
Adaptive Designs
IMS Lecture Notes - Monograph Series (1995) Volume 25

AN ADAPTIVE DESIGN FOR
MAXIMIZATION OF A

CONTINGENT BINARY
RESPONSE

BY ZHENGQING LI, STEPHEN D. DURHAM*
AND NANCY FLOURNOY

The University of Wisconsin, The University of South
Carolina and The American University

Abstract

Treatment at dose x may be toxic or non-toxic, and if it is
non-toxic it may or may not result in cure. We wish to maximize
the probability of a cure. A class of adaptive sequential designs
for a family of parametric models is proposed. The designs are
constructed so that the information in previous trials is used to
determine the dose level for the next trial. Criteria for the exis-
tence of a maximum for the probability of a cure are given. After
calcuating the maximum likelihood estimates for the model pa-
rameters, the next dose level is chosen to be the level for which
the estimated probability of a cure is maximized. Necessary and
sufficient conditions for the existence of maximum likelihood es-
timators are given. The sequential dose levels turn out to be
consistent and asymptotically optimal under certain conditions.
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1. Introduction. Treatment at dose x may be toxic or it may-
be non-toxic. If it is non-toxic, it may or may not result in a cure.
This situation arises in many fields of research. In cancer therapy, it is
current practice to select the dosages of a new drug by first considering
its toxicity. If treatment is non-toxic, it may or may not result in a cure.
In testing the compressive strength of engineered fibers, a fiber may or
may not fail after it is mounted to a support tab and stressed under
tension to a predetermined level. If it holds under this initial tension,
the recoil test [see Hayes, Edie and Durham (1992)] is initiated by
cutting the fiber at the midpoint. Since the fiber is cut in half to initiate
the test, each mounted fiber produces two observations. If the initial
stress level is sufficiently high (but not high enough to lead to a failure),
each half of the fiber will fail due to compressive stresses generated as
the stored strain energy is recovered. At lower initial stress levels the
fiber halves may both survive the test or only one half may survive and
the other fail under recoil after separation. The main goal is to find
the dose that maximizes the probability of a cure in the medical study
and to find the stress level that maximizes the probability of a recoil
failure without tensile failure.

The toxicities considered in this paper are assumed to be fatal, that
is, if toxicity is observed, then cure or non-cure cannot be observed.
Therefore, there are three kinds of responses possible at each treatment
level: toxicity, non-toxicity and non-cure, and non-toxicity and cure.
Suppose the set of feasible dose levels is Dι. The objective is, by the
choice of x from Dι, to maximize

P{non-toxicity and cure

= P{non-toxicity }P{cure|non-toxicity}.

It is reasonable to assume that the probability of toxicity and the prob-
ability of a cure given non-toxicity can be modeled as distribution func-
tions of dose levels x though they may possibly be defective. Conse-
quently, we assume the following parametric models for the response
curves:

F(x) = H(x; θ) = P{toxicity is fatal at x}\

G(x) = K(x\ Φ) = P{cure | toxicity is non-fatal at x},

where θ and Φ are parameter vectors. Then

P{there is a cure at x} = (1 - F(x))G(x).
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Our goal is to find values of x in Dι that maximize (1 — F{x))G{x) over
Dι. Hereafter, when we mention maximum values, we mean the global
maximum over Dι. If (1 — F(x))G(x) has the same maximum value
over Dι at more than one dose level, we choose the smallest dose level
as the optimal design point, which is called x*. The reason we choose
the smallest as the optimal design point is that we generally prefer the
response of non-toxicity and non-cure to that of toxicity. Theoretically,
we expect a small dose level to result in fewer toxicities than a relatively
large dose level when they have the same probability of cure.

For the design we consider, we assume that the dose level x is
bounded, i.e., \x\ < £), where D is some finite dose level. D is deter-
mined by previous knowledge and from other experiments. The dose
level x could be negative since we may take transformations of actual
dosages (for example, the log-transformation). Hereafter, we always
assume that x is the dose level after an appropriate transformation.

