (ιβ3)t - (io3)β> a

n n

n
r.2

Step 3. < w3} a >ρ is purely-discontinuous.
It is easy to see that the mapping

|Δ < (w3)s,a >/2
5<ί

|2

from D([0,T]}£
2) into R is measurable. Hence

•nP V ^ I Λ ^ τi ~ \ ^ |2Eχ Σ |Δ < (w3)Λ, α >t2 |2 = Ep Σ |Δ < HMί α
s<t s<t
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Σ ^ f Γ Lfn{u)Uu)N{duds)
m=l n m J θ 7 Z 7

n,m=l
00 a?

1 U

n=l

It then follows from the same argument as in the proof of Theorem 6.1.3
that < tt>3,α >p is purely-discontinuous.
Step 4. As w3 and H have the same distribution, the point process Aw3(s)
has the same compensator as the point process AHS which is N&H{dtdv) =
q(t,dυ,ω)dt while

{ n=l U J

It follows from the same arguments as in the proof of the Theorem 6.1.4 that
there exists a Poisson random measure M with characteristic measure μ on
an extension of (Ω, B\ λ, Bf

t) such that

(™3)t =/ ~ / fn(y>)M(duds)en.
tx n Jo Jv

Hence, w3 is a Good process on an extension of (Ω, B1, λ, B't). I

L e m m a 6.3.5 Let Pi and P 2 be two probability measures on a Polish space
X with metric p. If (Pi X P2){(ίCi, z 2) : x\ = a?2} = 1, there exists a unique
x £ X such that P1 = P2 = δ{x}

Proof: As

1 = /Pi(ώ) llx=yP2{dy) = ΣPi({x})P2({x}) < Σ F 2 ( W ) < 1,
J J x x

(6.3.9)
we have

If Pi ({a}) < 1, Vaj G X, then P2({x}) = 0, Vz € X and hence,

which contradicts (6.3.9) and hence, there exists x 6 X such that Pi =
By (6.3.9) again, Pi({z})P2({z}) = 1 and hence, P2 = δ{x}.



208 CHAPTER 6. STOCHASTIC DIFFERENTIAL EQUATIONS

Theorem 6.3.1 Under assumptions (I) and (M), uniqueness in law holds
and the SDE (6.0.1) has a unique strong solution.

Proof: Let X1 and X" be two solutions of the SDE (6.0.1). From the ar-

guments above, we see that ( w i , ^ , x) and (ΐi>2>w3, z) are two solutions of

(6.3.6) on the same stochastic basis (Ω, B, λ, /?t). Let M be the Poisson ran-

dom measure on this stochastic basis corresponding to the Good process w3.

Then (tϋi, M, x) and (tϋ2, M, x) are solutions of (6.0.1) on the same stochas-

tic basis, where M is given in the proof of Lemma 6.3.4. By the pathwise

uniqueness proved in Lemma 6.3.1, we have that λ(w2 = w\) = 1. Coming

back to the original probability space, we have λ(w2 — VJ\) — 1. But, by

(6.3.7),

λ(w2 = W l ) = J ί λ'w'x ® λ"w'x(w2 = w1)PG(dw)X0(dx),

so, for PQ ® λo-a.s. (w, x), we have

χfw,x 0 χ»w*(Wl = wή = L (6.3.10)

By Lemma 6.3.5 and (6.3.10), we have a mapping

F : D([0,T),f) x Φ_P 1 -> L>([0,T],Φ_Pl)

such that

δF(WiX). (6.3.11)

For any A G ̂ (DflOjT^Φ-pJ), by (6.3.11), Lemma 6.3.3 and

it follows that F~1(A) is in the completion of Bt(D([0,T],£2)) X B(Φ-Pl)
under PG®^0, and hence, F(w, x) is adapted. Then, for any Poisson random
measure N and initial Φ_Pl-valued random variable Xo, corresponding to a
Good process H with respect to a fixed CONS {/n} of L2{U, £, μ), F{H, Xo)
is a strong solution of the SDE (6.0.1).

The uniqueness of the strong solution follows directly from the pathwise
uniqueness of the SDE (6.0.1). The uniqueness in law follows from (6.3.11).

Finally, we consider the strong solution of (6.0.1) on [0, oo).

Definition 6.3.5 Let (Ω, J7, P, (JΓt)) be a stochastic basis, N(duds) a com-
pensated Poisson random measure on R+ X U and Xo a Φ'-valued random
variable. Then by a Φf-valued strong solution on Ω to the SDE (6.0.1) we
mean a process Xt defined on Ω such that
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(a) Xt is Φ'-valued, Tt-measurable;

(b) X e D([0,oo),Φ');

(c) There exists a sequence (σn) of stopping times on Ω increasing to infinity

and independent of φ such that, Vn G N and V ^ G Φ

E\XQ[φ]\2 + E Γ\A{s,Xs)[φ]\2ds
Jo

+ E f n f \G(s,Xs,u)[φ}\2μ(du)ds < oo.
Jo Ju

(d) For each t > 0,

Xt[φ] = X0[φ]+ fA(s,Xs)[φ]ds
Jo

+ 11 G(s1Xs.Ju)[φ]N(duds)1 a.s.
Jo Ju

Theorem 6.3.2 Under assumptions (I) and (M), ifE\X0[φ]\2 < oo \/φ £ Φ,
SDE (6.0.1) has a unique Φ1-valued solution on [0,oo).

Proof: 1° (existence) By the proof of Theorem 6.2.3, we have ro such that

Xo lies in Φ_ r o and i?||Xo||?-ro < oo. For every n G N, by Theorem 6.3.1,

there exists a Φ-Pl(n)~valued solution Xn for the SDE (6.0.1) in [0,n]. As

Pι(n) < pι(n + l ) , X n + 1 and Xn are two Φ_Pl(n+i)-valued solutions for the

SDE (6.0.1) in [0,π] and hence, by Theorem 6.3.1, X t

n = X t

n + 1 for t < n.

Let ξt = X? for n — 1 < t < n, n G N, then it is easy to see that ξ is a

Φ'-valued solution of the SDE (6.0.1) on [0, oo).
2° (uniqueness) Let X be another Φ'-valued solution of SDE (6.0.1). By (c)
of Definition 6.3.5 we have

E sup (Xt[Φ])2 < oo.
0<t<nΛσn

It follows from the same arguments as in the proof of Theorem 6.2.3 that
there exists an index pn such that Xt lies in Φ_ P n when t < n Λ σ n . By the
proof of 1°, we may assume without restricting the generality that ξt a l s o

lies in Φ _ P n when t < n Λ σn. By the same arguments as in the proof of
Lemma 6.3.1 we get our uniqueness. I






