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Abstract

The randomized play-the-winner rule, an adaptive design for
clinical trials aimed at placing more patients on the better of two
treatments, may be modeled as a generalized Pόlya urn. The
urn model may, in turn, be embedded in a Markov branching
process, and results from the theory of these processes may then
be used to prove results for the urn model, and hence for the
randomized play-the-winner scheme. Under a mild condition for
the success probabilities PA and ps for the two treatment arms,
results from the theory of Markov branching processes show that
the (random) probability of assignment to a given treatment
is asymptotically normal; we extend this result to show that,
under this same condition, the probability of assignment to a
given treatment and the number of patients assigned to that
treatment have a limiting bivariate normal distribution. Some
generalizations of this result are discussed.

1. Introduction. Consider a clinical trial in which patients are
accrued sequentially and immediately are assigned to treatment A or
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treatment B. Adaptive designs for such clinical trials attempt to as-
sign more patients to the better of the two treatments, while seeking
to maintain some randomness as a basis for inference. Thus the results
of the treatments on previous patients will influence treatment assign-
ments of current patients. We assume that the results of treatment are
known immediately; some relaxation of this condition is possible.

There is a rather extensive literature on adaptive assignment meth-
ods; see, for example, Bather (1985), Armitage (1985) and the accom-
panying discussion, or Rosenberger and Lachin (1993) for an introduc-
tion to some of the issues surrounding these methods. Our contri-
bution will focus on one particular method of adaptive assignment,
the randomized play-the-winner (RPW) rule [see Wei and Durham
(1978)]. Here we assume the outcomes are dichotomous; we denote
the two kinds of outcome by S or F. A population model is assumed
for the patients, with PA = P {Outcome S on treatment A} , PB =
P {Outcome S on treatment B} , qA = 1 — PA> a n d ## = 1 — PB- Let
pn be the probability that the nth patient is assigned to treatment A.
In the simplest version of the RPW rule,

(1.1)
1 + SA (n - 1) + FB (n - 1)

P =

where SA (k) denotes the number of patients with outcome S on treat-
ment A among the first k patients, and Fβ (k) denotes the correspond-
ing number of patients with outcome F on treatment B. Thus if treat-
ment A is doing well relative to B early in the trial, more patients will
tend to be placed on treatment A, and vice-versa. Of course, PA and
pB will not be known; exact and asymptotic inference procedures for
these parameters under the RPW rule are discussed in Wei, Smythe,
Lin, and Park (1990).

2. Urn models. Suppose an urn has balls of two types (or colors),
A and B. Initially there are a balls of each type in the urn. Whenever
a new patient is accrued, a ball is drawn at random and replaced. If the
ball is of type A, the patient is assigned to treatment A. If the ball is of
type J5, the patient is assigned to treatment B. When the response of
a previous patient on a treatment becomes known, a ball of type A is
added to the urn if the response is S on treatment A or F on treatment
B, and a ball of type B is added if the response is F on treatment A or
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S on treatment B. If pn again represents the probability that the nth
patient is assigned to treatment A, it is easy to check that

a + SA(n-l)
P (n - 1) + 2α

which reduces to (1.1) in the case a = 1. This urn model is a par-
ticularly simple example of a generalized Pόlya urn (GPU) model [see
Athreya and Ney (1972)], which was first noted by Wei (1979).

3. Markov branching processes. As outlined in Athreya and
Ney (1972), there is a close correspondence between certain GPU mod-
els and Markov branching (MB) processes, which we briefly describe in
our case of interest.

