
Chapter 4

Stochastic partial
differential equations

4.1 Introduction

Beginning with this chapter and throughout the rest of this monograph we
will be considering examples from neurophysiology. There will, of course, be
examples from other fields of applications. Nevertheless, different stochas-
tic models of neuronal behavior have provided much of the motivation for
the theory developed in the later chapters as well as examples of stochastic
partial differential equations (SPDE's) that have random field solutions, so-
lutions in Hubert spaces or solutions in (conuclear) spaces of distributions.
These examples will be considered in their proper contexts. It should also
be pointed out that SPDE's where the driving processes are Poisson random
measures arise naturally in the study of fluctuations of membrane potentials
of neurons and can be used (as will be shown later) to derive diffusion ap-
proximations in infinite dimensional spaces. A similar approach might yield
interesting results in other fields of application such as stochastic models of
turbulence.

A brief description of the neurophysiological background may prove use-
ful in understanding how some of the SDE's of this chapter and Chapter 8
are formulated.

In their seminal investigation in the early 1950's, Hodgkin and Huxley
[16]) studied the electrical behavior of neuronal membranes and the role of
ionic currents. They introduced a mathematical model for the flow of current
through the surface membrane of the giant axon from a Loligo Squid. The
partial differential equations which bear their name are nonlinear and have
been at the center of a deterministic theory.

Although early stochastic models treated the neuron as a "point", in the
neurophysiological literature, it has been well recognized that a neuron cell
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128 CHAPTER 4. SPDE

is spatially extended. Thus a realistic description of neuronal activity-such
as the evolution of the voltage potential or the potential diίference measured
across the molecular membrane-would have to take into account synaptic
inputs occurring randomly in time and at different sites on the neuron's
surface. As we shall see, even the simplest stochastic description of this
phenomenon leads to SPDE's or, more generally, to stochastic differential
equations in infinite dimensional spaces.

Let X denote the surface membrane of a spatially extended neuron and
let u(t, x) be the fluctuation of the membrane potential as a function of time
t > 0 and location x £ X. In the simplest spatially extended case, X is
taken to be an infinitely thin cylinder, i.e., X is the interval [0,6] although
mathematical models in which X is a subset of Rd, d > 1 lead to more
complicated equations.

A deterministic model is available from the so-called core conductor the-
ory according to which, in the absence of external impulses u should solve
the cable equation

du
— = -au + βAu, t > 0, 0 < x < 6, (4.1.1)

for some positive constants a and β and with initial value

u(0, x) = f(x) V0 < x < b.

In (4.1.1), β represents the rate of diffusion within the neuron and a is the
rate at which ions leak across the membrane. We assume the Neumann
boundary conditions

The boundary conditions represent the insulation of the neuron fiber at both
ends. From standard methods in the theory of partial differential equations
it can be shown that the system (4.1.1) determines a semigroup Tt on the
Hubert space H = L2([0, b],dx) and the solution to (4.1.1) is given by

u(t,x) = (Ttf)(x) = [bG(t;x}y)f(y)dy (4.1.2)
Jo

where G(t\ x, y) is the Green's function

CO

; *, y) = £ e-Xntφn{x)φn(y), t > 0, (4.1.3)
n=0

with
n7Γ\2 ± ( \ ί2\* U7ΓX W

— ) , φn(x)=l-\ c o s — Vn
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and

φo{x) = (-

{λn} and {φn} are the eigenvalues and orthonormal eigenfunctions respec-

4-2tively, of the generator — L of Tt where —L = —al + βA (here Δ = 4-2 and
/ is the identity operator).

In regarding the fluctuation of the voltage potential across the cell mem-

brane as a stochastic phenomenon, the basic assumption is that the mem-

brane potential receives random impulses at time t and site x. Accordingly,

the cable equation (4.1.1) is replaced by the stochastic cable equation

where Wtx is the c.B.m. determined by the Brownian sheet W(t,x). The
above equation will be rigorously formulated as a SPDE. Here the "noise" is
additive and, from a biological standpoint, it is the "noise" that carries the
information to the central nervous system.

