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A setting of the change-point estimation problem with a "smooth" change is investigated.
A special class of such models, where the change is denned as a gradual shift in the
parameter, is considered. We show that these models can be analyzed via explicitly given
procedures. It is demonstrated that M-estimators can consistently estimate the change
in the parameter structure as well as the additional unknown parameter. Under mild
regularity assumptions, asymptotic normality and asymptotic efficiency of these procedures
are established.

1. Introduction

The traditional setting of the change-point problem assumes that the change
is abrupt and permanent. Clearly there are situations where this assumption
is not met, and it is desirable to estimate the time moment at which the
stationary character of observations has changed, or to test the hypothesis
that such a change has indeed occurred. The possibility of simultaneous
consistent estimation of the parameters characterizing the change of means
has been demonstrated by Yao and Au (1989), who considered nonlinear
regression models with step functions describing the evolution of the mean.
Huang and Chang (1993) studied models with smooth change intervention
when the observations during the change period have the distributions which
are mixtures of the pre- and after- change distributions. Rukhin and Vajda
(1997) investigated a general nonlinear regression model for the change in
the mean function. See Brodsky and Darkhovsky (1993) and Csorgo and
Horvath (1998) for further references.

Here we study a model with a smooth change in the parameter. As in
Huskova (1996) minimum contrast estimators are used for estimation of the
change rate.

2. The model

The following model relates the change estimation to nonlinear parameter
estimation. Consider a parametric family of probability distributions P#,
θ G Θ, Θ C RP with θ being an open convex subset of Euclidean space. Let
/(• I θ) denote the corresponding densities. We assume regularity conditions
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specified, for instance, in Section 7, Chapter 1 of Ibragimov and Hasminski
(1981). These conditions guarantee differentiability of the expected values
of functions with finite second moment, and they imply the existence of the
Fisher information matrix 7(0) = EΘ£(X | Θ)[£(X | θ)\τ with t{x \ t) =
d\ogf(x I t)/dt = Vlog/(x I ί), when f(x \ t) is a differentiate function
of t. Actually in Proposition 3.1, it is assumed that this function is twice
differentiable, although a milder condition concerning weak differentiability
in t of s(x I t) = y/f{x I i) suffices. In the latter case the information matrix
can be defined as I(t) = 4 Js(x \ t)[s(x \ t)]τdx, which is supposed to be
nonsingular.

In our setting the observations x^ j = 1,... ,n, are independent with
Xj having a distribution PJ+φ^β. Here φ(j) — φ(j,n) is a monotonically
increasing sequence in j for any fixed n; for j fixed, φ(j,n) —> 0 as n —> oc.
The form of the sequence φ(j) is supposed to be known. In the application to
volumetric analysis discussed in Section 4, φ(j,n) is proportional to F(j/n),
where F is the distribution function on (0,1).

Our goal is to estimate the parameters 7 and θ. In the situation where
the initial parameter 7 is given, we derive an explicit form of asymptotically
normal and efficient estimates of the parameter θ. When 7 is unknown, these
estimators have a less explicit form, but still can be easily implemented in
practice.

3. M-estimators: consistency and asymptotic normality

3.1. Known parameter 7

Let us start with the situation where 7 is known. Then θ is a common
parameter in a sequence of independent observations; it is assumed that the
maximum likelihood estimator,

θ(x1,..., χn) = arg max ^ log f(xjI7 +

1

is uniquely defined.

To prove the asymptotic normality and asymptotic efficiency of this es-
timator a variety of conditions have been developed. The following assump-
tions A.I-A.IΠ translate conditions (4.1)-(4.4) from Section 4 of Chapter III
in Ibragimov and Hasminski (1981). More general conditions which guaran-
tee the asymptotic normality of the maximum likelihood estimator are given
by LeCam (1986), Section 16.3 and by Strasser (1985), Section 80.6.

Denote by 1A(U) the indicator function of an event A.
A.I. With

1

denoting the Fisher information matrix about θ, for any e > 0 and u e Rp
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n

Eθiψj^J-HjiX \ 7 + φjθ)}2

J X lfeooM Λ n 1 ^ * \Ί + Ψjθ)\ = 0.

A.II. With \\A\\ denoting the spectral norm of matrix A,

sup \\J-\n,θι)J2{n,θ2)J-\n,θι)\\ < oo
71,01,02

and

limsuptr (J^ 2) = 0.
n—> oo

A . I I I . For a sequence ξn —> oo with s(x | t) = Vs(x \ t) = V^//(x | £),

s u p s u p —ΐ2 J ] / [ [S(x I 7 + <^ (0 + J ^ 1 ? / ) ) -s{x\η + ψjθ)]T J~ι u] dx

and for some β > 0

ί
/ W I 7 + ̂ ' ^ + J - l u ) ) - 5 ( ^ I 7 + Ψjθ)]2 dx > 0.Σ /

= 1 ^

Under conditions A.I-A.IΠ the random vector Jn[θ — θ] is asymptotically
normal with zero mean and the identity covariance matrix I. Also θ is
asymptotically efficient in the sense that for any unimodal symmetric loss
function W

lim EθW(jn{θ-θ)) = {2π)~p/2 ίW(u)exp{-\\u\\2/2}du
n-^oo J

inf EΘW(JJδn - θ))

for any regular sequence of estimators δn (Ibragimov and Hasminski, 1981,
Chapter III, Section 4, p. 191).

