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The receiver operating characteristic (ROC) curve is a useful way to dis-
play the performance of a medical diagnostic test for detecting whether
or not a patient is diseased or healthy. The diagnostic data consist of
independent random samples on continuous measurement scales from dis-
eased and healthy populations. We propose assessing the goodness-of-fit
of a model by comparing a model-based estimate with a nonparametric
estimate of the area under the curve (AUC). We focus on two parametric
models, so-called Bi-Normal and Bi-Weibull models, and briefly on asso-
ciated semiparametric transformation models. We also consider the null
hypothesis that a parametric model is valid after an unspecified mono-
tone transformation of the measurement scales. High power of the test
implies sensitivity of the AUC to model assumptions; low power implies
robustness of the estimate. The test is exemplified with a data set on the
diagnosis of pancreatic cancer. A simulation study of the statistical power
of the test is included.

1. Introduction Diagnostic testing provides important data for medical deci-
sion making and treatment planning. The receiver operating characteristic (ROC)
curve is a useful graphical and statistical tool for evaluating and comparing diag-
nostic tests. It is a plot of (1—specificity, sensitivity)-values at all possible two-state
decision thresholds (for definitions, see [3]). Much of the ROC literature deals with
ordinal rating data methods, where the values indicate the degree of certainty about
the disease. For example, for cancer detection, a five-point rating scale is often em-
ployed, with 1 = definitely benign, 2 = possibly benign, 3 = probably benign, 4 =
possibly malignant, and 5 = definitely malignant. Recently, diagnostic tests that
yield continuous results are increasingly used. Examples of such tests are those
based on tumor volume or laboratory assay such as the ELISA test for HIV in-
fection. Note that for the ordinal rating data, it is usually assumed that there is
a latent continuous variable. In this article, we confine attention to ROC curves
derived from continuous tests with a moderately large number of samples of both
healthy (H) and diseased (D) individuals.

There are several ways of estimating an ROC curve, along with its summary
measures: First, nonparametrically, a plot of pairs of observed (1—specificity,
sensitivity)-values at each possible decision threshold forms an empirical ROC
curve. This is equivalent to plotting two empirical survival curves against each
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other. Second, parametric bi-distributional models can be assumed. The frequently
used Bi-Normal model assumes two independent normal distributions with different
population means and variances [4]. Other models considered include Bi-Logistic
[20], Bi-Exponential [6], and Bi-Gamma [5]. Finally, semiparametrically, a Bi-
Normal model is assumed to hold after both measurement scales are subjected to
a common unspecified monotone transformation [10, 14, 17].

With such a variety of choices of distributional assumptions and estimation meth-
ods, it is necessary to assess whether the resulting ROC curve can be relied on, i.e.,
whether the fitted curve is consistent with the assumptions. The goodness-of-fit
(GOF) issues have been examined only for rating data (e.g., [18, 22, 20]). For
continuous data, this issue has not been investigated, although tests of marginal
normality, e.g., Shapiro-Wilk [13] and the z-test [12], can be applied separately to
the H and D samples by assuming independence between them.

In this article we construct a large-sample GOF test based on the transformed
area under the curve (AUC) to ascertain how sensitive the area is to modeling
assumptions. The AUC is a popular summary measure of the overall diagnostic
accuracy, ranging from 0.5 to 1, representing "chance" and "truth." The full AUC
corresponds to the probability of a pair of H and D measurement values being in the
correct order, and is the Mann-Whitney U statistic when estimated nonpaxametri-
cally [1, 8]. Parametrically the axea is an explicit function of the ROC parameters.
If the modeling assumptions axe valid, then parametric modeling leads to a more
efficient AUC estimate. Compaxing AUC estimates from both nonparametric and
model-dependent methods provides a basis for assessing the fit of the paramet-
ric model. Besides AUC, popular summary measures include sensitivity at a fixed
specificity [24], point of intersection [23], and maximal improvement of sensitivity
[16].

An ROC curve is invariant to any monotone transformation of the H and D
measurement scales. Consequently, the AUC will not distinguish between an original
parametric model and the corresponding monotone transformation models. When
the AUC is the main summary of overall diagnostic accuracy, taking a monotone
transformation should not affect the utility of the goodness-of-fit hypothesis test in
the proposed procedures.