A somewhat more complicated model, is one that introduces a nonlinear
or quasilinear SPDE and involves reversal potentials which possibly give a
more realistic picture of neuronal activity. The idea of reversal (or equilib-
rium) potentials originated with Hodgkin and Huxley and is best introduced
first for a "point" neuron. Increments in the voltage potential of the neuron
are due to two kinds of impulses: excitatory and inhibitory. Assume that
there are p possible magnitudes a?e of the former and q possible magnitudes
a\ of the latter, arriving in independent Poisson streams N* and Nf with
rates f* and // respectively. The reversal potentials are constants Vj, Vf
and the stochastic model for the voltage potential at time t is

dVt = -ΊVtdt + Σ{V> - Vt)aidN'(t) + Σ(Vf - Vt)aidNf(t) (4.1.5)
3 t

where Vj > 0, V* < 0, α ,̂ a\ are positive constants and 7 (> 0) is the
leakage rate. A glance at equation (4.1.5) shows that the role of the reversal
potentials is to act as a brake and to prevent Vt from soaring too far above
or below acceptable levels of tolerance. Equation (4.1.5) will be generalized
for spatially extended neurons leading to SPDE's driven by Poisson random
measures and their diffusion approximations.

4-2 Space-time Ornstein-Uhlenbeck SDE

The simplest version of the Ornstein-Uhlenbeck (O-U) SPDE is given by an

evolution equation of the form

^ - = -Lu(t, x) + Wtx 0 < x < b, t > 0 (4.2.1)
at
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with either of the following boundary conditions (B.C.):

•u(ί, 0) = u{t, b) = 0 Vί > 0 (Dirichlet B.C.) (4.2.2)

tiΊJ (ill

— (£, 0) = — ( i , b) = 0 Vί > 0 (Neumann B.C.) (4.2.3)

and the initial condition

u(0, x) = /(z), 0 < x < 6. (4.2.4)

Equation (4.2.1) is clearly in a heuristic form but gives a clear idea of how
a (deterministic) PDE can be converted into a stochastic equation by the
addition of a space-time Gaussian "noise" represented by Wtx. A rigorous
formulation of (4.2.1) is the Itό equation

du(t, x) = -Lu(t, x)dt + dWtx, t > 0, 0 < x < b. (4.2.5)

In (4.2.5), Wtx is the c.B.m. corresponding to the Brownian sheet W(t, x)
(t > 0, 0 < x < b) and — L is the generator of a contraction semigroup Tt

defined on the Hubert space if = L2[0,6].

Stochastic cable equation (Fluctuation of neuron potential)

We now give a detailed treatment of the stochastic cable equation (4.1.4),
which is a special case of (4.2.5) with L = al — β~£^ a n d assuming (4.2.3)
and (4.2.4). It is easy to verify directly that

u(t,x)= ί G(t ,x}y)f(y)dy+ f ί G(t - s;x,y)W(dsdy) (4.2.6)
Jo Jo Jo

is a solution to (4.1.4). It is convenient for the further discussion to take
b = π and a = β = 1. Then we have

/1\! /2\2

Φo = ί - ) , Φn{x) = ( - ) cosnx (n > 1)

and
λn = 1 + n2 {n > 0)

From (4.1.3) and (4.2.6),

oo

U(t, X) - V e~Xnt < f,φn> Φn{x)
n = 0

fit f"K ° °
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By virtue of the £2-convergence of the series under the integral, we may
interchange the order and obtain

u(t,x) = £ e-λ»* < f,φn > φn(x)
n=0

/ /
n=0 K J 0 J 0

Σ
n=0

We have used here the fact that (φn) is a CONS in H. Writing

W? = f Γ φn(y)W(dsdy), < /, φn >= Γ f(x)φn(x)d
Jo Jo Jo

and

An(t) = e-Xnt <f,φn>+ ['
Jo

we have

x). (4.2.7)
n=0

Since the WnJs are independent Wiener processes, An(t) are independent,
one-dimensional Ornstein-Uhlenbeck processes:

dAJt) = -XnAn(t)dt + dW?. (4.2.8)

The series

ΣE{An(t)}φn(x)
n=0

converges absolutely for each (ί, x), (t > 0) to Eu(t, x) and the series of the
variances

00 °° 1 _ p-2\nt

n=0 n=0 ^ Λ n

converges, again for t > 0 and 0 < # < π. Hence (4.2.7) converges almost
surely and we have the following: u(t,x) given by (4.2.6) is a Gaussian
random field with