In this paper, we present two adaptive sequential designs that even-
tually maximize the probability of a cure within the domain of dose
levels prescribed. Sequential designs are constructed such that all of
the information in the previous trials is used to determine the dose
level for the next trial. That is, estimated response curves are con-
structed using current maximum likelihood estimators based on all of
the data available in the previous trials, and the next dose is deter-
mined from the current estimated response curves through their con-
nection with the parameters. We propose two different procedures.
One is applicable to a design space of continuous dose levels (for ex-
ample, Dι = (—oo,+oo) or [α,6]), and one is applicable to a space of
discrete dose levels Dι = {^1,^2, -..^m}- In order to ensure statistical
consistency for the first design, a grouped design is used in which the
sequence of group sizes is required to diverge to infinity (although the
group sizes are not necessarily nondecreasing) as the experiments con-
tinue. Detailed design procedures are given in Sections 2.2. In Section
2.1, we discuss the existence of x* and the dependence of x* on F and
G. Necessary and sufficient conditions for the existence and uniqueness
of maximum likelihood estimators are given in Section 2.3. Under cer-
tain conditions, the consistency of the maximum likelihood estimators
and the asymptotic optimality is proved for both procedures in Section
3.

2. A class of adaptive sequential designs based on the es-
timated response curves. In order to find an optimal design point,
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x*, that maximizes the probability of a cure over Dι, we assume the
following parametric models:

F(x) = H(x; θ) = P{toxicity at x };

G{x) = /C(x Φ) = F{cure | non-toxicity at x};

(2.1) ton H(x\ θ) = 0; Hm^ H(x\ θ) = 1;

lim G(x; Φ) = 0; Hm G(x; Φ) = 1.
as—•—oo a;—•H-oo

For simplicity, we take F and G to be proper distribution functions;
H and K are continuous functions of x, and θ and Φ are parameter
vectors.

When Dι = {̂ 1,̂ 2? •• ?̂ m}j the existence of x* under assumptions
(2.1) is trivial. When Ό\ — (—00,+00), the maximum value of the
probability of a cure (i.e. the maximum value of (1 — F(x))G(x)) always
exists over Dι under assumptions (2.1) as we will prove in Theorem 1,
and in many cases the maximum can be found by solving the equation

(2.2) 9{x)F(x) - f(x)G(x) = 0,

where g(x) = G'(x)J(x) = Fί(x)J~F(x) = 1 - F(x). For certain dis-
tributions, F and G, x* can be expressed as a function of θ and Φ
explicitly.

For example, suppose F(x) and G(x) are negative and positive ex-
treme value distributions, respectively, i.e.

Ψ(x) = Ή(x\ 0i) = exp{-exp(aι + βix)}, where βι > 0;

G(x) = K(x\ Θ2) = exp{—exp(—a2 — /?2#)}, where β2 > 0.

when Dι = (—00,+00), the maximum probability of cure is obtained
by solving (2.2),

βi+β2

If the probability of toxicity follows a logistic function and the
probability of cure given non-toxicity follows an exponential function,
namelynamely,

F(x) = H(x; θλ) = ^ —,

G(x) = K(x; θ2) = exp{βι{x — 0-2)},
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where β\ > 0, βi > 0, and if D\ = (—00,0:2], then for β\ > βi, we have

,_log{βi/(β1-βi)}-aι
X βi

Sometimes x* cannot be obtained from (2.2). For example, if

F(x) = H(x\ θι) = exp ( —— ) , where βλ > 0, x > α 1 ?

V Pi J

G(x) = K(x\ Θ2) = exp I — - — j , where β2 > 0, x < α 2 ,
\ Pi )

then the probability of cure is

Since OL\ < x < α2, x* equals αi or a^. If an explicit expression for x*
does not exist, we may still be able to find x* from (2.2) using numerical
methods. The existence of x* is ensured by the following theorem.

THEOREM 1. Let F{x) andG(x) be continuous distribution func-
tions and let Dι = (—oo,+oo). If F(x)G(x) φ 0 for some x, then x*
exists.

