
Challenges in the Information Sciences for Statisticians

BY SIDDHARTHA R. DALAL

Telcordia Technologies

Information Sciences and Technologies areas are the fastest growing areas
affecting almost every facet of human life. The statistics profession has
played a visible role in areas like agricultural, demographical and biological
sciences. However, the role of Statistics and the Statistics profession is not
as visible in Information Sciences and Technologies at large. This paper
argues that, to the extent that Statisticians are willing and able to expand
their role beyond the standard modeling, sampling and designing roles,
they will be enormously successful in this new field. However, if they
do not take a larger view and think about unconventional problems and
innovative solutions, they are likely to be left behind by experts trained
in other Information Sciences related disciplines. As examples this paper
describes two problems in Information Sciences and Technologies related to
search engine technology and software testing technology. On the surface,
traditional statistical theories do not have much to offer for solving them
and Statisticians looking for conventional solutions would have not been
successful in solving these problems. However, unconventional statistical
thinking played a critical role in solving these problems.

1. Foreword It is a pleasure to be a part of this conference in honor of Pro-
fessor W. J. Hall at the occasion of his 70th birthday. Jack Hall and I moved to
University of Rochester in the same year. He came there as the chairman of the
newly established Statistics Department and I came as a student. I was most im-
pressed by Jack's interest in many different areas of Statistics and his willingness
to supervise my thesis in an area outside of his primary research interest. He had
a sharp eye for what was practical and doable. When I left Rochester, I asked him
for a final word of advice. He mentioned that he was quite impressed by my curios-
ity about everything, and that continuing being curious will stand me well in my
research life. This has become one of my maxims.

I embarked on my industrial research career at Bell Laboratories in 1980. Since
then I have spent most of my career at Telcordia Technologies, a leading telecom-
munications research and development company formerly known as Bellcore. Much
of my time is spent on Information Sciences. One of the great things about work-
ing in industry is that challenging problems abound. I have written this paper to
describe of some of these "challenging" problems and suggest changes in paradigm
for statisticians to be successful in the new Information Science industry.

2. Introduction To underscore the point of "challenging" problems, I would
like to briefly describe a small sub-sample, two "challenging" problems that my
colleagues and I have worked on at Telcordia Technologies. They axe in the areas
of

• Software testing, and
209



210 S.R. DALAL

• Search engine and text mining techniques for Information Retrieval.

I hope Jack would feel good about the way that the field of statistics continues
to play a major but atypical role in Information Science today. Though both of
these problems are unconventional as far as traditional theories of Statistics are
concerned, successfully solving them required statistical thinking. In fact, solutions
of both of these have started new research areas in their respective fields.

With the explosion of Information, many new unconventional approaches are
needed to solve problems. To the extent that Statisticians are willing and able to
expand their role beyond the standard modeling, sampling and designing roles, they
will be enormously successful. However, if they do not take a larger view and think
about unconventional problems and innovative solutions, they are likely to be left
behind by experts trained in other Information Sciences related disciplines.

3. Software Testing Software testing is a very expensive part of building
sophisticated software systems such as those used in modern telecommunications
operations. A major reason for emphasis on testing is that the systems must meet
very high reliability and availability standards. The actual cost may be one third
or more of the total cost of building the software. Naturally, questions arise as to
how much testing is really necessary, and how the testing can be done in the most
efficient manner. For a statistical formulation of how much testing is necessary I
refer to Dalai and Mallows [8] and Dalai and Mclntosh [10]. I now concentrate on
how the testing can be done in the most efficient manner.

Since the number of possible inputs is typically very large, testers need to select a
sample, commonly called a suite, of test cases, based on effectiveness and adequacy.
To test software, combinations of all inputs must be provided and the output from
the software be checked against the corresponding correct output. Each combination
tested is called a test case. One would like to generate test cases that include inputs
over a broad range of permissible values.