00

E{u(t, x)} = £ e- λ^ < /, φn > φn(x)
n=0

and
2λ

n=0 Z Λ n

Thus, u(ί, s) may be called a space-time Ornstein-Uhlenbeck random field.
For investigating the regularity properties of u(t, x) we need the following
bounds obtained by Walsh [57] (except for constants).
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Lemma 4.2.1 (a)

n=l

(b)

n = 0

Proof: (a) From φn(x) = ( f V cosπz, (TO > 1)

[φn(x)-φn(y)]2<l[4An2\x-y\2]

and λn > n2 we have

n=l Δ λ n π n=l

(b) From the inequality

we have

0 0 i p-λnt i °° / i

=0 ^ Λ n Δ n=0 V X + Un=0 ^ Λ n Δ n=0

1 Z*00 / I \
< - (1 Λ yβ) + / I -=• Λ t )du

2 Ji Viί ' /

Theorem 4.2.1 TΛe solution u(t,x) of the SPDE (4-1-4) ί 5 continuous or,
more precisely, has a continuous modification.
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Proof: For simplicity, assume / = 0. From (4.2.7), (4.2.8), the independence
of the processes An(t) (n = 1, 2, •) and

u(t,x)-u(s,y) =
n

+ ΣAn(s)[φn(x)-φn(y)]

n = 0

n = l

we have that u(t, x) — u(s} y) (for s < t) is a Gaussian random variable with

zero mean and variance

E[u(t,x)-u(s,y)]2

= V — ( e " 2 λ n ί (e2λnt - e2XnS)

0 0 1 _ p-

Σ 2Λ

2 ^ f l - 6 ^ ) Λ ^ 5

2λ
n

, f , \Φn(x) -

- s) + VΓ^f\ + ̂ (\x - y\ Λ 2)

Λ/2) / U

( t -7Γ

From the above we easily have for any integer m

E\u(t, x) - u(s, y)\2rn < dim) (\t - s\\f + \x -

Taking m > 4, we see that Kolmogorov's condition for the existence of a
continuous modification is satisfied, (cf. Kunita [34]). I

Theorem 4.2.2 The SPDE (4-1-4) has a unique continuous solution.

Proof: We have already seen that the solution of (4.1.4) is continuous. If

uf(t,x) is any other continuous solution of the SPDE (4.1.4), let ΰ(ί, •) =

u(t, •) - u'(t, •). Then iZ(ί), as an if-valued process, satisfies

ΰ{t) = / Tt-Sΰ(s)ds.
Jo
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It follows that

I K O I I H < f \Hs)\\Hds<...<Ί1 ίτ\\ΰ(s)\\Hds-o.
Jo u\ Jo

We then have (restoring the probability parameter in the notation) tl(ί, x, ω)
= 0 for ω $ NtiX, the latter being a P-null set. Since ΰ(t, x, ω) = u(t, x, ω) —
u'(t} x,ω) is continuous for almost all α;, it follows that

P{ω:ΰ{t,x,ω) = 0, V(t,α;)} = l,

that is, for almost all ω,

u(t, x, ω) = v!(t, x, ω) V(ί, x)

and uniqueness is proved. I

Remark 4.2.1 We can similarly treat the Stochastic heat equation;

du d2u
+ W i 0 b t 0

with initial and Dirichlet boundary conditions:

u(Q,x) = f(x), 0 < x < b

u(t, 0) = u(t, b) = 0 Vί > 0.

In this case the eigenvalues and eigenfunctions of L = — -£^ a r e given by

λn = - — and φn[x) = sin — n > 1.

4.3 Stochastic partial differential equations

In this section we study a class of stochastic partial differential equations. We
establish the existence and uniqueness of solutions for such equations. Most
of the material of this section is taken from Kotelenez [33] (with simplified
proof) and is an extension of Walsh's treatment of the nonlinear stochastic
cable equation.

Let O be a bounded open domain in R d and {L(t) : t > 0} be a family of
linear operators on C{0). Let F and R be two functions on [ 0 , Γ ] x O x R
and let (Ω, T", P, Tt) be a stochastic basis satisfying the usual conditions. Let
W(drdt) be the standard white noise random measure on O X [0, T] adapted
to Ft, i.e., for any B G B(O), the Gaussian random variable W(B X [0,i]) is
.^-measurable.
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To study the stochastic partial differential equation

dX(t,r) = (L(t)X(t,r) + R(t,r,X(t,r)))drdt

+F(t,r,X(t,r))W(drdt) (4.3.1)

with initial condition

we make the following assumption:
(RD1) {L(t)} generates a two-parameter evolution semigroup {U(t,s) : 0 <
5 < t} on C((9), with kernel function G(ί, s}r,q),0 < s <t, r,q e O, i.e.