PROOF. Without loss of generality, we assume F(0)G(0) > 0. Since

lim F(x)G(x) = 0,
| a ? | + o

then there exists a M > 0 such that T(x)G(x) < T(0)G(0) for \x\ > M.
F(x)G(x) is continuous, and therefore, it achieves its nonzero maxi-
mum value at x* G [-M,+M], where F(x*)G(x*) > F(0)G(0) > 0.
Consequently, x* exists by its definition. •

Theorem 2 gives sufficient conditions for the uniqueness of the max-
imum value of (1 - F(x))G(x) over Όx = (-oo, +oo).

THEOREM 2. // F{x) and G(x) are distribution functions with
second derivatives, and —log(l — F) and —log{G) are strictly convex
functions for all finite x. IfO< F(x)G(x) < 1 for some finite x, then
there exists a unique x* G (—oo,+oo) maximizing F(x)G(x).
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PROOF. Without loss of generality, we assume 0 < F(0)G(0) < 1.
For convenience, define

t(x)=:-log(G)-log{l-F).

Then we have limi^+oo t{x) — +00 and ί(0) > 0. There exists N > 0
such that t(x) > ί(0) for \x\ > N. In [—N, iV], t(x) is continuous.
Therefore t(x) achieves its minimum value x* G (-N, N) where ί'(x*) =
0. Since t(x) is a strictly convex function, t"(x) > 0 and t'(x) is strictly
increasing. Therefore tf(x) = 0 has a unique root x*. Ώ

If F and G are multivariate distributions so that x is multidimen-
sional vector, the additional complexity of the response functions pre-
vent us giving a simple criterion for the existence of x* [see Rockefeller
(1972)].

2.1. The dependence of x* on the underlying response distributions.
Suppose that x* exists and is a root of (2.2). In order to see how x*
depends on the underlying distributions F and G, let X be a random
variable having distribution F and let Y be a random variable having
distribution G. We define

To interpret the failure rate function A^rr), it is known [see, for exam-
ple, Ross (1983)] that

P{X e (re,x + dx)\X > x] w λF(x) dx.

Therefore, suppose that patient survives dose level x, \p{x)dx repre-
sents the probability that an additional dose dx would have been toxic.

To interpret the reverse failure rate μc(χ), note that

P{Y e(x-dx,x)}

P{Y < x}
g(x) dx

—— II I /γ» J /"f /y*
— IJ//^1 \ *ί> I LLJu
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That is, μG(x)dx represents the probability of a non-cure for a small
dose reduction dx given that a cure occurs below dose level x and x is
not toxic.

Based on this interpretation for XF(x) a ϊ*d (J>G{X), it is reasonable
to assume that — XF(X) and μG(x) are decreasing functions of x. Let

)=-M«)+

Then, if — λ^(x) and μG(x) are decreasing functions of #, K^FiG)(x) is
a decreasing function of x under these assumptions. Furthermore, if x*
exists and is a root of (2.2) such that ~F(x*)G(x*) φ 0, then from (2.2),

We write x* = x*(F, G). The dependence of x* on F and 6? is given by
the following theorem and it turns out to be the following: the larger
XF is, the smaller x* is; the larger μG is, the larger x* is.

THEOREM 3. Let A represent the class of pairs of distribution

functions F(x) and G{x) that satisfy the following conditions: (1) x*

exists and is a root of the equation (2.2) and F(x*)G(x*) φ 0; and (2)

—XF(x) andμG{x) are decreasing functions ofx. Then for (Fi, Gi), (F 2, G2)

A, we have

(i) For fixed G, XFl(x) > XF2(x) for all x =* x*(F1}G) < x*(F 2,G);

(ii) For fixed F, μGl(x) > μG2{x) for all x =Φ X*(F, Gτ) > x*(F, G 2);

(iii) K{F2fG2)(x) > K(FuGl)(x) for allx^ x*(F2,G2) > x*(Fχ,Gi).

PROOF. We only prove (iii), because (i) and (ii) are the special
cases of (iii). If F(x)G(x) φ 0 at #*, then

K(F,G)(x) = 0 <=ϊ g(x)F(x) - f(x)G(x) = 0.

