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Suppose we have n i.i.d. copies {(Xi<, Yi);i = 1, . . . , n} of an example (X, V), where X € X
is an instance and Y G { — 1,1} is a label. A decision function (or classifier) / is a function
/ : X -> [-1,1]. Based on / , the example (X,Y) is misclassified if Yf(X) < 0. In
this paper, we first study the case X = R, and the simple decision functions ha(x) =
2\{x > a} — 1 based on a threshold o G E . We choose the threshold άn that minimizes
the classification error in the sample, and derive its asymptotic distribution. We also
show that, under monotonicity assumptions, άn is a nonparametric maximum likelihood
estimator. Next, we consider more complicated classification rules based on averaging over
a class of base classifiers. We allow that certain examples are not classified due to lack of
evidence, and provide a uniform bound for the margin. Moreover, we illustrate that when
using averaged classification rules, maximizing the number of examples with margin above
a given value, can overcome the problem of overfitting. In our illustration, the classification
problem then boils down to optimizing over certain threshold-based classifiers.

1. Introduction

Suppose we have n i.i.d. realizations {(J*Q, Y )̂;i = 1,... , n} of an example
(X, y), where X G X is an instance and Y G {—1,1} is a label. A decision
function / is a function /: X —> [— 1,1]. We will also refer to / as a classifier.
The decision rule based on / is to attach to an instance x G X the label y — 1
if f(x) > 0, and otherwise to attach the label y = — 1. Using this rule, the
example (X, Y) is misclassified if Yf(X) < 0. A base classifier h is a function
h: X —» {—1,1}, attaching the label h(x) to the instance x.

Given a class of classifiers T, the problem is to choose the "best" one.
Let L(/) = P(Yf(X) < 0) be the theoretical loss, or prediction error, of
the classifier / G f . Thus, if Xn+i is a new instance for which we want to
predict the label, L(f) is the mean error of the prediction

γ fl,

The smallest possible prediction error over T is miτifej? L(f). Consider now
the empirical loss Ln(f) of a particular classifier /, which is defined as the
fraction of examples in the sample that have been misclassified by /. We
will study, for some choices of J7, the classifier fn that minimizes Ln(f) over
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f G T. Following Vapnik (1995), we call the classifier fn the empirical risk
minimizer.

The overall minimizer

/* = arg min
all classifiers

is called Bayes rule. The empirical counterpart of this rule, i.e., the mini-
mizer of Ln(f) over all /, may overfit the data, and thus have no predictive
power at all. More generally, to avoid overfitting, the class T of classifiers
cannot be chosen too large (or too complex).

Our aim in this paper is to provide results in a relatively simple situa-
tion, proving limit theorems in the "finite dimensional case" (see Section 2),
and doing complexity regularization in "infinite-dimensional cases" (see Sec-
tion 4). We believe that these results lead to a better understanding of more
complicated classification problems as well.

In most of the paper we consider the case where the instance space X is
the real line or a subset thereof. In Section 2, we will examine the class of
base classifiers of the form

with a E R. We first recall some parametric approaches, and then derive the
asymptotic behavior of the (nonparametric) empirical risk minimizer άn.

In Section 3 we study the problem of averaging over base classifiers. The
idea there is as follows. If one has several base classifiers, say hi,... ,/iτ?
one may let them vote. A simple majority vote is to label x with y = 1 if
50% or more of the ht vote for y = 1, i.e., if (1/Γ) Σj=ι ht(x) > 0. However,
one may find that certain base classifiers are more important than others.
This can be expressed by using a weighted average f(x) = Σt=iatht(x)i
where at expresses the relative importance of base classifier hti 0 < at < 1,
Σt=i at — l I n most situations, little is known a priori about the relative
importance of the base classifiers. The weights are then chosen according
to some data-dependent criterion (for instance using AdaBoost (see, e.g.,
Freund and Schapire, 1997). This leads to considering all possible convex
combinations

C = conv(Ή),

where

Γ T T Ί
(1.1) conv(Ή) = \f = Σatht,0< at < 1, J^αt = 1,Γ e N I,

^ t=i ί=i J

is the convex hull of H.
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Section 3 sketches a general result on averaging and the complexity of
the resulting C, together with some examples. These examples illustrate
that averaging can lead to overfitting. To overcome this problem, one may
consider allowing that certain examples are not classified due to lack of
evidence (i.e., no sufficient majority). We will establish a uniform bound for
the fraction of well-classified examples, i.e., the margin, for the case where
C is a class of functions of bounded variation. The results in Section 3 are
inspired by the paper of Schapire et al (1998). In Section 4, we put the
idea of maximizing the margin in the context of regularization. We examine
functions of bounded variation, and show that maximizing the number of
examples with margin above a given value θ is the same as empirical risk
minimization using more than one threshold. Section 5 concludes. The
proofs are in the appendix.