Much testing is done in an intuitive and less formal manner. Typically, testers,
working from their knowledge of the system under test and of the prospective users,
decide on a set of specific inputs. Clearly, there is the possibility that important
interactions among the inputs will be missed. Herein lie significant opportunities
for a systematic approach, based on ideas from sampling and experimental design
theory. Consider the following example.
Example 1. Testing an Air to Ground Missile System: Consider a software system
controlling the state of an air to ground missile. The key inputs for the software are
the altitude, attack and bank angles, speed, pitch, roll, and yaw. (There are many
more- e.g. ambient temperature, pressure, wind velocity, etc., I will consider these
later on.) Typically, these variables do not have any joint constraints as far as the
software is concerned.

To determine the test cases, we can go back to the requirement document. Sup-
pose we are interested in testing the response during attack maneuvering. We select
the boundary values, maximum and minimum, as the two representative values for
each of the seven input variables and denote them symbolically as 1 and 2, re-
spectively. Then in the language of statistical experimental design, we have seven



INFORMATION SCIENCES 211

factors, A,..., G (altitude, attack angle, bank angle, speed, pitch, roll, and yaw),
each at two levels. To test all the possible combinations, one would need a complete
factorial experiment, which would have 27 = 128 test cases consisting of all possible
sequences of l's and 2's.

In this example, it may be possible to test all 128 test cases, but this may be
only one of many systems that need to be tested. Further, if we want to increase
the scope of the testing by including three more variables (for example H: ambient
temperature, I: pressure, and J: wind velocity) then we would have 210 = 1024 test
cases. In anything other than toy problems, the situation is typically much worse
than this, and even using automated testing, the number of cases is impossibly
large. I will illustrate this by giving two more examples.
Example 2. Screen Testing: Typically, users of business systems interact with soft-
ware via a succession of screens, each of which has a number of fields. It is not
uncommon to have 50 or more fields; for example Cohen, Dalai, Kajla, and Patton
[4] give an example of a screen with 76 fields. Assuming only 2 values per field, (for
example "valid" and "missing"), one has 276 test cases. At a rate of a million cases
per second (impossible to achieve today even with automation), this would require
2 x 1015 years to test.
Example 3. Interoperability Testing: Periodically, software companies update their
products, and sell them as new versions (e.g. Windows 95 vs. Windows 3.1). When
these products come out, it is essential that they work with a number of versions of
other software products. Thus, the issue of interoperability testing is critical. For
example, one would want Windows NT and XP, Word 2000 and 1998, Excel 5.0
and 2000, etc, all to work with one another. Thus, suppose one had four software
products, and wanted to support two versions of each, then we must study 16
interoperability problems. However each problem represents a large number of sub-
problems, and detailed analysis would result in a huge number of factors.

There are many other examples showing the geometric explosion in the number
of test cases- see Dalai and Patton [7] for feature interactions testing and Burroughs,
Jain and Erickson [2], for protocol testing. Sloane [11] references applications on
hardware testing, including circuit and network testing.

Empirical data and experience suggest that most faults are associated with an
error in a single field or a combination of a pair of fields. Faults attributable to more
complex combinations are atypical and do not involve more than 3 or 4 fields. Thus,
higher order combinations can be sacrificed to gain efficiency. This type of thinking
is similar to that of statistical experimental design where one tends to focus on main
effects and low-order interactions. In a statistical experiment if one is interested in
only main effects, then one can use a highly fractionated factorial design to reduce
number of runs. However, in the case of software testing, there is no interest in
estimating additive effects. Interest lies in covering the test space as completely as
possible and checking whether the test cases pass or fail. However, it is certainly
possible to use standard statistical designs. For example consider the set of test cases
given in Table 1. This is an orthogonal array of strength two, with 7 factors and
2 levels. It requires 8 test cases instead of 128. It is clear that all possible pairwise
combinations of levels of two factors are covered in a balanced way (exactly twice
each in this example). Thus testing according to this design will protect against



212 S.R. DALAL

Table 1: Test Cases for Example 3 using Orthogonal Array for 7 fields at 2 levels