For convenience, let x\ = x*(Fι,Gι), and x\ = x*(F ι,G<ι). Since

^ ( F 2 , G 2 ) ( ^ ) = 0 = K{Fι,Gl)(x\) < K{F2,G2){X\).

Now x\ > x\ is implied by the decreasing nature of K(F2,G2)(X)
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2,2, A class of adaptive designs. For a continuous interval of dose
levels, our goal is to estimate x* after each trial or group of trials and
treat the next group at the level of this estimator. To see that x* is a
function of θ and Φ requires us to consider sequential design procedures
for estimating x* through its connection with θ and Φ.

(2.3)

CONTINUOUS INTERVAL SEQUENTIAL PROCEDURE:

1. Define the set of feasible dose levels Dι,

2. Find good estimators

θn = θ{(yy,Xi) : i = l , 2 , . . , n , j = 1,2, ...,*<}

for θ and

Φ n = Φ{(«y,x<) : i = l,2,...,n,j = 1,2,...,**}

for Φ, where yij is the binary responses of the j th treatment at
the ith trial and ki is the number of experiments at the ith trial.

3. Define Fn(x) = H(χ-,Θn) and Gn(x) = G(#;Φ n ), and choose
the next dose rr*+1 such that x*+ 1 maximizes (1 — Fn(x))Gn(x)
in such a way that the group size, fcn+i, at x*+ 1 diverges, i.e.,
limn-̂ oo kn = CXD. If (1 — Fn(x))Gn{x) has the same maximum
value at more than one dose level in Dι, choose the smallest as
the next dose.

The sample sizes, fcn, in design (2.3) are not necessarily strictly
increasing, but we must eventually put more and more experiments at
doses close to the optimal point as trials continue. The sequence of dose
levels x*n in design (2.3) may take any value in a continuous interval,
and we do not decide the dose of the next group of trials before we
complete the current group.

In practice, we may only be able to do the experiments at certain
designated dose levels due to constraints inherent in the experiments or
for the experimenter's convenience. Design (2.3) may not be advisable
in this situation. Design (2.4) which follows maybe more appropriate
for a discrete set of dose levels. It has the additional advantage that it
can proceed in a strictly sequential manner.
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(2.4)

DISCRETE LEVEL SEQUENTIAL PROCEDURE:

1. Define the set of feasible dose levels Dι = {rfi,^, ..
for i φ j .

2. Find good estimators

©n = QiiyϊjΛ) •• i = 1,2, -,m,j = l,2,...,nΊ,k = 1,2, ...,n}

and

Φ n = Φ { ( 4 ,d;) : i = l,2,...,m, j = 1,2 n?,fc = 1,2, ...,n},

where n* is the number of the experiments at di at the A th trial
and n\ > 0, τ/y is the binary response of the j th experiment at di
at the A th trial. Assume that Σ™ 2 n* > 1 for all fc.

3. Define Fn(x) = # ( # ; Θn) and Gn(x) = i(Γ(x; Φ n ), and choose the

next design point, xJi+1, from Όx to maximize (1 — Fn(x))Gn(x)

over Di. If (1 — Fn(x))Gn(x) has the same maximum value at

more than one point in D^ choose the smallest as the next design

level.

The sequence of doses x*n are given by maximizing (1 — Fn(x))Gn(x)
through its connection with the parameters. Some of the n* in step 2
above can be zero, but we require that at least one experiment be done
at some di at each trial, i.e., Σ*Li ni ^ 1 f° r aU &•

The next issue is the choice of good estimators Θ n and Φ n in designs
(2.3) and (2.4). We use the maximum likelihood estimators (MLEs) for
θ and Φ based on all of the data in the previous trials. That way all of
the information in the previous trials can be used in suggesting how the
next trial should be conducted [cf. Wu (1985)]. For the computation of
the maximum likelihood estimators for the parameters, the NLIN and
CATMOD procedures in SAS, and GLIM are available.

