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Abstract

Response-adaptive designs in clinical trials involve incorpo-
rating accruing information from patient responses to treatment
into the randomization scheme in order to assign more patients
to the treatment performing better thus far in the trial. While
ethically attractive at first glance, these designs are rarely used
in practice. A brief overview of the ethical and logistical con-
cerns for this apparent paradox are given, focusing in particular
on the randomized play-the-winner design of Wei and Durham.
Some asymptotic results are then presented for adaptive strate-
gies. A large-sample permutation test statistic is derived for
the randomized play-the-winner design. The martingale central
limit theorem is employed to show asymptotic normality under
certain conditions on the sequence of responses. A new adap-
tive design is then proposed to handle cases where the responses
are polychotomous or continuous. A large-sample test statistic
is given. Although a rigorous proof of asymptotic normality
has eluded us, simulation evidence is presented which strongly
indicates asymptotic normality.
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1. Issues in response-adaptive designs for clinical trials.
Response-adaptive designs in clinical trials incorporate accruing infor-
mation from patient responses to treatment into the treatment assign-
ment probabilities in an attempt to randomize more patients to the
treatment performing better thus far in the trial. While adaptive de-
signs have been proposed in other contexts, their application to clinical
trials requires complex ethical and logistical considerations, because
clinical trials involve human beings - in particular, sick human beings.
Some disturbing paradoxes are encountered when considering adaptive
designs for clinical trials. First, although the concept appears to be
ethically attractive, particularly from a patient's point of view, adap-
tive designs have generated intense criticism from both an ethical and
logistical standpoint. Second, over the past 20 years, many of the lead-
ing scientists in the field have done research involving adaptive designs,
and yet there has been little application of the methodology. Few other
scientific endeavors involving so many fine researchers have found such
little practical use. In 1977, Richard Simon wrote "It is clear that the
statistical literature on adaptive treatment assignment has had little
impact on the conduct of clinical trials. Many of the deficiencies of
current methods can be remedied with further work" [Simon (1977)].
Fourteen years later (a fruitful 14 years for researchers in adaptive
designs), he writes "There is an immense literature on [adaptive as-
signment] strategies yet the research has almost no applications in real
clinical trials.... I am not optimistic about the usefulness of this area
of research" [Simon (1991)].

One example of a response-adaptive design which has been used
in an actual clinical trial is the randomized play-the-winner (RPW)
design of Wei and Durham (1978). The RPW design can be thought
of as an urn model. At the start of the trial, there are a balls of each
color (say red and black) in an urn. When a patient is available for
assignment to one of two treatments (say A and B), a ball is drawn
at random and replaced. If the ball drawn was red, the patient is
assigned to treatment A; if the ball was black, the patient is assigned
to treatment B. When a response is available from the patient (it must
be dichotomous: success or failure), β red balls are added to the urn
if the response was a succession treatment A or a failure on treatment
B; β black balls are added to the urn if the response was a success on
treatment B or a failure on treatment A. It is known that this design
tends to assign more patients to the treatment performing "better"
[i.e., more successes or less failures; see Wei (1979)]. The parameters a



and β can be adjusted to skew the assignment probabilities to suit the
needs of the trial. This rule is denoted RPW(α,/?).

An RPW design was used in a clinical trial of extracorporeal circula-
tion oxygenation (ECMO) versus a conventional treatment on newborns
with respiratory failure. For details of this trial, see Bartlett, Roloff,
Cornell, Andrews, Dillon and Zwischenberger (1985). The RPW(1,1)
rule was implemented: the first patient was assigned to ECMO and
survived. The second patient was assigned to the conventional treat-
ment and died. All remaining patients were assigned to ECMO; all
survived. It was decided by ranking and selection procedures [Cornell,
Landenberger, and Bartlett (1986)] that, after 12 patients had been
randomized, efficacy had been demonstrated, and the trial was termi-
nated. Serious questions arose as a result of this trial. Royall (1991)
gives a synopsis of the ensuing controversy. The foremost question is
how can two treatments be adequately compared when only one pa-
tient was assigned to one of the treatments? Also, the results of any
trial with a total sample size of 12 would be suspect. In addition, the
medical community is accustomed to using a p-value to determine ef-
ficacy in a trial. They are unfamiliar with the ranking and selection
procedures used in the ECMO trial. To address this last issue, Wei
(1988) developed an exact permutation test to draw inferences from an
RPW trial. It is apparent from the lively debate sparked by this article
[see Begg (1990) with commentary] that there is no consensus on how
to analyze these types of trials. Wei, Smythe, Lin and Park (1990) also
present an exact and large sample inferential procedure under a simple
population model.