Factor
Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
Test 8

A

1
1
1
1
2
2
2
2

B

1
1
2
2
1

1
2
2

C

1
1
2
2
2
2
1
1

D

1
2
1
2
1

2
1
2

E

1
2
1
2
2
1
2
1

F

1
2
2
1
1

2
2
1

G
1
2
2
1
2
1
1
2

Γαfe/e #; Γesί Cases by Combinatorial Design Method for 10 fields with 2 levels

Factor
Test 1
Test 2
Test 3
Test 4
Test 5
Test 6

A

1
1
1
2
2
2

B

1
1
2
1
2
2

C
1
1
2
2
1
2

D

1
1
2
2
2
1

E

1
2
1
1
2
2

F

1
2
1
2
1
2

G
1
2
1
2
2
1

H

1
2
2
1
1
2

I

1
2
2
1
2
1

J
1
2
2
2
1
1

any incorrect implementation of the code involving any pairwise interaction, and
also whatever other higher order interactions happen to be represented in the table.
Brownlie, Prowse and Phadke [1] have suggested the use of orthogonal array designs
of strength two for testing.

However, in software testing repeating a run with exactly the same inputs will
give exactly the same output, so exact replication is unhelpful, and wasteful. The
problem is not that of estimating an unknown response function, but rather that
of determining whether the software functions correctly under all relevant input
conditions; the response is either "O.K.", in which case nothing needs to be done,
or "failure" in which case the test case can be analyzed to determine the cause (or
causes) of the failure. The efficiency of a test design is measured by the degree to
which it covers the relevant input space. If we insist on coverage of all pairs, but
give up the restriction of balance, we can do a lot better. For example, Table 2
gives a design that achieves pairwise coverage of 10 two-level factors, in just 6 test
cases. These designs were first proposed by Dalai and Patton [7] based on a system
they first proposed called AETG System. For further references on AETG System,
refer to papers by Cohen et al. [4, 5, 3, 6] where they referred the new paradigm as
Combinatorial Designs. Dalai and Mallows [8] in a review paper called this type of
designs as Factor Covering Designs and proposed several new construction methods.

Thus, in the missile example, besides incorporating the 7 factors already men-
tioned, one can now include three more factors and still guarantee protection against
any pairwise interaction, using only 6 test cases.Unlike orthogonal arrays, for which
the number of cases grows at least linearly with the number of factors, covering de-



INFORMATION SCIENCES 213

signs grow at only a logarithmic rate. Further, orthogonal designs typically require
equal number of levels, do not always exist, and cannot be easily constructed to give
constraints. The savings are more dramatic when the number of factors is large; for
example with 126 binary factors we can cover all pairwise interactions with only
10 runs, whereas an orthogonal array would require at least 128 runs. The exhaus-
tive testing would require 2126 test cases. It is interesting to observe that while the
problem itself is not statistical at all: there is no statistical data, no uncertainty,
no statistical model, no statistical inference; statistical thinking is critical for the
solution. Further, this is a nice example of statistical thinking leading to a highly
visible contribution to the commercial world. Not only is the methodology in use
in Telcordia, a CMM level 5 software supplier, but it is also available on web as an
automatic test generation service. More information on this service is available at
h t tp : //aetgweb. argreenhouse. com, including more complex examples and other
references.

4. Latent Semantic Indexing (LSI) Since computers are replacing humans
in performing tedious tasks, they need to be equipped with the ability to process
natural language. A Telcordia patented technology called Latent Semantic Indexing
(LSI) was invented for Natural Language Processing (NLP) when the web was just
in its infancy. This technology underlies several search engines. Deerwester et al. [9]
provides a detailed discussion.

Basically, an English document can be represented by a term frequency vector;
elements of the vector represent counts of corresponding words that appear in the
document. Since there are about 50,000 typical words in English, a collection of
1,000 documents can be represented by a term by document matrix (TDM) as
large as 50,000 by 1,000. We will refer to a column of TDM as term frequency
vector frequency of a term which appears in the corresponding document, and a
row of TDM as document frequency vector how many times a document in the
collection contains the corresponding term.

One of the commonly used methods to search for relevant documents is called
keyword search. It consists of retrieving all the documents that contain any of the
words in a query. This is equivalent to thinking about the query as a document
in TDM and then retrieving all the documents which have positive dot product
(i.e., cosine of the angle) with the query. One can score the documents according
to the magnitude of the normalized inner product. Although keyword searches can
be effective, they are not perfect. In particular, choosing the right word from a host
of synonyms can mean the difference between success and failure. For example,
transparencies, viewgraphs, foils, overheads, slides, etc., are referring the same item,
though, particular document may only use one of these terms.