In our study, the empirical behavior of certain quantities is compared to
the theoretical counterpart. The notation used in the theory of empirical
processes is helpful to express the notions in a consistent way. We let

ni=i

be the empirical distribution based on the sample (Xi, Yί),. . . , (Xn, Yn).
Thus Pn puts mass \jn on each example (Xj, 1^), i = 1,... , n. The distri-
bution of (X, Y) is denoted by P.

Given a classifier /, we write its empirical error as

(1.2) Ln(f) = Pn{γf < 0) = #{Yif(Xi) < 0,1 < i < n}/n,

and its theoretical error as

(1.3) L(f) = P(yf < 0) - P(Yf(X) < 0).

Moreover, we let

(1.4) Fo(x) = P(Y = 1|X = x)

be the conditional probability of the label Y = 1 if the instance X has value

x. Thus, Bayes rule /* is

(where we just fixed some choice for values x with FQ(X) = 5). The distri-

bution of X is denoted by G.

We consider asymptotics as n —> 00, regarding the sample (Xi, Yί),. . . ,

(Xn, Yn) as first n of an infinite sequence of i.i.d. copies of (X, Y). The distri-

bution of the infinite sequence (Xi, Yί), (X2, Y2),... is denoted by P. Con-

vergence in distribution (law) of a sequence Zn to Z is denoted by Zn —-• Z,

and Λ/"(μ, σ2) denotes the normal distribution with mean μ and variance σ2.
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2. A simple base classifier

In this section, we assume that X = R, and we consider the set of base
classifiers

ha(x) = 2\{x > a}- 1,

i.e.,

(2.1) H = {ha: α G R}.

In this case Fo = P(Y = 1\X = •) is some function on R. If FQ(X) is an
increasing function of x, then large values of x make the value Y = 1 more
likely. It then indeed makes sense to predict the value Y = 1 when x exceeds
a certain threshold α.

Let us use the short-hand (abuse of) notation

(2.2) Ln{a) = Ln(ha) = Pn(yha < 0),

for the empirical error using the threshold α, and

(2.3) L{a) = L{ha) = P(yha < 0),

for its theoretical counterpart.

The problem is now how one should choose α. The best threshold is the

theoretical minimizer

αo = argminL(α).

But L is not known. However, we can use the sample (XL, YI), . . . , (Xn, Yn)
to estimate L.

2.1. Parametric models

Note that (X\,Y\),..., (Xn,Yn) consists of two samples, one sample with
Yi = 1, and one with Yi = — 1. In the classical setup (see Duda and Hart,
1973), a parametric form for the distribution of both samples is assumed.
For instance, let us suppose that the sample with Yi = 1 is normally dis-
tributed with mean μ and variance σ2, and the one with Yi — — 1 is normally
distributed with mean v and the same variance σ2. Consider the situation
where μ>v. Write P(Y = 1) = 1 - P(Y = -1) = p. Let φ be the standard
normal density. Then

= Pφ([x-μ]/σ)

x ~ μ]/σ) + (1 - p)φ([x - u]/σ)'

It is easy to see that Fo is a distribution function and that its density /o,
with respect to Lebesgue measure, exists.
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The median

of Fo, minimizes the probability of misclassification L(a), over a G R. When
p = ^, one obtains αo = (μ + ^)/2.

We may estimate αo using the maximum likelihood estimator. This esti-
mator converges with rate yfn and is asymptotically normal.

Another classical approach to the classification problem is to assume that
FQ is the logistic distribution function with shift parameter αo:

(2.5) F0(x) = l

One may (again) use the maximum likelihood method to estimate αo Note
that (2.4) coincides with (2.5) when we take λ = (μ — ̂ )/σ 2, and αo =
(1/λ) log(p/(l — p)) + (μ + ιs)/2. However, in the two normal samples model,
the distribution G of X clearly depends in the parameters μ, v, p (and σ 2),
and hence on the parameter αo, whereas in the logistic regression model, G
is treated as completely unknown.