Our MB process will have particles of two types (A and B)\ we
start with a particles of each type. The particles have independent
exponential "timers" with parameter 1 in each case. When the timer
"goes off," a particle of type A produces a new particle of type A with
probability PA, or a new particle of type B with probability qA, and its
timer is "reset" with an independent exponential (1) time. The new
particles all have exponential (1) timers, independent of each other and
of the "parent" particles; all the particles now "reproduce" according
to the rules above when their timers go off. The split times, the times
at which particles reproduce, are almost surely distinct. We refer to
a split as a Type A split if a particle of type A is reproducing at that
split time, and as a Type B split if a particle of type B is reproducing.
Under our rules for the MB process, the probability of a Type A split at
any time is simply the number of Type A particles in existence at that
time, divided by the total number of particles in existence (similarly
for Type B particles). Thus, in terms of the urn model in Section 2, a
Type A split corresponds to drawing a Type A ball from the urn and
a Type B split corresponds to drawing a Type B ball from the urn.

Define iVn to be the number of Type A splits among the first n
splits and An to be the number of particles of type A after n splits (of
either type). It is not difficult to check that An has exactly the same
distribution as the number of balls of type A in the urn, described in
Section 2, after n draws from the urn. We may view the GPU model as
being embedded in the MB process, an idea which appears to be due
to Athreya and Karlin (1968). Results from MB processes, therefore,
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imply corresponding results for these urn models, and thus for RPW
assignment schemes which, as shown in Section 2, correspond to urn
models of this type.

For our RPW model, Nn represents the number of patients among
the first n that are assigned to treatment A. Results for MB processes
give [see Athreya and Karlin (1967)]

> Q as n —> oo,
n

where Q = qBj (qA + ##). Results of Athreya and Karlin (1968) show
that

a.s.Pn —> Q as n —> oo,

and that, under some conditions (see Section 4),

in law, where N (0, c) denotes a normal random variable with mean 0
and variance c. The results of Athreya and Karlin do not identify the
variance c, but it can be deduced with some effort from their arguments.
Athreya and Karlin (1967) raised the question of asymptotic normality
of the number of Type A splits Nn} which in our model is the number
of patients assigned to treatment A.

4. Joint asymptotic normality of the number of type A
splits and the number of particles of type A. In the following
discussion, we take a = 1 for simplicity. Note that Nn and An are
hopelessly intertwined, in that

To

where S n = σ (A\} . . . , An, JVi, . . . , Nn), the sigma-algebra gener-
ated by all splits and reproductions in the first n split times. This
suggests that we should consider the vector (An, Nn). Let Xn = An —
(n + 2)Q and Yn = Nn - (n + 2) Q. Also, let δ = pA- qB.
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THEOREM 4.1. Ifδ < 1/2, as n -> oo,

approaches a biυariate normal distribution with variance-covariance ma-
trix

l ]
1 + 2(5 3 + 2«5 1 - 2δ

SKETCH OF PROOF. [The complete proof can be found in Rosen-
berger (1992).] The argument is similar to one in Mahmoud and Smythe
(1992). Define AXi+1 = Xi+1 - Xt and AYi+1 = Yi+1 - Yi. Then

Thus

έ

fc = 1, . . . , n , is a martingale in A; for each fixed n, for any choice of
constants {6m} and {cm} ,i = 1, . . . , n. Given αi and 0̂ 2, choose {6m}
and {cm} such that

Znn = ααXn + a2Yn + o
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This involves solving a system of linear equations for {&m} and {c;n},
which can be done recursively. A martingale central limit theorem
of Hall and Heyde (1980) and the Cramer-Wold device (Billingsley,
1968) may be applied to give the result, with the variance-covariance
matrix calculated from the urn probabilities and the coefficients {bin}
and {cin} . •

REMARK 1. In terms of the RPW design, this result says that

is asymptotically bivariate normal.

REMARK 2. The form of Σo in Theorem 4.1 makes clear why
δ is restricted to values less than 1/2; i.e., to PA + PB < 3/2. There
is a "phase change" at <5=l/2. It turns out that if 5=1/2, normaliza-
tion by (nlogn) 1 ' 2 will produce a normal limit for Yn\ for δ > 1/2,
normalization by nι~δ produces an a.s. limit to an unknown (presum-
ably non-normal) random variable. The latter two results follow from
combining the analysis above with the results of Wei, Smythe, Lin,
and Park (1990), and are analogous to known results for the limiting
behavior of Xn [see Athreya and Karlin (1968)].