It is doubtful at this time that adaptive randomization schemes will
be used in future clinical trials unless a number of criticisms are ad-
dressed by the statistical community. First, "any assignment procedure
must be simple, rapid, objective, and foolproof" [Pocock (1979)]. Sec-
ond, while a design might be mathematically beautiful, clinical trials
are dynamic studies involving many uncertainties. An adaptive design
must be itself "adaptable," in the sense that it must be amenable to
changes precipitated by ethical, logistical or analytical concerns. Rigid
decision rules might have to be overruled by common sense. Third,
there must be a sufficient sample size and sufficient patient assignment
to both treatments to establish convincing results. Fourth, there must
be appropriate inferential procedures to apply at the conclusion of a
clinical trial to provide for a convincing test of the null hypothesis.
Rosenberger and Lachin (1993) give a thorough summary of some of



the other issues in the practical application of these designs, and give
some criteria under which adaptive designs could be employed.

With regard to inference, Rosenberger (1993) has developed large-
sample permutation tests that could be used to test the hypothesis of
no treatment effect under some adaptive strategies. We now summarize
these results. Section 2 presents a large-sample test statistics that can
be thought of as a large-sample analog of Wei, Smythe, Lin and Park's
(1990) procedure. Section 3 presents a new adaptive randomization
scheme for a generalization to polychotomous or continuous outcomes,
along with a similar test statistic.

2. A permutation statistic for dichotomous outcomes. Let
Yi, . . . , Yn be a sequence of dichotomous treatment assignments, where
Yj = 1 or 0 according to whether patient j is assigned to treatment A
or B, respectively. Let x\, . . . , xn be a sequence of dichotomous out-
comes, treated here as deterministic (since, under the null hypothesis,
a patient's outcome does not depend on the treatment assigned) that
take the value 1 if the treatment is successful and 0 if not. It will be
assumed here, for simplicity, that responses are instantaneous. Define
Zj = 2XJ — 1, j = 1, . . . , n (i.e., Zj takes the value 1 for a success and
-1 for a failure). Let Qj = σ (YΊ, . . . , Yj), j = 1, . . . , n, be the sigma
algebra generated by the first j treatment assignments, and let 3?o be
the trivial sigma algebra. For the rule RPW(α, 1), it is easily seen that
the conditional probability pi = P (Yi = 1 \ £fi-i) is given by

Pi = 1/2,

_ a + Si-ι

where

~ ~ " i = 1, . . . , n.

The test statistic of interest has numerator



significantly large absolute values of which will lead to rejection of the
hypothesis of equal treatment effects. The key step in a proof of asymp-
totic normality is to equate this statistic, suitably normalized, to a cer-
tain martingale. To this end, let {bjn} , j = 1, ...,n, be a deterministic
triangular array, chosen to make

for each n. This choice of bjn gives the equivalence of

Tn = 2

and

Wnn = i

fe*'
which is the nth term of a martingale difference array. It is not difficult
to verify that the desired sequence {bjn} is given by

(2.1)

Kn = 1,

bjn = Π
k-lJ



By Corollary 3.1 of Hall and Heyde (1980, pp. 58-59), Tn converges
in distribution to a standard normal variate under the following two
conditions:

(2.2)

max „ Jn > 0 as n —•> oo.

and

(2.3)
Sn/n —> 1/2 in probability as n —> oo.

Because we are treating the responses {x^ as a deterministic se-
quence, one could never discern from a finite sample whether (2.2) and
(2.3) will hold. Indeed, at one extreme when all responses are suc-
cesses (all Xi = 1), we have a Pόlya urn model, and neither condition
holds; in this case, Sn/n has a beta limit [see Athreya and Ney (1972)
p. 220]. At the other extreme when all are failures (all Xi = 0), we
have Bernard Friedman's urn [see Friedman (1949)], and asymptotic
normality follows from Freedman (1965).

To determine how a "typical" response sequence might behave, con-
sider the {xi} to be realizations of a sample Xi, . . . , Xn from a sequence
of Bernoulli trials with parameter p. Let Zi = 2Xi — 1, i = 1, . . . , n,
and let the random variables {Bjn} be defined via (2.1) with {ZJ} re-
placed by {Zj} . We now state two theorems, proofs of which can be
found in Rosenberger (1993).

THEOREM 2.1. When the {#;} are realizations of independent
Bernoulli trials with success probability p, then

υar (Sn/n) —• 0 as n —> oo for any p < 1,

where the expectation is taken over the {Xi} and the

THEOREM 2.2. Under the assumptions of Theorem 2.1, if p <

0.75,



max „ Jn • Oin probability as n —> oo.
l<j<n A 2

REMARK. It is easy to show that Theorems 2.1 and 2.2 remain
valid for somewhat more general sequences {Xi}. If the {Xi} are an
independent Bernoulli sequence with P {Xi = 1} = Pi, Theorem 2.1
holds, provided that, for some p < 1, pi —> p as i —• oo; Theorem 2.2
holds, if pi < p < 0.75 for all i.