2.2. Cube root asymptotics in classification

In this subsection, and throughout the rest of the paper, we do not assume
a parametric form for the distribution and thus for the function Fo We
consider the direct approach as advocated by Vapnik (1995), where the clas-
sification rule is solely based on minimizing the error in the sample. For our
simple classifiers this means taking the empirical risk minimizer

άn = argminL n(α).
α

We will derive the asymptotic distribution of ά n . Moreover, we show
that an is the nonparametric maximum likelihood estimator of αo, when FQ
is known to be a distribution function.

We first need to show that when αo is uniquely defined, the estimator άn

converges to αo

L e m m a 2.1. Suppose that L(ά) has a unique minimum at αo, and that L(-)

is continuous. Then άn —> αo almost surely.

We now establish that under regularity conditions, άn converges with

rate n 1 / 3 to αo, and derive the asymptotic distribution. This result follows

from an application of Kim and Pollard (1990). Such an application can also

be found in Biihlmann and Yu (2002), where another classification problem

is studied.

Let W(t): t G R be a two-sided Brownian motion, and

- t 2 ] .
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Theorem 2.1. Suppose

{ <\, ifx<a0

= i, ifx = a0

> o, if x > an.

Assume moreover that Fn has derivative fn at an and G has derivative g at

an satisfying g{an) > 0. Then

(2.6) n1/s(άn - α0) -^C [/o(αo)V'g{ao)]~
2/SZ.

It may be verified that the conditions of Theorem 2.1 imply that L(αo)

is Bayes risk.
The asymptotic distribution of the empirical prediction error Ln(άn) now

follows easily, and also the asymptotic distribution of L(αn), the prediction
error of the empirically best classifier. Let us summarize these asymptotics
in a corollary.

Corollary 2.1. As a by-product of the proof of Theorem 2.1, one finds that
under its conditions,

(2.7) n2'\Ln{an) - Ln(a0)) ± - (ψj^\) max[W(t) - t2}.

Moreover,

(2.8) MLn(&n) - L(άn)) = V^(Ln(άn) - L(α0))

= V^(Ln(a0) - L(αo)) + Op^"1/6) ^ λί(0,L(aQ)(l - L(ao))),

and

(2.9) n^(L(άn) - L(αo)) - £

For practical purposes, result (2.8) is of interest, because it gives you for
example a 95% upper bound for the prediction risk of the estimator. Prom
a theoretical point of view, (2.9) is also of importance, as it shows that the
prediction risk of άn is very close to the Bayes risk, the difference being in
order much smaller than n" 1 / 2 .

We end this section by showing that the empirical risk minimizer is a
nonparametric maximum likelihood estimator. Note first that FQ is in whole
or in part an unknown function. If it is known that FQ G Λ, with Λ be-
ing some given class of functions, one may estimate it using the maximum
likelihood estimator

(2.10) Fn = argmax{]ΓlogF(X i)+ £ log(l -
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In the case where Λ is the class of all distribution functions, the (nonpara-
metric) maximum likelihood estimator Fn is studied in Groeneboom and
Wellner (1992).

One may call the approach where the classification rule is based on an
estimator of Fo the function estimation approach. It is known that function
estimation is generally harder than classification (see Devroye, Gyorfi and
Lugosi, 1996; Mammen and Tsybakov, 1999). We now show that in our
case, the two problems actually give the same answer. Theorem 2.2 namely
shows that the maximum likelihood estimator α* = F~1(l/2) (defined as
ά* = inf{x : Fn(x) > 5}) can be chosen to be equal to άn. In other words,
minimizing the classification error using classifiers based on thresholds is the
same as classifying Y = 1 when 2Fn — 1 > 0. The latter is the classifier
which fits the data best (in, e.g., least squares sense).

Theorem 2.2. Let Fn be the maximum likelihood estimator defined in

(2.10), where Λ is the class of all distribution functions, and ά* = inf{x :

Fn{x) > \}- Then ά£ minimizes Ln{a), i.e., we may take άn = a*n.

3. Averaging classification rules and complexity

Let Ή be a set of base classifiers; each one is a map h: X —> {—1,1}. From
7ΐ, we form the set of all convex combinations C = conv(Tiί) (the convex hull
of H). We studied the following example in Section 2:

Example 3.1. Let X = R and let

U = {h(x) = 2\{x > a} - 1 : a G R}.

Then it is easily seen that C = conv(Tΐ) is a class of functions / which
increase from —1 to 1. In fact, it is the class {2F — I: F e A} where Λ is
the set of all distribution functions, as in Theorem 2.2.

Now, in Example 3.1, the base classifiers are given by half-intervals, and

half-intervals form a Vapnik-Chervonenkis, or VC, class.