Definition 4.3.1 A random field {X(t,r) : t G [0,T],r G O} is called a

mild solution of the RDSDE (4-3.1) if for any t G [0,Γ], r G Ό, we have

X(t,r) = f G(t,O,r,q)aq)dq (4.3.2)

+ / [ G(t,s,r,q)R(s,q,X(Siq))dqds
Jo Jo

+ ί ί G(t,s,r,q)F(s,q,X(s,q))W(dqds) a.s.
Jo Jo

For simplicity, we extend G(t, s, r, g) to t, s G [0, T], r, g G (9 by defining
it to be zero when t < s.

To solve (4.3.2), we need some additional conditions:
(RD2) There exist constants K(T) < oo, αi, a2 G (0,1) such that
i) For any t,s e[0,T]}r e Ό, we have

/ | ( , , r , g ) | 2 ^ < i ί ( T ) ( ί - 5 ) - α i . (4.3.3)
o

ii) For any 0 < t\ < t2 < Γ and ri, r2 G O, we have

Γ / |G(ti, 5, n, ί) - G(ί2) S | r2> g ) | 2 ^ S < K(T)p((tu n ) , (ί2l
JO JO

(4.3.4)
where p is the Euclidian distance in [0, T]xO C R d + 1 .
(RD3) There exists a constant K(R,F,T) such that, for all x,y € R, r £ O
and 0 < t < T,

\R(t, r, x) - R(t, r,y)\+ \F(t, r, x) - F(t, r, y)\

< K(R,F,T)\x-y\ (4.3.5)
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and

\R(t,r,x)\ + \F(t,r,x)\ < K(R,F,T)(l+\x\). (4.3.6)

For a > 0, let

B α = {V G C{O) : HVIIα < oo}

denote the Banach space with norm

. = sup | « , ) | + sup ' ^

(RD4) For α > 0 and ξ G B α , we have Jo G(; 0, , q)ξ(q)dq G C([0, T], Bα).
Now we proceed to establish the existence of a unique solution to (4.3.2).

We first state without proof the following result due to Ibragimov.

Theorem 4.3.1 (Ibragimov) [17] Let F be a bounded closed subset ofΈid

with nonempty interior and p > 1. Suppose that ξ is a random function on

F such that

sup E\ξ{x)-ξ{y)\*<ω(δy>
\χ-y\<δ

where ω{u) is a concave modulus of continuity. Then for any μ > 0 there

exists a constant K\ such that

F ί q n n !*(«)-fly)Π <κ f1

Jb < s u p — > < Λ i / —

\lx-/<i \*-y\μ J " Jo U

>

J
We shall need the following

Lemma 4.3.1 Let

Y(t,r)= f ί G(t,s,r,q)F(s,q,X(s,q))W(dqdS),
Jo Jo

where X is a random field on [0,T] X O such that

E sup \X(t,q)\p< oo, Vp>2.
(ί,?)e[o,τ]χθ

Then for any α <

s u p ™ r\rW\«Q. (4.3.7)
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Proof: It follows from Doob's inequality, Proposition 3.2.3, (RD2) and (RD3)
that

u,r + h)-Y(t,r)\p

K2E / f \G(t + u,s,r+h,q)-G(t,s,r,q)\'2
Jo Jo

p/2
\F(s,q,X(s,q))\2dqds

E \K(R,F,T)[l + sup \X(s,q)\
p/2 Γ / ^ P

where K2} K3 are two constants. Therefore, Y satisfies the condition of
Ibragimov theorem with ω(δ) = Ksδ*2. Hence

< K l r «% d u . „ (4,3,8)

by taking p large enough so that 1 + a + (d + l)/p — #2 < 1. I"

Now we present the main theorem of this section.

Theorem 4.3.2 (Kotelenez) i) Under assumptions (RD1)-(RD4), the
RDSDE (4-3.1) has a unique sample continuous mild solution adapted to
Tt, i.e., for any t > 0 and r G O, X(ί,r) is Tt-measurable.
ii) Let 0 < a < Oί2 If ζ G B α a.s., then, regarded as a stochastic process
taking values in function space, X G C([0,T],Bα) a.s.