Thus for p < 0.75 and random sequences of {Xi} generated in the
fashion described above, the two conditions of the martingale central
limit theorem are satisfied. Ideally, we would like to prove that, for
almost all sequences generated in this fashion, Tn has a central limit.
However, based on the results of these theorems, the most that can be
stated is given in the following corollary.

COROLLARY 2.1. For p < 0.75 and almost all realizations of
random sequences {Xi} generated as Bernoulli random variables with
parameter p, there exists a subsequence n^ such that Tnk —> JV (0,1) in
law.

Extensive simulations were conducted to examine the behavior of
the test statistic under the Bernoulli assumption. Details are given in
Rosenberger (1992). The speed convergence in conditions (2.3) and
(2.2), not surprisingly, depends heavily on the value of p, and slows
considerably as p exceeds 0.75. Coverage probabilities were calculated
and compared to the tails of the normal distribution for a = 1 and
a = 5 and n = 30,50, and 100. Responses were generated under the
Bernoulli assumption for various values of p. For a = 1, the test statis-
tic is conservative, very much so in the extreme tails. For a = 5 the
results are somewhat conservative in the extreme tails, but even for
n = 30 and n = 50, coverage is close to nominal levels.

3. A permutation test statistic for general outcomes. In
this section, we propose a response-adaptive design along with a large
sample test statistic based on scores calculated from a general response
variable. For each j = 1, . . . , n, let r^ , for i < j , be the rank of
the ith patient based on some outcome variable after j outcomes are
available, where a larger rank indicates a better response to treatment.
Define scores α^ to be some function of the r^ , I < i < j < n, where



Σ i = i αy = 0,7 = 1, . . . , ra. Define α+ = α^ / (α^ > 0 ) , where / is the

indicator function, and as before, let S j = σ(Yi, . . . , Y}), with Yj

defined as in Section 2. Let

J z ^
Σ

i = l,2, The better the responses of previous patients on treatment
A are, relative to those on treatment B, the larger will be the value of
Pi, the probability that patient i is assigned to A.

Proceeding as before, we define the array \bjn\ to make

i ι

for each n. The test statistic

is then equivalent to

Wnn =

Σ&

In the present case, however, the bjn depend not just on {a,jn}, but also
on {djk} for k < n. We have
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(3.1)
~ n

bjn = ajn + Σ ajnhj (i),

j = 1, . . . , n, where hj (i) is defined for i > j by the recursion

(3.2)
hi(i) = 1,

1
hj (t) = Σ 1 - ^ - Λ w - i ( < ) , < > j .

k = j 2 Γ Λ +
z 2 a

1=1

We define

The analog of conditions (2.2) and (2.3) are now given. Under the
following two conditions,

(3.3)

m a x — —• 0 as 72 —> oo

and

(3.4)
n ,

'n / Σ) αjn —*• 1/2 ί n probability as n —» oo,

Tn converges in distribution to a standard normal variate.
As before, we cannot guarantee that (3.3) and (3.4) will hold for

every conceivable sequence {%•}. Thus, as in Section 2, we consider
the case of responses generated by a probability mechanism to study
the behavior of (3.3) and (3.4) under "average" conditions.



Assume now that the responses arise from an independent sequence
XL, X2, with a continuous distribution. Let fly be the rank of the
zth patient after j responses are available.

EXAMPLE 3.1. Simple rank scores. For j even, these are defined

by

, 1 < j = 1, . . . , n.

With this normalization, Σ afj = j . Let Bjn and Hj (i) denote the

random analogs of bjn and hj (i) in (3.1) and (3.2), respectively.

THEOREM 3.1. When the responses are generated from an inde-
pendent continuous sequence, var(Sn/n) —> 0 as n —> 00, where the
expectation is taken over both the {Yj} and the scores.

The proof of Theorem 3.1 can be found in Rosenberger (1992). Thus
(3.4) holds in some average sense. Due to the complicated expression
for the \bjn\ in (3.1) and (3.2), we have not been able to show that
(3.3) holds in the same sense; however, simulation evidence strongly
suggests that (3.3) holds for this case.

Further simulations were designed to check condition (3.3) and the
rate of convergence of Tn to normality. The results are conservative
in the extreme tails, especially for n = 30, but overall, a reasonable
approximation to normality is demonstrated. Condition (3.3) appears
to be holding at about the same rate [O (n"1)] as max

EXAMPLE 3.2. Van der Waerden scores. The Van der Waerden
scores are asymptotically equivalent to normal scores [see Lehmann
(1975) p. 97], but are more tractable mathematically. They are defined

by

Aij = φ^ίE^l
3 + 1

where Φ is the standard normal distribution function. For these scores,
the behavior of max JJB^/Σ jBfn} is even closer to that of
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m α v / Λ2 / V Λ2 \ ΓΠΛn-^l
m a x s sijn/ 2-f ^* jn j > L^ v™ /J >

than for simple ranks. It can be shown that Theorem 3.1 holds for Van
der Waerden scores as well as simple rank scores [Rosenberger (1992)].
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