Definition 3.1. A collection Λ of sets is called a VC class if for some finite

V, and for all n > V and all n distinct points x i , . . . ,xn, not all of the 2 n

subsets of those points can be written in the form A Π {xi,..., xn} for some

A G Λ. Then V is called the VC dimension of Λ.

It is not within the scope of this paper to give a full account of the

concept of VC classes. More details can be found in the original paper

by Vapnik and Chervonenkis (1971) and later work, e.g., van der Vaart and

Wellner (1996) or van de Geer (2000) and the references therein. The concept

plays an important role in classification, because when using base classifiers

Ή = {2\A - 1 : A G A} given by a VC class A, the empirical risk minimizer
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over Tί will not overfit the data. The VC dimension V of 7ί is the size of the
largest set of points that can be classified in all possible ways, by choosing
a suitable h EH. So as soon as the size n of the data set is larger than F,
a perfect fit is no longer possible and one starts learning from the data.

Let us now put the situation of Example 3.1 in a more general setting.
The following terminology is used in, e.g., Dudley (1984, 1999).

Definition 3.2. The convex hull of a Vapnik-Chervonenkis class (VC class)
is called a VC hull class. A class of functions T is called a VC major class
if the collection of major sets {{/ > £}, / G T, t G R} is a VC class.

One may say that a VC class is relatively simple or small. In many
classification problems, one starts out with base classifiers Ή given by a
VC class, and then forms the convex hull C. The classification rules based
on C are now in general no longer given by a VC class, because Dudley
(1984, 1999) shows that VC major implies VC hull, but not the other way
around. In other words, by averaging classification rules, one may lose the
VC property. Let us illustrate this in some examples.

Example 3.2 (continued). The class of majors of the sets of increasing
functions C is again 7ί. So in this example, averaging leaves the complexity
untouched.

Example 3.3. Let X = R and let

(3.1) H = {h(x) = 6(2l{x > a} - 1), 6 G {-1,1}, a G R}.

Then C = conv(H) is a class of functions / with — 1 < / < 1 and with total
variation TV(/) = / \df\ < 2 (see also Example 3.5). However, it is easy
to see that given n distinct points x\,..., xn, any of the 2n subsets of those
points can be written in the form {/ > 0} Π {#i,..., xn} for some f E C. So
{{/ > 0} : / G C} is far from being VC. Thus, when G is continuous, the
empirical risk minimizer based on C will overfit the data.

Example 3.4. Let X = R 2 and let

H = {h(x) = 2\{x > a} - 1 : a G R2},

where {x > a} = {x — (ξi,^) : ζι ^ αii£2 > 2̂}̂  Q* — (^1^2). In this case
C = conv(Ή) is a rescaled set of two-dimensional distribution functions. One
may check that {{/ > 0} : / G C} is a class of monotone sets (a set A C R 2

is monotone if (ξi,ξ2) € A implies (ξι,ξ2) E A for all £1 < ξi, £2 < &)• The
class {{/ > 0} : / G C} is not VC: if # i , . . . ,xn are on a decreasing line
{x = (£1,̂ 2) £2 = g(ζi)}, 9 decreasing, then any subset of # i , . . . ,xn can
be written in the form {/ > 0} Π {xi,..., xn} for some / G C.
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Examples 3.3 and 3.4 show that averaging may increase the complexity
substantially. But so far, we have not quantified what we mean by complex-
ity. It can be described in terms of covering numbers and entropy.

Definition 3.3. Let (Γ, r) be a (subset of a) metric space (T is a set and τ
is a metric on Γ). The e-covering number 7V(e, T, τ) is the minimum number
of balls with radius e, necessary to cover Γ. The e-entropy is H(e,T,τ) =

Let Q be some finite measure on X. A class of bounded functions T on
X can be considered as a subset of the metric space LP(Q), 1 < p < oo. We
then write Np{e^Jr^Q) (Hp(e^JΓ^Q)) for its covering number (entropy).

The following theorem from Ball and Pajor (1990) shows that a VC hull
class is typically infinite dimensional. It derives the entropy of C = conv(Tΐ)
from the covering number of 7Y, in the case TL is of finite metric dimension d.
Recall that a VC class with VC dimension V is of metric dimension 2(V — 1)
when considered as subset of L2{Q) (see, e.g., van der Vaart and Wellner,
1996).

Theorem 3.1. Let Q be a finite measure. Suppose that for some positive

constants c and d,

(3.2) 7V2(e,H,Q) < ce~d, e > 0.