Proof: Let

X°(tίr)= ί G(t^r)Jo

and let Xn+1(t}r) be the right hand side of (4.3.2) with X replaced by

Xn

i n = 0,1, . For any p > 2, let

and

hn(t) = sup{Ln(t,r):re0}.

By Doob's inequality, there exists a constant K4 such that

Ln(t,r)

< / ' / G(ί, s, r, q)[R(s, q, Xn(s, q)) - R(s, q, Xn~\s, q))]dqdsΐ
o Jo I
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+K4E Γ ί G(t,8,r,qf
Jo Jo

[F(s, q, Xn(s, q)) - F(s, q, X^s, q))fdqds
p/2

Taking ί2 = t, ίx = 0 and n = r 2 = r in (RD2)ii), we see that

Ft \G{t,s,r,q)\2dqds<K{T)T2a\
Jo Jo

Therefore

Ln(t,r) < K

f I E\Xn{s,q)-Xn-\s,q)\Pdqds
Jo Jo

+K4 {K^T^γ12'1 jΓ ^ \G(t}s}riq)\2dq^ K.^ds

< K5 ί (t - 5)-α i/ιn_1(5)d5 (4.3.9)
JO

where K5 is a constant. Hence

hn(t) <KS [ (t- 5)-α i/ln_!(5)d5. (4.3.10)

Jo

Applying (4.3.10) to hn-ι on the right hand side of (4.3.10), we have

\ Πs-s'y^hn^Wds'ds
Jo

O \Js'
t ( f(t+a)/2

hn.2(s) ί jf (t - 5') J ds
f(t-s)/2

ίo /ιn_2(s) ( — J ds/(l - α i ) .

If 1 - 2αi > 0, we stop here. Otherwise, as 1 - 2αi > - α i , we continue the
above calculation and we will find an integer m and a constant K6 such that

hn+m(t) <K6 ί hn(s)ds, Vn > 0 and t G [0, Γ]. (4.3.11)
Jo
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It follows from (4.3.11) and induction that

ft n_ s\j-\

hn+mj(t) <K3

& M * ) / _ n, ds' V n - °>j - 1 ) ί G [° 'T^ ( 4 3 1 2 )Jo \J -i-J

Let

K7{T) = sup{/ιn(s) : 0 < s < Γ , n = 0, l , . , m - l } .

Then

Hence

oo m—1 oo

SUp 2 Λn(ί)1/P < Σ Σ 8 U P ^n+mi(ί)1/P < «>. (4.3.13)

Consequently, there exists an adapted random field X(t, r) such that

sup E\Xn(t,r)-X(t,r)\p^Q as n -H OO.
< T C ?

Let Jί be given by the right hand side of (4.3.2) and

It follows from the same arguments as in (4.3.10) that

hn(t)<K5 ht-sy^hn^Wds.
Jo

Then hn(t) -> 0 as n -» oo and hence, for any t e [0,Γ] and r € 0 ,
X(£7 r) = X(t, r) a.s. It follows from Lemma 4.3.1 that the third term of the
right hand side of (4.3.2) is a sample continuous random field and, regarded
as a stochastic process taking values in function space, it is in C([0,T],Bα)
a.s. By similar arguments, the second term on the right hand side of (4.3.2)
is in C([0, T], Bα) a.s. It follows from (RD4) that the same statement holds
for the first term. Therefore X is a continuous modification of X and hence
X is a mild solution of (4.3.1) such that ii) of the theorem holds.

It remains to prove the uniqueness of solution. Let X\ and X2 be two
sample continuous mild solutions of (4.3.1). Let

h(t) = s u p { E | X x ( ί , r ) - X 2 ( t , r ) | p :reθ}.

Then similar to (4.3.11) we have

h(t) < K6 / h(s)ds} Vt € [0,Γ].
Jo

Therefore h — 0 and hence, X\ = X2 a.s.
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Remark 4.3.1 The assumptions (RD1), (RD2) and (RD4) are satisfied if
{L(t)} is a family of pseudo-differential operators with order 7 > d (de-
fined below) and satisfies the conditions for bounded domain Ό imposed by
Kotelenez [S3].