It is easy to see that x^ in designs (2.3) and (2.4) is the optimal
choice of the next design point in Di based on estimated response
curves, Fn(x) and Gn(x). We will prove its consistency through its
connection with the parameter estimators (i.e., the MLEs). To start
procedures (2.3), we need an initial dose and an interval, and to start

187



procedure (2.4) we need a discrete set of doses and an initial dose be-
longing to the set. Both proceduresrequire that the experiments be
performed on at least two distinct dose levels in order that the MLEs
exist. Whether the MLEs are computed using design (2.3) or (2.4), it is
critical not to start the iterations until the conditions for the existence
and uniqueness of the MLEs are satisfied. A premature start may lead
to inconsistent estimators [see Wu (1985)].

2.3. The maximum likelihood estimators for the parameters. If, for
i = 1, 2,..., fc, X{ is a dose level and Ui experiments are run at #;, the
likelihood function is

where U is the number of toxic responses at a;;, πii is the number of
cures with non-toxic responses at X{, and ra* — Z$ — rrii is the number of
non-cure with non-toxic responses at X{. The g^r; and pi are given by

qi = F ( x i ) , n = F ( x i ) G ( x i ) a n d Pi = P ( U
The log-likelihood function is

(2.5) log(L)

where C is a constant.
The following lemma is a basic consequence of (2.5).

LEMMA 1. Under the assumption (2.1), if the first derivatives
of H{x\ θ ) and K(x\ Φ) with respect to each component of θ and Φ,
respectively, exist, then the maximum likelihood equations for θ are
functionally independent of those for Φ.

PROOF. From (2.5) and (2.1), we have
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(2.6) log(L)

= C + ΣU

+ ΣLi rrk[logH{xi'} θ) + logKfa Φ)]

+ Σti(Πi -h- mi)[logΈfa θ) + logK(xi; Φ)]

+ ΣLi^i-h-

It is obvious that the first derivatives of log(L) with respect θ are
independent of those with respect to Φ, so long as θ is not a function
of Φ.

By Lemma 1, the MLEs for θ and Φ can be computed separately.
For the implementation of designs (2.3) and (2.4), the existence and
uniqueness of the MLEs is very important. Assuming that there are at
least two distinct x'fi, F(x) = H(θλ + θ2x) and G(x) = K(βι + β2x),
the following theorem is a consequence of Lemma 1 and Theorem(iii)
in Silvapulle (1981).

THEOREM 4. Suppose F and G are continuous distribution func-
tions and —logFj —log(l — F),—logG and —log(l — G) are convex
functions and that F(x) = H(θι + θ2x) and G(x) = K(βι +β2x). Then
the MLEs for θ = (#i, θ2) and Φ = (βi,β2) exist and are unique iff the
following conditions are satisfied

> Xlmax) \ \\Xlmini Xlmax) Ψ Φ

and

(2-8) (X2rmn> X2max) | |(X2mm? X2max) Ψ Φ)

where

xΐmax(min) = max(min){xi: fatal toxicity at xi}i = 1,...,fc},
xΐmax(min) = τnax(min){xi: non-fatal toxicity at Xi,i = 1, ...,fc},
ximax(min) ~ τnax{min){xi\ there is no cure at Xi,i = l,...,fc},
X2max(min) = rnax(miή){xi: there is a cure at xui = 1,..., A;}.

PROOF. From Lemma 1 and (2.6), it is easy to see the MLEs for θ
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= (#i i ̂ 2) a i*d Φ = (βι, ^2) are special cases of the theorem in Silvapulle
(1981). The interlocking set of conditions (2.7) and (2.8) are simplified
according to condition Π in that theorem. •

The conditions (2.7) and (2.8), once satisfied, are always satisfied
and cannot be violated by the addition of more observations. When
dose level is a multiple dimensional vector and it appears in the inner
product form XΘ in the distribution functions, we still can give con-
ditions similar to (2.7) and (2.8) [see Silvapulle (1981)]. The following
corollary is a direct result of Theorem 4.

COROLLARY. Under the conditions of Theorem 4, if there exist
Xi φ Xj and x^ φ xy such that 0 < U < 7^,0 < lj < n^O < m^ <
riii — rriii and 0 < rriji < Uji — If, then the MLEs for θ and Φ exist
and are unique.