5. Generalizations.
5.1. More than one particle created per split. Consider first the

case, when in either type of split, exactly β new particles are created;
that is, a Type A split produces A new particles of type A and β — A
particles of type B\ a Type B split produces B new particles of type B
and β — B new particles of type A, where A and B are random variables
on {1, . . . , / ? } . The splitting particles continue to live on with a new
exponential "lifetime." Let E be the expectation matrix,

(5.1)

E= [ ^
E

B B

where Ey is the expected number of particles of type j produced by a
type i split, i,j=A,B. The matrix E has two real eigenvalues, λ < λi.
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Let £, with components fi and £2, be a right eigenvector for λ. Athreya

and Karlin (1968) show that if 2λ < λi, then

in law, for constant k, where Bn = (2α + n) - An, the number of balls

of type B in the urn at time n.
For the RPW design described earlier,

E=\PΛ U
QB PB

and the eigenvalues are PA + PB — 1 a n d 1; the condition 2λ < λi then
becomes PA+PB < 3/2, or δ < 1/2, the condition of Theorem 4.1.

In the more general case where β new particles are created at each
split, joint asymptotic normality continues to hold, provided that EAA—

EBB < β/% The variance-covariance matrix is more complicated, but
can be obtained explicitly with modest effort.

5.2. More than two outcomes. As a corollary to the extension given
above, we give here just one example of how the RPW methodology
could be extended to accommodate clinical trials with more than two
possible outcomes. Suppose that three outcomes are identified: call
them H, M, L, which could be thought of as ordinal, with outcome H
being better than outcome M and outcome M being better than out-
come L. One could establish the following rule: if treatment A results
in outcome H (with probability PIA), 2 balls of type A are added to the
urn; if treatment A results in outcome M (with probability P2A), 1 ball
of each type is added to the urn; if treatment A results in outcome L
(with probability PZA), 2 balls of type B are added to the urn, where
P1A+P2A+P3A = 1. Similarly, if treatment B results in outcome H (with
probability PIB), 2 balls of type B are added to the urn; if treatment
B results in outcome M (with probability P2#)> 1 ball of each type is
added to the urn; if treatment B results in outcome L (with probability
P3B), 2 balls of type A are added to the urn, where PIA +P2A +P3A = 1-
The condition for asymptotic normality in Theorem 4.1 then becomes
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— P3B < (1/2) {1 — (jp2A — P2β)} Estimation of parameters for this
model could be carried out by an extension of the procedures in Wei,
Smythe, Lin, and Park (1990).

5.3. Random number of particles created in a split. If the number of
particles produced at each split is allowed to be random, the problem
is more difficult. In this case,

P {Type A split} = — 4 V -

and denominator is random. The difficulty is caused by the fact that
the proof of Theorem 4.1 relies on the linearity in Ai of E {ΔX i + 1 | θj}
and E {Δl^+i | Q }̂ , which is no longer the case here.

With a random number of particles produced, we let pfk be the
probability that j particles of type A and k particles of type B are
produced in a Type A split, and pfk be the probability that j particles
of type A and k particles of type B are produced in a Type B split. We
assume

Σ Σ i 4 , ΣΣpfk <oo,
j k j k

Σfpfk <oo, Σ
j k j k

If 2λ < λi, where λ and λi correspond to eigenvalues of E given in
(5.1), the central limit result of Athreya and Karlin still holds. We
conjecture that the analog of Theorem 4.1 holds in this case as well.

5.4- More than two types of particles. The concepts of MB processes
and GPUs extend easily to more than two types of particles, and the
embedding of the urn models in the MB processes is completely anal-
ogous to the two-type case. The analysis of the split times is extended
to this case in Smythe (1995).
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