Specifically, a) keyword searches bring up huge number of documents which may
not be relevant because same words can have different meaning in different context
(precision), and more importantly, b) it also misses a lot of document which do
not have the exact terms in query, but are synonymous (recall). Several studies
have shown that key search methods have around 50% precision and 25% recall.
The difficulty is that from statistical perspective textual data is hard to model and
word matching is not very effective.



214 S.R. DALAL

Latent Semantic Indexing (LSI, in short) basically operates in the same manner
as keyword search- it uses TDM and does score in the same manner. LSI, however,
makes some modifications to the TDM that yield an ability to anticipate synonyms
automatically. This also reduces the dimensions of TDM.

Specifically, to be able to efficiently process and extract global information in
the documents, LSI gets rid of inconsistencies and ambiguities that individual doc-
uments have shown and only maintains the most important underlying structure of
the original TDM. It takes the full TDM, performs a Singular Value Decomposition
(SVD), and selects k most influential singular vectors to give a lower rank approx-
imation to the original TDM. More specifically, let be a t by d TDM (t terms and
d documents). Then SVD will decompose into the product of three matrices,

Xtd — TtmDmmD md,

where T(D) has orthogonal unit length column vectors referred to as the left (right)
singular vectors and 5 is a diagonal matrix of positive singular values in decreasing
order. Here m is the rank of Xtd- The first k largest singular values are retained
while others are set to 0. Consequently, when the three matrices are multiplied back
to obtain an approximation to Xtd only the corresponding k left and right singular
vectors need to be retained. Therefore the rank of Xtd is effectively reduced from
m to k. The choice of k is rather subjective. How large the k is depends on how
close we want the approximation to be and how different in magnitude the singular
values are to each other. Evidently, we choose k to be equal to m if we want an
exact "approximation". On the other hand, k can be a small number if the sum of
the first few leading singular values is relatively large compared to the sum of all
the singular values, e.g. 80%. In practice, the latter case seldom occurs, so a general
guideline is to set k to be 300 for medium-sized documents. Let Xtd denote the
lower rank approximation to Xtd> Then

Xtd = TtkSkkD'kd.

But what is a reasonable numeric representation for a document? What is a rea-
sonable numeric representation for a term? Answers to these questions are similar.
I will try to answer the first one, and the answer to the second one will follow right
through with similar arguments. Suppose two documents are similar, then the pat-
tern of their term frequency vector will be similar. If we take the inner product of
their term frequency vectors, we obtain a larger value than if they were dissimilar.
Therefore, element i,j element of XdtXdt can serve as a measure of the similarity
between ith and jth documents. But

so we can treat rows of DdrnSmm as a numeric representation for the documents
when we want to compare between documents. After dimension reduction, rows
of DdkSkk are approximate numeric representations of the documents. A new doc-
ument or query can be projected into the LSI document vector space by d* =
d*TtmSmlni where d* is a row vector of term frequencies of the new document or
query. This defines a simple version of the LSI document indexing process.

Similarly, rows of TtmSmm can serve as the numeric representation of terms when
we want to compare between terms. Therefore, rows of ftkSkk are approximation



Portable

INFORMATION SCIENCES 215

Doc 2
oDoc3

oDocl

Laptop
Figure 1: Keyword Search: 3 documents containing terms Portable and Laptop

to the numerical representation for the terms and a new term can be projected into
the LSI term vector space by i* = t*DdmSmmi where t* is a row vector of document
frequencies for the new term.