In Section 2, we summarize background information about ROC curves. In Sec-
tion 3, we propose the GOF test based on comparing a nonparametric estimate with
an efficient parametric or semiparametric estimate of the AUC. Section 4 gives nota-
tions and assumptions for the empirical, the parametric Bi-Normal and Bi-Weibull,
and briefly their associated semiparametric models. In Section 5, we illustrate the
proposed test with a clinical example on the diagnosis of pancreatic cancer. A sim-
ulation study is presented in Section 6, providing empirical power of the proposed
test at alternative hypotheses. Summary and discussions are presented in Section
7.

2. Notation and Assumptions We now formally define an ROC curve. Let
-XΊ,..., Xm and Yί,..., Yn, be independently and identically distributed samples
from H and D populations, with underlying absolutely continuous cumulative dis-
tributions functions F and G, respectively. The corresponding empirical cumulative
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distribution functions are denoted by Fm and Gn. Let N — m + n. Throughout this
article we will express the survival function as H(t) = 1 — H{i) = P(T > f), for
any arbitrary cumulative distribution function H(t).

At any pre-specified decision threshold £, the underlying ROC curve is a plot
of the "true positive rate" (TPR or sensitivity), q(t) = G(f), against the "false
positive rate" (FPR or 1-specificity), p(t) = F{t), for t £ (-oo, oo). Alternatively,
one may express q as a function of p such that q(p)j= G{F~ (p)}, for p G (0,1).
The empirical ROC curve is defined similarly using Fm and Gn. A popular overall
summary of diagnostic accuracy is the area under the curve (AUC):

(2.1) A = P(X<Y) = I F(y) dG(y) = j G{x) dF(x).

Nonparametrically, the empirical area is equivalent to the Mann-Whitney Wilcoxon
U-statistic:

I m n

(2.2) ^ = —ΣΣ1^^}-
i=l j=l

For later reference, we note that the curve is invariant to the same monotone trans-
formation of both H and D measurement scales. That is, let ψ be an absolutely
continuous and strictly increasing function, so that X' — ψ(X), Yf — ψ{Y). Then
A = P(X <Y) = P(Xf < Y') [10].

3. A Goodness-of-Fit Test^ We compaxe a nonparametric estimate AN with
an efficient parametric estimate Ap of the AUC. Because AUC is confined to (0,1),
in order to improve the large-sample approximation, a probit transformation, W =
Φ"1(Λ), of the area is recommended. We use the probit transformation because
the transformed parametric Bi-Normal AUC is a simple function of the two curve
parameters (see Section 4.2).

Let Δ denote the difference between the estimates WN = Φ~1(AN) and Wp =
Φ~1(τ4p). We need an estimate of its standard error. The ratio Var(VFp)/Var(Wriv)
of the large-sample variances of these twojirea estimates is the asymptotic rela-
tive efficiency (ARE) of WN relative to Wp, assuming the parametric model is
correct. From [19] and [7], this ARE can also be represented as the squared cor-
relation coefficient p2 between the two area estimates. Therefore, COV(WN, Wp) =

= Var(W?P), and so

(3.3) Var(Δ) = Vax(WN) + Var(Wp) - 2COV(WJV, WP) =

The proposed GOF test statistic is

D = |Δ | /γ Var(Δ) = |Δ|/y Var(Ww) — Var(VFp),

which, if the parametric model is correct, asymptotically is the absolute value of a
7V(0,1) random variable.

4. Bi-Distributional Assumptions
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4.1. The Empirical Distributions Without ties present in the combined data
from the H and D samples, the empirical AUC is equivalent to the expression
for the U-statistic given in (2.2). The variance of AN is well known (see [9], for
example):

Vai(AN) = {pi(l - p i ) + (n - l)(p2 - p\) + (m - l)(ps -p?)}/(mn),

where

P! = P(Xi < Yi) = JG(X) dF{x),p2 = P(X1 < YUX1 < Y2) = J{G{x)}2 dF{x),

p3 = P(X1 < YUX2 < 1Ί) = j{F{y)}2dG{y).

For any F and G, the p»'s can be compared by numerical integration, with F
and G estimated empirically. ^

The variance of the probit transformed area estimate WN = Φ" 1 {AN) is obtained
by the delta method and equals:

where φ is the probability density function of the standard normal distribution,
estimated at W = W{A) with A being the underlying true AUC. In practice, we
substitute Wp for W when a particular parametric model is assumed under the
null hypothesis. Similarly, we substitute Ws for W when a semiparametric model
is assumed.

4.2. The Bi-Normal Model Let X ~ N{μ,σ2) and Y ~ N{v,τ2), two normal
distributions with different means and variances. Consider the common transforma-
tion of the H and D measurement scales using ψ{t) = {t — μ)/σ. Then X1 and y' still
have two normal distributions: X1 = ψ{X) ~ JV(0,1) and Y' = ψ{Y) ~ iV(α,/32),
with the Bi-Normal ROC curve parameters a = {v — μ)/σ and β = τ/σ.