3. Statistical consistency and convergence to optimality.
Through its connection with parameters, we have from (2.2), that x*n

in (2.3) and (2.4) will converge to the optimal value x* if the sequential
MLEs for the parameters converge to the true parameters. It is known
that [see Lehmann (1983)] the MLEs are consistent under suitable reg-
ularity conditions for independent identically distributed observations.
In estimating the percentiles of the response curve, Wu (1985) proved
the consistency under the rather restrictive conditions that the sequen-
tial MLEs converge uniformly to constants. The following theorem
concerning designs (2.3) and (2.4) proves the consistency of the MLEs
for the parameters under rather broad conditions.

THEOREM 5. Let F(x) = H{x; θ ) and G{x) = K{x\ Φ) be proba-
bility distribution functions, where

θ = (θ1,θ2,...,θs)and Φ = (β1,β2,...,βt).

Let Dι be the set of doses. Suppose F and G satisfy the following
conditions:

(i) The parameter spaces for each component of θ and Φ are open

intervals.

(ii) Both distribution functions H(x\ θ ) and K(x\ Φ) have their com-
mon supports, respectively.
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(iii) For all i and j , dF/ΘP, 8G/dβj, <92F/<9(0*)2 and d2G/d(βj)2

exist and are bounded for x G Dι.

(iv) There is a constant b > 0 such that \dF/d^\ > b, \dG/dβj\ > b,
FT >b and GG > b for x G Dh

Then no matter how the experimental doses are taken, given that
the MLEs exist and are unique we have

(a) // Dι is finite closed interval and lim^oo nk = oo, then θ\ ^ θi

and βJ

k *—> βi as k —> oo ; where θ\ and βJ

k are the unique MLEs
for θ% and βi based on experiments at #O)#i, --^Xk- χ% G Dι for
all i, and ni is the group size at Xi.

(b) If Dι = {^1,^2, '"jdm} with m > s + t and each nik —> oo as
k —* oo, where n^ is the group size at di by the kth trial; then
θz

k 4̂.' θ% and βk 4̂-' βi as k —> 00, where θ\ and βk are the unique
MLEs for θi and βj based on the previous k tήals at D\.

PROOF. For simplicity of notation, we only prove the theorem for
the case in which Θ and Φ are one-dimensional, i.e., θ = θ and Φ = β.

(a) From (2.6), the log-likelihood function is

i - li)logF(xi)

The likelihood equation is

dLk » fr-wFfc) dF
dθ h

where

h(xθ) - l i ~ n i F ^
d F

Taking a Taylor series expansion of h(xi\ θk) as a function of 0* about
θ (considering Xi to be constant), we have

(3.1) fife; θk) = h{Xi; θ) + (θk - θ)k(xi\ ξk),
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where k{xi\θ) =: dh(xi\ ξk)/dξk, and ξk lies between θ and θk. Summing
(3.1) over i and using Σi=i h(xi\ θk) — 0 yields

f)T k k

( 3 2 ) ~τί = Έh^θ) = ~(θk -

If Σ L i kiχi\ ζk\ = 0, then ΣΪ=i Kχi\θ) = 0 from (3.1). By the unique-
ness of MLE, θk = θ. Without loss of generality, we assume

Hence from (3.2) we have

ΣLHXJΘ) ak

where

Σ t i h(Xi; θ) YH=xk{xΰξk)
O'k — = T , Oh — = T

By the strong law of large numbers, li/rii — F(xi) —» 0 a.s. as
n^ —> co. Furthermore,

h/rii-Fixi) ΘF

^° a S a S n ^ ° °Z77Z7 t Λ/3 —

Γ Γ Ou

since FF > b and dF/dθ is bounded. Noting that xn —> 0 a.s. implies

ΣΓ=i x i / n ~^ 0 a s as n —» oo, we have

Σ t i mih/m - F(xi)){dF/dθ)/{FF) ) Q

almost surely as k —* oo.