Since we have numerical representations for all documents (terms), we can mea-
sure similarity between documents (terms) by some similarity measure, such as
cosine of the angle between two LSI document (term) vectors. This is same as in
the keyword search method.
4.1 An illustration of LSI

LSI has been used in many applications and technologies similar to it have be-
come underpinning of several new search engines. Consider an example, which con-
sists of three documents. Doc 1 and Doc 3 focuses on displays used on portable
computers. However, Document 1 refers to only Laptop and Document 3 refers to
Portable computer. Document 2 talks in general about technology and peripherally
refers to Laptop and Portable in the same vein. If one were now to have a query
consisting of the term Laptop, as depicted in Figure 1, one will retrieve Doc 1 and
Doc 2, but Doc 3 would be completely left out. However, if one were to use LSI
with 2 dimensions, given the cross reference supplied by Doc 2 between Laptop
and Portable, we would get higher scores for Doc 1 and Doc 3 compared to Doc
2. Since we have k = 2, we can see this more clearly. We can plot rows of D 42822
to examine relationship between documents. Figure 2a plots this relationship and
shows that Doc 1, Doc 3 and Query are all close to each other compared to Doc
2. Similarly, in Figure 2b we plot rows of DdmSmm to examine the relationships
between words. Laptop and Portable are clearly closer to each other than Display,
etc. For other more detailed examples, we refer to Deerwester et al. [9] and a book
by Berry and Browne (1999). Additional references and a demo is available on the
web at http:/ / lsi .argreenhouse.com/lsi/

While the model itself is not treated as a stochastic model and there is no statis-
tical inference, statistical thinking along the line of principal components and factor
analysis is at the heart of the solution. This is yet another nice example of statistical
thinking leading to a major contribution to the commercial world. Several search
engines (e.g. Excite) are using variations of this approach.



216

LSI
Dimen-

sion
2

oDoc 1
o Query

°Doc 3

o Doc2

S.R. DALAL

LSI
Dimen-

sion
2

Laptop
Portable Computer
o o

Display

LSI Dimension 1 LSI Dimension 1
Figure 2a and 2b: LSI retrieval: 2a. Similar documents retrieved. 2b. Similar words
retrieved

REFERENCES

[1] R. Brownlie, J. Prowse, and M. Phadke. Robust testing of AT&T PMX/StarMail using
OATS. AT&T Technical Journal, 71(3):41-47, 1992.

[2] K. Burroughs, A. Jain, and R. L. Erickson. Improved quality of protocol testing through
techniques of experimental design. In Supercomm/ICC '94 (IEEE International Conf.
on Communications), pages 745-752, 1994.

[3] D. M. Cohen, S. R. Dalai, M. Predman, , and G. C. Patton. The AETG system: An
approach to testing based on combinatorial design. IEEE Transactions of Software
Engineering, 23, 1997.

[4] D. M. Cohen, S. R. Dalai, A. Kajla, and G. C. Patton. The automatic efficient test
generator (AETG) system. In Proceedings of the 5th International Symposium on
Software Reliability Engineering, Los Alamitos, CA, 1994. IEEE Computer Society
Press.

[5] D. M. Cohen, S. R. Dalai, J. Parelius, and G. C. Patton. The combinatorial approach to
automatic test generation. IEEE Software, 13(5):83-89, 1996.

[6] D. M. Cohen and Fredman M. New techniques for designing qualitatively independent
systems. Technical Report DCS-96-114, Rutgers University, 1996.

[7] S. R. Dalai and Patton G. C. Automatic efficient test generator (AETG): A test genera-
tion system for screen testing, protocol verification and feature interactions testing.
Technical report, Bellcore, 1993.

[8] S. R. Dalai and C. L. Mallows. When should one stop testing software? Journal of the
American Statistical Association, 83:872-879, 1988.

[9] S. Deerwester, S.T. Dumais, G.W. Pumas, T.K. Landauer, and R.A. Harshman. Indexing
by latent semantic analysis. Journal of the American Society for Information Science,
41:391-407, 1990.

[10] Dalai S. R. and Mclntosh A. M. When to stop testing for large software systems with
changing code. IEEE Transactions of Software Engineering, 20:318-323, 1994.

[11] N. J. A. Sloane. Covering arrays and intersecting codes. Journal of Combinatorial Designs,
1:51-63, 1993.

IMAGING AND SERVICES TECHNOLOGY CENTER

XEROX CORPORATION

800 PHILLIPS ROAD

M/S 0128-53E
WEBSTER, NY 14580
sdalalΦcrt.xerox.com