From (2.1), the Bi-Normal area is an explicit function of these curve parameters
[18]:

AP = Φ

with transformed area Wp = ot/y/l + β2. The parameters, (α,/J), are estimated by
maximizing their likelihood functions, yielding:

a = {y- x)/sx and β = sy/sx,

where x = ^ Σ χi a n d s2

x = ^ Σ{χi ~ x)2 > t n e sample mean and variances of the
H sample, and similarly y and s2 of the D sample.

The large-sample variance matrix of these estimates is the following:

Var(^, sx,y,Sy) = Diag (σ2/m,σ2/(2rn),r2/n,τ2/(2n)).

From the delta method, it follows that the resulting variance matrix of (α, β) is

1 _ n ( α 2 + 2) + 2m/32 „„_,;* _ m + n Λ 2 „__,*.*_ aβ
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Finally, the large-sample variance of the estimated transformed area, again by the
delta method, is

1 n ft nϊR

It is often appropriate to assume an easy-to-use transformation, ψ, such as the
log transformation, to make data appear nearly Bi-Normal. One may also adopt a
data-driven transformation such as a Box-Cox [2] power transformation.

_ 4.3. The Bi-Weibull Model Let X ~ Weibull(a,/c), with survival function
F(x) = exp(-axκ). Likewise, let Y ~ Weibull(β,κ), with G(y) = exp(-βyκ).
This is a Bi-Weibull model with a common shape K but different scale parame-
ters (α,/?). Take ψ(t) — atκ. Then X1 and Y1 have two exponential distributions:
X1 - ψ(X) ~ Exponential (1) and Yf = ψ(Y) ~ Exponential (1/v), with the
Bi-Exponential ROC curve parameter v — a/β.

From (2.1), the Bi-Weibull AUC is

(4.4) AP = P(X' < Y1) = ϊ ^ - .

Furthermore, a logit transformation, instead of a probit transformation, can be
applied to the area to improve the large-sample approximation. The transformed
AUC is then Wp = log(z/). Following [11], straightforward computations lead to

Var(Wp) = N/(mn) -h Wp/(1.6449N).

5. A Clinical Example We illustrate our GOF test using data on the cancer
antigen assay CA125 for pancreatic cancer analyzed by [21]. There were m — 51
controls with pancreatitis (healthy sample) and n = 90 diseased cases with pancre-
atic cancer (diseased sample), from whom sera was collected and analyzed. Because
the data were highly positively skewed, we display the two samples separately,
but on a common log scale. See Figure 1 for the histograms, with dashed bars
representing the healthy sample and solid bars representing the diseased sample,
respectively. We first analyzed the data nonparametrically. We then assumed a
parametric Bi-Normal model after a log and after a Box-Cox transformation with a
power coefficient λ = —0.5. Finally, a semiparametric Bi-Normal model was fitted,
with estimates calculated using the standard software program "LABROC4" [15].
The resulting ROC curves are plotted in Figure 2.

The numerical results are summarized in Table 1. The first column gives four
methods for estimating the AUC. In the second and third columns, we report the
estimated (α, /3)-parameters for the parametric and semiparametric models. The
estimated AUC's, along with their probit transformed versions, are given in the
fourth and fifth columns. In the next two columns, the estimated variances of both
nonparametric and parametric (or semiparametric) area estimates are presented,
under the assumption that the corresponding parametric (or semiparametric) model
is valid. The last two columns give the GOF test statistic D and the corresponding
two-sided p-value. The results indicated that both Box-Cox and semiparametric
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Figure 1: Histograms of CA125 data on a log scale: dashed bars represent the healthy
(pancreatitis) sample; solid bars represent the diseased (pancreatic cancer) sample
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Table 1: Estimated Bi-Normal ROC curve parameters (α,/3), areas A and W,
along with estimated variances, goodness-of-fit test statistic D, and p-value for

example data

Method a β W Vai(WN) Var(W» D
Nonparametric - - .706 .540 .0101
Log .768 1.269 .683 .476 .0159
Box-Cox .739 1.032 .697 .514 .0169
(λ - -.5)
Semipaxametric .719 1.001 .706 .540 .0170

.0152

.0162

.0164

2.41
1.00

1.26

.02

.32

.21

models give satisfactory fits, with p-values of 0.32 and 0.21, respectively. However,
the p-value from the log Bi-Normal model is only 0.02, indicating lack-of-fit.