For the denominator in (3.3),
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[ό.b) bk- k

yk

By the same reasoning as used to obtain (3.4), the first two terms in

the right side of (3.5) converge to zero a.s. as fc —* oo. As for the third

term, since 1/FF > 4, \dF/θθ\2 > δ2, we have

> 4 6 2 for all k.

Thus, from (3.5), we have \bk\ > 262 if k is large enough. Consequently,

θk -+ θ a.s. as k —• oo follows from (3.3) and (3.4).

Since U/rii —> F(xi) ^ 1 a.s. as n^ -^ oo, we have Πi — U =

n;( l — Zi/πi) —* oo as Πi —••> oo. By Lemma 1 and the same methods as

above, we have βk —> β a.s. as k —» oo.

(b) Let nik = Σ j = 1 nj, ^ = Σ j U i<, and miA; = Σ*=i m i , where

• Ẑ' is the number of toxicities at di at the jfth trial,

• ml is the number of cure with non-toxic responses at di at the

jfth trial,

• n\ is the number of experiments at di at the jth. trial,

• lik is the total number of toxicities at di by the fcth trial,

• rriik is the total number of cures at di by the fcth trial,

• nik is the total number of experiments at di by the fcth trial.

The likelihood function is

r _ TΎ I Uik \ Jikrmik ni
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where <&, r{ andpi are defined in Section 2.3. The log-likelihood function
is

log(Lk) = C +

ik ~hk -mik)logG(xi).

Therefore,

dlog(Lk) _ ^ nik(lik/nik - F(XJ)) dF

where

By the Taylor series expansion of hk{xϊ, θk) as a function of θk about ^,
we have

hk{xi\ θk) = hk{xi θ) + (θk

where qk(xi]ζk) = dhk(xi]ξk)/dξk, and ξk lies between 0 and θk. Since
Σ£Li hk{χi] θk) = 0, by the same reasoning as (3.3),

(3.6) §k-θ = -^£

If Πik —»• oo, by the strong law of large numbers,

\lik/nik-_F{xi)\dF

FF dθ2Ji=i nik

u a.s.

as k —» oo. Therefore, we have

— > = 1

m

 ΐ ? —• 0 a.s. as A; —> oo.

The way of dealing with the denominator in (3.6) is similar to that
for part (a). We complete the proof following methods analogous to
those used for (a). Π

From Theorem 5, we know x* in designs (2.3) and (2.4) converges
to x* through its connection with the parameters. The key idea for
ensuring consistency of design (2.3) is to put more experiments at doses
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close to x*. The conditions (iii) and (iv) over Dι for the underlying
distributions in the Theorem 5 are not hard to satisfy under (i) and
()

For example, if

F(x) = 1 -
1 + exp(a + βx)

it is obvious that (i) and (ii) are satisfied. Since

, where β > 0, —oo < a < +oo,

dF_

da
d2F

da2 = F(x),
dF

= xF(x), and
d2F

= x2F(x),

(iii) and (iv) are satisfied for x G Dι.
The following corollary, which gives the asymptotic optimality of x*

for designs (2.3) and (2.4), is a natural consequence of Theorem 5.

COROLLARY. Under assumption (2.1) and the conditions in Theo-
rem 5, the sequentially estimated optimal design points #* E Dι9 defined
in designs (2.3) and (2.4) converges to x* G Dι a.s.

4. Discussion. We have proved the asymptotic optimality for the
designs proposed in Section 2.2 by first proving the consistency of the
sequential MLEs for the parameters in the response curves. However,
we need to define the set of feasible dose levels Dι and give the ini-
tial designs such that the MLEs based on the initial designs exist and
are unique before the treatments begin in a sequential manner. The
conditions for the existence and uniqueness of MLEs, once satisfied,
are never violated by adding more observations. Ways to choose the
initial designs needs further study. Theoretically we only require that
the conditions for the existence and uniqueness of MLEs be satisfied
before the sequential procedures begin. Defining the set of feasible dose
levels Dι is mainly based on previous knowledge about the treatments.
It is not always easy to estimator the variance of x*n theoretically due
to the sequential character of x*. Further study is needed to evaluate
the variance of a£.
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