Then for some constant A,

(3.3) H2(e,C,Q) < Ae~2d^2+d\ e > 0.

Indeed, a VC class of (indicators of) sets satisfies (3.2), for some c and
d (see, e.g., van der Vaart and Wellner, 1996). By (3.3) we see that the
entropy of the convex hull, which is the logarithm of the covering number,
has still a negative power of e in the bound. It means that C can be infinite-
dimensional.

To overcome the problem of overfitting, it is proposed to use the so-called
margin (see, e.g., Schapire et al., 1998). For a decision rule /, the margin of
an example (x,y) is yf(x). Now, fix a value 0 < θ < 1. If for some decision
function /, Yif(Xi) > θ, we say that the example {X^ Yι) is 0-well classified,
whereas if 0 < Yif(Xi) < θ we consider it as a case where there is actually
not enough evidence (when using a (1 + 0)50% majority rule). We call the
latter case ^-undecided.

Instead of the empirical classification error, consider now the fraction
number of ^-undecided examples

(3.4) Pn(yf < θ).
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We will study a uniform (in / G C) bound for

(This bound will be non-asymptotic, in the sense that it holds for each
n.) Such a bound is of interest, because if we take the classifier / which
maximizes the Pn(yf > 0), a uniform bound may be used to evaluate its
prediction error (see Freund, Mansour and Schapire, 2001, and see also Sec-
tion 4).

The following definition from Schapire et al. (1998) is now of relevance.

Definition 3.4. We say that C forms an e-sloppy θ-cover of C for the measure
Q on A', if for all / G C there is a g in C such that

Q{\f-g\>θ)<e.

We let λί(e, 0,C, Q) be the size of the smallest e-sloppy 0-cover.

Here is a slight extension of Theorem 4 given in Schapire et al. (1998).
Related results are in Kearns and Schapire (1990) and Bartlett (1998).

T h e o r e m 3.2. Letc>0,θ> 0. We have

(3.5) p ( s u p ( P ( y / < O ) - P n ( y / < 0 ) ) > e )

< 2E(Λ/*(e/8,0/2,C,P2n)) exp[-ne2/32].

The theorem can be used to derive uniform bounds by calculating e-
sloppy ^-covers of C = conv(Tΐ) from the VC dimension of 7ί. However, a
direct study of the properties of C, without referring to the VC dimension
of 7Y, may lead to better bounds.

We will apply a uniform bound using the entropy of C, for the sup-norm
on a finite subset of X.

Definition 3.5. Let S C X. Let || \\s be the sup-norm on <S, i.e., \\j\\s =
suPxeS \f(x)\- The entropy for the sup-norm of C restricted to <S is

(3.6) Hoo(θ,C,S)

Moreover, let

Hn{θ,C) = s u p ί t f o o ^ , C , { x i , . . . , x n } ) :xi,...,xn€X}.

One easily sees that

\ogλr{e,θ,C,Pn)<H00(θ,C,{X1,...,Xn})

<Hn(θ,C), θ>0.

It is now not difficult to establish the following lemma.
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Lemma 3.1. We have for all δ > 0,

(3.7) p(sup(P(y/ < 0) - Pn(yf < θ)) > en(θ)) < 5,

where

(3.8) €n(θ) = 8 J i \H2ΪI(Θ/2, C) + log | 1 .

Example 3.5. Let X = R. Let TV(/) = / \df\ be the total variation of a
function / on R. Consider the class

(3.9) CB V = {/ : X - [-1,1] : TV(f) < 2}.

Recall that if TV(/) < 2, we may write / as / = f\ — f2 + c, where f\
and f2 are increasing functions with — l < / ^ < l , f c = l,2, and where c
is a constant. The entropy for the sup-norm H^^CBYIX) is infinite (see
Clements, 1963). The entropy /fn( , CBV) can be bounded using, e.g., a result
from van de Geer (2000).

Lemma 3.2. We have

(3.10) Hn(θ,CBY) <ϊ login+1\ θ > 0.

Corollary 3.1. For the class of functions of bounded variation CBV > we have
for all δ>0,

(3.ii) P ( / ^ P (p(yf ^ °) - p^(yf ^θ)) > en(θ)) < δ,

where

(3.12)

4. Maximizing the number of examples with large enough margin

Recall that the margin of the decision rule / at the example (x, y) is defined
as yf(x). Let C be a given class of classifiers and θ > 0 be a given number.
In this section, we propose to maximize, over f £ C, the quantity

Pn(yf>θ),

or equivalently, to minimize the number of examples that are either misclas-
sified or ^-undecided. As decision functions we take the class of functions
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CBV with total variation bounded by M. It turns out that this reduces the
optimization problem to finding optimal thresholds. We let

that is, we take M = 2 to simplify the exposition, and to be sure that the
base classifiers ha(x) = 21{x > a} — 1 are in CBV Moreover, we let X — [0,1].