Definition 4.3.2 Let 7 e R. An operator L on C™(O), the collection of
smooth functions with compact supports in O, is called a pseudo-differential
operator of order 7 if

Lu(x) = (2π)~d J Je^ u

where a is a symbol of order 7 in the following sense: a is a complex-valued

smooth function on Ό X O X R d with compact support and for any com-

pact set C C O X O and multi-indices βι,β2,β3, there exists a constant

K(C,βliβ2iβ3) > 0 such that

for any (z,y) GC,υG R d

? where d denotes the derivative.

For details about pseudo-differential operators, we refer the reader to the

book of Stein [51].

Example 4.3.1 We give here an example of a pseudo-differential operator.

Let 7 be a positive integer and

Φ , y , v ) = Σ °>β(x)υβ> (χ,y,v)eθχθxRd

\β\<Ί

where aβ is a smooth function on O with compact support, V|/3| < 7. Then
a is a symbol of order 7 and L is a differential operator of order 7 given by

L = £ aβ(x)(-lfV*dξ.
\β\<Ί

In fact, for any u G C^{O) we have

Lu(x) = (2π)-d / fe^χ-y)υ £ aβ(x)vβu(y)dydυ

\β\<Ί

= (2π)-d/2 ίeixυ Σ aβ{x){-

\β\<Ί

\β\<t

where T~x denotes the inverse Fourier transformation.



4Λ. NONLINEAR STOCHASTIC CABLE EQUATION 141

4.4 Nonlinear stochastic cable equation

As a corollary to the previous result we shall now show that the assumptions
on the kernel G are satisfied for the important case of the nonlinear stochastic
cable equation. Before we set it up as a special case of equation (4.3.1) we
let d = 1 and Ό be the segment [0,π]. We consider the nonlinear version of
the stochastic cable equation (4.1.4):

du(t, x) = -Lu(t, x)dt + F(t, u(t, x))W{dxdt) 0 < x < π, t > 0 (4.4.1)

u(0,aj) = f(x) 0 < x < π

Here —Lu = g^ — u is, as in the linear case, the generator of a contraction
semigroup Tt defined on the Hubert space L2[0,τr]. The kernel of — L is
therefore, the Green function given by

oo

G(t; x, y) = V e-λ^n(a0<£n(y), t > 0
n = 0

We may regard (4.4.1) as a special case of (4.3.1) with R — 0, L[t) = -L.
Condition (RD1) is satisfied, since

(Ttf)(x)= Γ G(t;x,y)f(y)dy.
Jo

Note that (4.3.1) reduces to (4.4.1) when R = 0. (There is no need to
let R = 0; we do this only for convenience). The Lipschitz and growth
conditions on F are again assumed to hold.

Theorem 4.4.1 The SPDE (4-4-V has a unique solution u(t,x) which is
continuous in (t,x); a.s.

Proof: In view of Theorem 4.3.1 it is sufficient to verify that G(t\x,y) sat-
isfies conditions (RD2) and (RD4).

Note that

< I + 1 y exp(-2tj2) <- + - Γ exp(-2tx2)dx
7Γ 7Γ r ~ ί 7Γ 7Γ Jo

t~2. (4.4.2)
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Hence (RD2)i) holds with «i = \. Note that

rp

ί ί \G(h - s, n , q) - G(t2 - s, r2, q)\2dqds
Jo Jo

dqds

= Σ ί Γ

< Σ

< 2;(|i-i/|Λ2) + 2 ;^(lΛ

1 _

2λ,

^\ ( l Λ

(4.4.3)

Using the elementary inequality, \a + &|4 < 23 ( |α|4 + |δ|4) we have

~ r i | * + | t 2 - ti |2 < 2f ( |r 2 - r x | 2 + \t2 - ί i | 2 ) T .\r2

Substituting the above in (4.4.3) we see that (RD2)ii) holds with a<ι — \.

Finally we verify (RD4). It is easy to verify that G(t} r, q) can be written

as

(q-r + 2kπ)2\

2ί

If ^ 6 B α such that

extending ξ to R by

f (r) = ζ(r + 2kπ) = e(2τr - r), Vfc € Z, r € (0, π),
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then

Γ G(t,r,q)ξ{q)dq
Jo

Γ v̂  1 \ ί
— / / y β X P - '

JO •_ V Z7Γt L y

2ί

2t
(l-2k)*-r

Hence

Γ G(ti, ri, g)e(g)dg -
JO Jo

, r 2 >

f ι r+1- -

and therefore (RD4) holds. I

Remark 4.4.1 If d > 1, 0 = (0,π) d αnc/L = - Δ + / with Neumann bound-
ary condition, then L(t) — L does not satisfy the conditions of Kotelenez's
theorem. In fact, as we shall see in Chapter 8, (4-3.1) has no solution in the
ordinary sense.