These results are consistent with the direct tests of normality using the z-test.
The two-sided p-values from the log Bi-Normal model are only pπ — 9.7 x 10"5 and
PD = 3.5 x 10~3. In contrast, under the Box-Cox Bi-Normal model, pπ = 0.07 and
PD — 0.12. We also apply the Bonferroni correction, using the significance level of
0.0253 for the individual tests of normality of the H and D distributions, thereby
attaining an overall level of 5%. Thus, log Bi-Normal model is rejected, but not the
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Figure 2: ROC curves for CA125 data by four estimation methods
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Box-Cox model. Direct testing of normality is not possible for the semiparametric
model.

6. A Simulation Study For evaluating the empirical power of the GOF test,
we conducted the following Monte Carlo simulation study. For typical non-normal
distributions, we generated two random samples, of size 100 each, from two exponen-
tial distributions, Exponential (1) and Exponential (1/^), respectively. This is a
special case of the Bi-Weibull model. From (4.4), the underlying AUC was v/(l + v).
Data was analyzed assuming a Bi-Normal model. To determine the power of the
GOF test for each u, from 1 to 18, we generated 500 Monte Carlo simulations. The
means and variances of the Bi-Normal distributions were estimated based on the
sample values. The rejection profiles of the GOF test as a function of v is presented
in Figure 3.

7. Discussion In this article we have explored whether and when a simple
procedure based on the estimated AUC can be used to assess model adequacy. We
constructed a goodness-of-fit test for assessing ROC curves using probit transformed
axea. This test is relatively simple to apply, especially under the Bi-Normal or Bi-
Weibull assumptions. We would not expect the proposed test to be as powerful as
a formal GOF test based on checking all of the parametric assumptions. However,
our test can provide a useful check on semi-parametric procedures for which there
do not exist formal GOF tests.

The clinical example and the power study implied that the estimates of AUC are
quite robust to modest departures from model assumptions. Our simulation study
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Figure 3: Simulated empirical power of the Bi-Normal GOF test as a function of v,
using two samples of size m = n = 100 from Exponential(1) and Exponentially jv)

I
o _

1 2 10

v

12 14 16 18

indicated that the test has little power to detect moderate departures from model
assumptions.

In this test the difference in the variances between WN and Wp given in (3.3)
can be small if nonparametric estimation method is highly efficient. In Table 2,
we present the true large-sample variances of these two estimates if estimation was
done by maximum likelihood parametrically. We assume various underlying areas
ranging from 0.55 to 0.95, at β fixed to be 1.5 for unequal variances. Generally,
the nonparametric method is relatively efficient and can even be as efficient as
0.952 when sample sizes are large (i.e., m = n = 200) and the ROC curve area is
moderately high (0.85), i.e., neither too low (0.5) nor too high (1.0). In practice,
estimating such small difference can present problems and the resulting test statistic
may not exist. Aside from low power, the denominator of the proposed GOF test
statistic may be close to 0. An alternative re-sample solution such as the bootstrap
or jackknife may be provided instead.

In summary, procedures checking all of the parametric assumptions are prefer-
able to the global check we have investigated. Therefore, we recommend testing
parametric assumptions such as normality, if possible, before fitting a parametric
model. The proposed method can serve as a diagnostic tool or check of a semipara-
metric model until a more formal GOF test for them is developed.

8. Acknowledgment We would like to thank Dr. W. J. Hall and the Depart-
ment of Biostatistics of the University of Rochester. We also thank Dr. H.S. Wieand



RECEIVER OPERATING CHARACTERISTIC CURVES 67

Table 2: Large-sample variances of nonparametric and parametric estimates of the

transformed area at the underlying parameter values, with unequal variances

A
.55

.70

.85

.90

.95

a

.227

.945

1.868

2.310

2.965

m = n

25

50

100

200

25

50

100

200

25

50

100

200

25

50

100

200

25
50

100

200

W
.126

.524

1.036

1.282

1.644

Vai(W
Nι

.0440

.0218

.0109

.0054

.0467

.0231

.0115

.0057

.0563

.0278

.0138

.0069

.0647

.0318

.0158

.0078

.0849

.0415

.0205

.0102

) Vax(W
P
)

.0402

.0200

.0100

.0050

.0432

.0216

.0107

.0054

.0523

.0262

.0131

.0065

.0589

.0294

.0147

.0074

.0711

.0355

.0178

.0089

ARE
.912
.921

.924

.927

.924

.934

.939

.941

.930

.943

.950

.952

.910

.926

.933

.938

.837

.856

.866

.872
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