Example 3.3 shows that the majority votes based on CBV is not VC.
Indeed, it can be easily seen that when G is continuous, the empirical risk
minimizer over CBV will yield a perfect fit, i.e., then overfitting occurs.

Lemma 4.1 illustrates that maximizing the number of examples with
large enough margin, over decision rules / G CBV? instead of empirical risk
minimization over the same / G CBV> is actually a kind of regularization
method. In the empirical risk minimization problem, the original class CBV
is replaced by a smoother version where the functions are not allowed to
have too many sign changes.

Lemma 4.1. Suppose 0 < θ < 1 and the class of base classifiers is

, κ+1

(4.1) H = < h(x) = 2_\ frfcl{αfc-i < χ < ak}j

0 = αo < < &κ < &K+1 — 11 (pi j j ̂ κ+i) £ {~~ 1 J 1}

(4.2) K =

Then

minPn(yh < 0) = mm Pn(yf < θ).

We note that when 0 = 1, then in (4.2) K = 1, i.e., the class H in (4.1) is
the class of base classifiers ha based on only one threshold a. This classifier
ha is either of the form: classify y = 1 if x > α, or of the form: classify y = 1
if x < a. So we are back in the situation of Section 2, albeit that we now
do not impose a priori the restriction that the large values of x (rather than
the small values of x) make y = 1 more likely.

Recall now the bound we presented in Lemma 3.2. Lemma 4.1 shows
that looking directly at the maximizer of the margin asks for a uniform
bound, not so much over / G CBV, but rather over all base classifiers with
at most K = [1/0J thresholds. Lemma 4.1 also indicates that the choice
of the parameter θ in the margin is related to the amount of regularization
that one is imposing. One may consider a data dependent choice for θ.
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Here, an extension of Lemma 3.2 can be valuable. A uniform in θ version
of (3.7) (which can be derived by considering a finite grid of values θ E
{1/n, 2/n,..., 1}) suggests to maximize the margin over all / E C and θ >
1/n, but applying the penalty en(θ) (apart from logarithmic factors) of the
form en{θ) « y/l/(nθ). In Lemma 4.1, this corresponds to empirical risk
minimization with K thresholds and a penalty of the form « yjK/n (again
apart from logarithmic factors).

5. Conclusion

We studied the problem of estimating a classification rule from a set of
training examples. In the simple case of classifiers with just a threshold, i.e.,

(5.1) H = {ha(x) = 21{x > a} - 1 : a E R},

we briefly considered some parametric models, where the maximum likeli-
hood estimator of αo (the value of a that gives minimal prediction error)
generally converges with rate y/n. We also considered the nonparametric
model, and the estimator άn, defined as the minimizer of the misclassifica-
tion error (error in the sample). In the case that Fo = P(Y = 1 | X = •) is
known to be a distribution function on R, we proved that the empirical risk
minimizer an can be chosen equal to the nonparametric maximum likelihood
estimator. In the nonparametric set up, the convergence is slower, namely
n1/3. But this is the price to pay for not assuming a parametric model but
just using the data.

The ideas of Section 2 can be extended to a higher-dimensional instance
space, say X = Rd, where instead of thresholds, one considers separating
hyperplanes {x : aτx < 1}, a E Έid. This is related to assuming a single
index model for the regression of Y on X, i.e.,

where αo is an unknown parameter, and Fo is an unknown (monotone) func-
tion. Minimizing the empirical classification error over the base classifiers
ha(x) — 2\{aτx < 1} — 1 will again lead to cube root asymptotics.

We compared the complexity of the set H with its convex hull C in some
particular cases. Using averaged classification rules, the difference between
theoretical and empirical errors can be very large. We considered the case of
a class of functions of bounded variation as an example. Here, the empirical
risk minimizer will generally overfit the data.

We also considered uniform bounds in the spirit of Schapire et al. (1998),
which are, e.g., of interest when maximizing the margin.

In the particular case of bounded variation functions, we showed that
maximizing the number of examples with large enough margin is equiva-
lent to empirical risk minimization using the base classifiers which have K
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thresholds where K = [l/θ\. This puts the idea in the light of complexity
regularization.