Proof: It is easy to see that (RD1) holds with Green function

d

Note that

Γ H OO

G(t, ri, qi)2dqi > lim inf - V exp(-2ί(j2 + 1))

cos2

3=0
-2t

e-2t ΛOO

> / exp(-2tx2)dx
7Γ Jo

2A/2TT
t 2 . (4.4.4)
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Therefore

and hence (RD2)i) does not hold as d/2 > 1. I

4 5 O-U SDE's driven by Poisson random mea-
sures

In Section 4.2 we had introduced the space time Ornstein-Uhlenbeck (O-U)

SDE (or SPDE) driven by space-time Gaussian white noise. From the point

of view of applications it is equally of interest to consider such an equation

driven by a Poisson random measure (r.m.). The Poisson O-U SPDE which

we study here is the simplest example of the more general theory developed

in Chapter 6. In Chapter 7 we shall investigate in great detail, variants of the

Poisson O-U SPDE which occur naturally in certain models of environmental

pollution. It is convenient to write our SDE as an integral equation.

Let X be a bounded region of R d and μ a σ-finite measure on the Borel

sets of R + x X. N{dadxdt) be a Poisson random measure on (R+ x X) x R +

with characteristic measure μ and denote by iV, the compensated r.m.

First consider the simple case with d — 1 and X — [0, b]. Let us introduce

the relevant notation and assumptions: H = L2([0,δ],Leb), L is a positive

definite, self-adjoint operator on H with dense domain V(L) such that V(L)

contains Φ, the class of all smooth functions φ in H. Further, L" 1 is a trace

class operator so that L has a discrete spectrum 0 < λo < λi < < λn <

• •> λn —> oo with ΣΊLo Y < oo. It is also assumed that the corresponding

eigenfunctions φj belong to Φ.

It is convenient to consider the equation in the form

dut[φ] = -ut[Lφ]dt+ ί ί aφ(x)N(dxdadt) (4.5.1)

or, as an integral equation

ut[φ] = uo[φ] - I us[Lφ]ds + Mt[φ] (4.5.2)
Jo

where Mt[φ] — /o/R + $χaφ{x)N(dxdads) and φ G Φ. The solution ut[φ]
is the average ut[φ] = $x u(t, x)φ{x)dx where u(ί, x) is the solution process
we seek. In general, it may happen that there is no random process or
random field u(ί, x) such that ut[φ] is given by the above integral. In that
case ut[φ] will be the evaluation at φ of a generalized random process or a
process taking values in a suitable space of distributions. These ideas will
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be made precise a bit later and the theory of distribution valued SDE's will
be discussed in more detail in Chapter 6.

Let us start with the same deterministic model as in (4.1.1) with L =

otl-β JUp. Recall that λ J = α + / 3 ( ^ ) 2 and ^ ( x ) = ( f ) ' c o s ^ f o r j > 1;

( \ 2

λ0 = a, Φo(z) = f I) 2 - Clearly, L~x is a trace class operator. Observe that,

for each φ, Mt[φ] is a square integrable, cadlag martingale with

where

Q{Φ,1>)= f ί a2φ(x)<ψ{x)μ(dxda), (4.5.3)

assumed finite for each φ, Ψ G Φ. The SDE (4.5.1) yields the following
infinite system of one dimensional linear SDE's

du{ = -λju{dt + dM3

t, j = 0,1,2,

where u\ = ut[φj] and Λίjf = Mt[φj\. The above equation has the unique

solution

u{ = e-^ul + e"^* / ex'sdMi, t > 0. (4.5.4)
Jo

Let
N

uN(t, x) = Σ utΦj{x) (4.5.5)
i=o

Then for M < N, ^iv(έ, x) - % ( ί , x) = Σ)^LM+I
 utΦj(x) ^ ^ a s

t. Also

E\\uN(tr) - uM(tr)\\2H

ίb

= E Σ Φj{x)Φk{^)
J o jtke{M+it.»,N}

= Σ ^K)2

j=Af+l i=Af+l

-• 0

as M, N -> oo since
oo CXD (

K)2 < Σ e-2λ^K)2 + ^ Σ 9ίψά <
oo
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if we impose the following conditions:

) 2 < ~ > (4-5.6)

% ^ < oo. (4.5.7)

Defining

J=0

it is easy to verify that ut[φ] is a solution of our SDE and that 25||u(i, •) -

We will now show that almost surely, u(t,z) belongs to the Skorohod

space D([O,T],iJ). The latter is a complete, separable metric space with

the usual Skorohod topology under the metric

d(h,k)= inf max< sup \\h o λι(t) - k o λ2(έ)||iϊ, £r(λχ, λ2) >
λi,λ2GΛτ [θ<ί<T J

where

AT = {λ : λ( ) is a continuous and strictly increasing function from R+

to R+, λ(0) = 0, λ(t) -^ oo as ί ^ oo and λ(t) = t for all t > T}

and

= sup
0<s<t<T

log
λ2(*) - λ2(s)

(see Kallianpur and Wolpert [28]). For this we need to replace (4.5.7) by the

stronger assumption
oo

ΣQ(φά,φj) < oo. (4.5.8)
i=o

Note that
UN{^J *) ~ UM{^J ") £ -^([0) 2"1]) Ή") a s

and
d(h,k)< sup ||Λ(ί) - fc(t)||fr. (4.5.9)

o<t<τ

From the SDE for u\ we have, using integration by parts and Mo = 0,

u\ = e~XjtuJ

0 + Ml - I \je~^~s' °M3

sds.
Jo
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Hence
sup (u{)2 < 2{u{)2 + 8 sup (M/)2

0<ί<T 0<t<T

and we have, using Doob's martingale inequality,

7 sup
3=0

oo
2 Σ

3=0

oo

0<t<T

E(v?0)
2 -f

oo

3=0 «

oo

sup
D<ί<2

i=o j=o

Hence
oo

ΣV^ sup (u3

t)
2 < oo a.s. (4.5.10)

It follows from (4.5.9) and (4.5.10) that

, uN) < sup \\uN(t, •) - uM(t, -)\\2

H

0<t<T
N

sup \u°t |
2 —>• 0 a.s.

From the completeness of D([0,T],iϊ) we have d(uN,u) —• 0 a.s., i.e., ti G

We now consider the situation when the spatial dimension d is greater
than one. In the SDE (4.5.1) the following assumptions will be made. X
is a bounded domain in Rd, e.g. X = [0,6]d and H = L2(A\Leb), L is
a positive definite, self-adjoint operator with domain in H such that (/ +
L)~Tl is Hilbert-Schmidt for some r\ > 0. For Φ we take the count ably
Hilbertian nuclear space so that (Φ, if, L) is a compatible family as defined
in Section 1.3.
(A.I) Q(φ, Ψ) is a continuous bilinear form on Φ x Φ.
(A.2) For some r 3 > 0, 2£||uo||?.r3 < oo.

By the nuclear theorem, (A.I) implies that there exist numbers v^ G R
and θ > 0 such that

Q(φ,φ)<θ\\φ\\l2 for all φeΦ.

Theorem 4.5.1 Under the above assumptions, the series on the right side

of

{φj (4.5.11)
3=0
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converges uniformly in 0 < t < T in the Φ_g topology for every T > 0 and
for q > max(ri+Γ2,7*3) to a process u. whose sample paths lie in the Skorohod
space D(R+,Φ_g) of right continuous Φ-q-valued functions on R+ with left
limits at each point of (0, 00).

The process ut defined by (4-5.11) satisfies the equation

ut[φ] = us[Tt-sφ] + / dMu[Tt-uΦ]
J(s,t)

where Tt is the semigroup on H determined by the generator -L.
The process ut has the following additional properties:

E sup | | u t | | i < CT for some constant CT < oo.
0<t<T

Let Tt — σ{uo,M5,0 < s < t} be the smallest σ-algebra with respect

to which UQ[Φ] and Ms[φ] are measurable for all s < t and φ G Φ. Then

Ut has the strict Markov property relative to (Ft); i.e., Tr is conditionally

independent of σ{us[φ], s > r, φ G Φ} given σ{ur[φ], φ G Φ}.