As explained in Schapire et al., the AdaBoost algorithm tends to increase
margins. Directly maximizing the number of examples with large margin
can sometimes be of too large computational complexity, in which case the
AdaBoost algorithm is a good alternative. Another alternative is density
estimation or curve estimation. For example, using averaged classifiers, one
may also first choose the one which fits the data best in least squares sense,
and then use the majority vote rule. When considering averaged classifi-
cation rules in the class CBV> the rate of convergence for the least squares
estimator (when also Ho = 2FQ - 1 is in CBV) is again of order n 1 / 3 (see,
e.g., van de Geer, 2000). This indicates that the rate of convergence of the
prediction error of corresponding classification rule to Bayes prediction error,
is also of order n 1 / 3 . The latter is much slower than the rate of order n 2 / 3

we found in (2.9) of Corollary 2.1. This would confirm indeed that although
function estimation can be computationally easier than classification, it is
theoretically much harder.

APPENDIX

Proofs

Proof of Lemma 2.1. Since {{x : x > a} : a G R} is a VC class, we know
that

sup \Ln(a) — L(a)\ —> 0, a.s.

(see, e.g., Pollard, 1984). So,

0 < Ln(a0) - Ln(άn) = L(αo) - L(άn) + o(l) < o(l), a.s.

so that L(an) —• L(αo), a.s.. By the uniqueness of αo and the continuity of
L, this gives άn —> αo, a.s.. D

Proof of Theorem 2.1. We have

L(a) = P(yha < 0)

= ί P(Y = l\X = χ) dG{x) + ί P(Y = - 1 I X = x) dG(x)
Jχ<a Jχ>a

= ί (2F0(x) - 1) dG(x) + / (I - F0(xj) dG(x).
Jχ<a J

Differentiating this with respect to a and putting the result equal to zero
yields
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(2Fo(αo)-l)s(αo) = 0.

By straightforward calculations, we find

P(yha < 0) - P(yhao < 0) = (α - αo)
2/o(αo)^(αo) + o(\a - α o | 2 ) .

Consider now the process

Wn(r) = V ^ W y ^ + ^ - i ^ < 0) - ^n(y/ϊαo < 0)}

where

Vn(yha < 0) = V^[^n(y^a < 0) - P(yΛα < 0)].

The covariance structure of vn can be calculated easily. We have for

&o < d\ < 0,2,

= P{a0 <X<au Y = 1) + P(a0 <X < auY =-1)

- [P(yhai < 0) - F(yΛβ0 < 0)][P(yΛβ2 < 0) - P(yhao < 0)]

= ί F0(x) dG(x) + Γ (1 - F0(x)) dG{x) + o{\ax - αo|)
J ao Jao

dG(x) + o(\aι - αo |) = (αi - αo)p(αo) + o(|αi - αo |).

Similar expressions can be found for α2 < a\ < αo For <22 < αo < a\ (or
αi < αo < 02) the covariance is o(\a\ — α2|). Thus, for 0 < ri < T2 or
T2 < τ\ < 0, one has cov(Wn(τi),>Vn(τ2)) = τip(αo) + o(l), and otherwise
the covariance is o(l).

Invoking the theory of Kim and Pollard (1990), we find

Wn(τ) ^ W(τ), r e R,

where the convergence in distribution is to be understood as convergence in

distribution of Wn as a stochastic process, and where

with W a two-sided Brownian motion.

Let fn = n 1/ 3(ά n — αo). Applying the arguments in Kim and Pollard

(1990), we obtain

fn = argminPn(y/ιαo_μn-i/3τ < 0)

= argmax[-Wn(τ) - Mao)g(ao)r2 + o(\τ\2)}
T

—> aigmax[y/g(ao)W(τ) - fo(αo)g(αo)r2}

= argmax[VF(τ) - f o ^ 2
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Now, use the time change t = τb2/3, where b — /o(«o)\/5r(βo) Then
W{τ) = W(t/b2/3) =c W^/b1/3. So

Thus,

argmax[W(τ) - bτ2} = &-2/3argmax[W(ί) - ί2] =
7" t

where

Z = argmax[W(ί) - t 2 ]. D

Proof of Theorem 2.2. Recall that F n maximizes

Vi=l Yi=-l

over all F G Λ, where Λ is the class of all distribution functions. This is
equivalent to minimizing

n

over H = 2F - 1 , F GΛ (see Robertson et al., 1988).

Let X(!) < ••• < X(n) be the order statistics and let Y^,.. . ,Y(n) be
the corresponding labels. For ease of notation, let us—only in this proof—
simply write X\ < < Xn for the order statistics, with corresponding

labels yi , . . . ,y n .
It is known that Fn only jumps at the instances XL, . . . , Xn (see Groene-

boom and Wellner, 1992). So

where a = ( ά i , . . . , ά n ) G 5, and where S is the simplex

Define now Λj(x) = 21{x > Xj} — 1. This is the base classifier using

threshold Xj. Then i ϊ n = 2Fn — 1 = Σ j = i ^ ^ i Thus ά minimizes
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over all a G S.
It is moreover not difficult to see that α* = Xy, where k* minimizes

Pn{hj - Hn)
2

over j G {1,..., n}, and that άn can be chosen in {XL, . . . , Xn}, in which
case άn = Xy where k minimizes

over j G {l,...,n}.
Now, since X^^=1 ô j = 1 for α G 5, we have

The derivative of the right hand side with respect to α^ is

2Pnij2aj(y-hj)(y-hk)\

so that Hn is given by

2Pn{{y-Hn){y-hk))\-λ * = l,...,n
I = Λ i t OLk > U,

(Rockafellar, 1970). Here λ is the Lagrange multiplier for the restriction that
]C?=i otj = 1. We know moreover that Fn jumps at Xy (by the definition

of F - 1 (1/2)), i.e., ay > 0.
We may conclude for each j ,

Pn(y - hj)2 = Pnihj - Hn)
2 - Pn(y - Hnf + 2Pn((y - Hn){y - hj))

> Pn(hj - Hn)
2 - Pn(y - Hn? + λ

> kminnPn(hk - Hn)
2 - Pn(y - Hnf + X

= Pn{hy - Hnf - Pn(y - Hn)
2 + X.

Write this as

where
C = Pn{hy - Hn)

2 - Pn(y - Hn)
2 + X.

It follows that
Pnfy - hL? > C.
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For the case j = k*, we find

Pn(γ-hy)2 = C.

In other words, fc* is a minimizer of Pn(y — hj)2 over j G {1,..., n}. D

Proof of Lemma 3.1. Prom Theorem 3.2, we know that,

p(sup(P(y/<0) - Pn(yf<θ)) > en(θ)) < 2exp[H2n(θ/2,C) - ne2

n(θ)β2]
κfec '

<2exp[-nen(<9)2/64] < δ,

since ne£(0)/32 > 2H2n(θ/2,C) and ne2

n{θ)/U > log(2/5). D

Proof of Lemma 3.2. Let T be the class of all monotone functions / on R
with 0 < / < 1. It is shown in van de Geer (2000, Lemma 2.2) that

θ>0.

The result easily follows from this. D

Proof of Lemma 4.1. We first show that for any / G CBV there exists an
h EH such that

(A.I) Pn(yh < 0) < Pn(yf < θ).

It is clear that we may restrict attention to all classifiers / G CBV with
\f(x)\ < θ, and that maximizing Pn(yf > θ) amounts to maximizing the
number of examples (Xi,Yi) with f(Xi) = ΘY{. Now, suppose 0 < αo <
αi < < aκ < 1, and that \f(ak) - /(α f e_i)| = 2(9, k = 1,... ,K. Then
obviously, if / G

K

2 > τv(f) > ΣI/K)

so we must have K < 1/θ.

Suppose \f{x)\ < θ for all x in a certain interval, say (α,6) C [0,1].
Then according to /, instances X{ that lie in (α, b) do not contribute to the
number of #-well classified examples. Thus, choosing / monotone on [α, b]
will give the smallest total variation and has no impact on the number of
#-well classified examples.

Since according to /, Xι is ^-undecided if |/(^Q)| < #, choosing |/(JQ)| =
#, for all i = 1,... ,n is optimal. This is indeed possible by the following
argument. Suppose / is monotone on [α, 6]. The total variation of / is then
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not changed if we change the values of f(x) for x G (α, 6), as long as we do
not disturb the monotonicity. Therefore, we may choose f(x) = f{a) for all
x G [α,c) and f{x) = f{b) for all x G [c,6]. It follows from (A.I) that

mmPn(yh < 0) < min Pn(yf < θ).
heH /GCBV

On the other hand, HΘ = {θh : h e H} C CBv so that

min Pn(yf < θ) < min Pn(yf < θ)

= minPn(y/i< 1) = minPn(y/ι < 0). D
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