In particular, the following matrix inequality holds,

lim inf JnEθ(δn - θ){δn - θ)τJn > I.
n—>oo

Thus, the maximum likelihood estimator (as well as the Bayes estimator
against a smooth positive prior density) is asymptotically efficient as it has
the "smallest" limiting covariance matrix.

The following (approximate maximum likelihood) estimator possesses the
same properties under the following conditions. Denote by D(x | 7) the
Hessian (the matrix of second partial derivatives) of the function f{x \ 7).
Note that in one-dimensional case the following condition (3.1) means that

I f{x\Ί)
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Proposition 3.1. Assume that A.I-A.III are valid and for any 71

(3.1) / D(x I ΊI)£(X I 7) dx

Then, under the conditions

( 3 2 )

and

(3.3)

ί/ie estimator of θ

3 J 3

is asymptotically normal and asymptotically efficient.

Proof. Taylor's formula with remainder shows that for some 71

Eθt(xj I 7) = ί f(x I 7 + φόθ)£{x I 7) dx

= ί f(x I Ί)£(x \Ί)dx + Ψj \ ί Vf(x I Ί)t(x I 7) -

+ ^-θτ / D(x I 7i)£(α; | 7) dx \θ

Here V/(x | 7) = /(x | 7)^(0; | 7) is the gradient of /, and the term O(φ?j)

is uniform in j , i.e., it is bounded above by Cφ^ with a constant C which

does not depend on j (but depends on θ and 7.) Similarly, the covariance

matrix of ^(#j|7) has the form

where the term 0{ψj) is uniform in j. Thus, according to (3.2)
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and

Cov(ί) = *

Therefore under condition (3.3), Cov(ί) —> 0, and because of A.I-A.IΠ the
Feller-Lindeberg Theorem applies. Therefore, [ Σ i > j ] 1 / 2 j r l / 2 ( 7 ) β - #], as
well as Jn[δ—0], are asymptotically standard normal, and δ is asymptotically
efficient. D

3.2. Unknown parameter 7

If 7 is unknown, one has to estimate it. For this purpose we introduce the
following condition.

(C) For a sequence of i.i.d. random variables y^ j = 1,..., n, with yj having
distribution P 7, there exists a consistent estimator 7*(yi,... , yn) of 7?
which is robust in the following sense: when the distribution of Xj is

j 5 where maxj Δj —> 0, then 7*(#i,..., xn) —> 7o in probability.

Under general regularity conditions similar to those in Section 65 of
Borovkov (1998), M-estimators satisfy the condition (C). To see that, let
p(x I 7) be a contrast function, i.e., for all 7 Φ 70

Elop{X\Ί) < EΊoP(X\Ίo).

We will assume that p(x \ 7) is uniformly integrable and continuous in 7 for
almost all x. Let Δ(7) denote a ball of radius Δ centered at 7.

To verify condition (C) we need the following assumptions.
C.I. For any Δ > 0 one can find e > 0 such that

min EJp(X I t) - p{X I 7)] < -e.

C.II . With pA(x I 7) = maxίGΔ(7) P(x I *)' ̂ o r a n ^ α > ^ there exists
Δ > 0 such that for all \t — j \ > a

EΊO[pA(X\t)-p(X\Ίo)}<-e<0.

C.III. For any positive Δ and any t G Θ

n1
l i m s u p - y2EΊoiPA(xj \ t ) ~ P{χj l7o)]l(r,oo)[pΔ(^j I <) ~ P(xj I To)] = 0 .

n—>oo
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Define the M-estimator 7* as the maximizer of Σ j = i P(xj I 7)'

n

7*(zi , . . . , xn) = arg max ^ p{xόI7).

This estimator is known to be (strongly) consistent when # 1 , . . . ,x n form

a random sample. It is also asymptotically normal under mild regularity

conditions on p(x | 7).

L e m m a 3.1. If independent random variables Xj,j = l , . . . , n have dis-

tributions P 7 o + Λj with maxj Aj —> 0, then under conditions C.I, C.Π and

c.iπ
7* —̂  7o almost surely,

so that condition (C) is satisfied.

Proof. We will show that for any neighborhood α(7o) of 70 with probability
one

limsup sup — ̂ ^[p(xj | 7) — p(xj \ 70)] < — c

for some positive e. This will prove Lemma 3.1.

For the Δ from condition C.Π, one can find a finite covering of Θ \ α(7o)

by balls Δ(t / c), k = 1,. . . , K. Then

^ n 1 n

sup - Yyp{xj I ηf)-p(xj I 7o)] < max - J ^ sup [/?(xj- | t) - p(xj- | 70)]
"vd- rv i'•vnλ ιv . K i t .

n

< max — 2 . sup [p(xj \ t) — p(xj \ 70)].

Since

( ^ n ^ n

sup -^2[p(xjh)-p(xjho)]> sup -

(
n 1 \

J ^ sup -[p(xj I 7) - p ( ^ I 70)] > 0 ),
j=l 7^«(7o) n J

it suffices to show that for any t £ α(7o)

(3.4) p

/ I \
- ΣlpA(χj I *) - p(*j 170)] > 0 - 0.
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Notice that our conditions imply that for any t ^ α(7o) one can find Δ > 0
and N > 0 such that for some positive e

1
limsup- y2EΊo[pA(xj I t)-p(xj I 7o)]l(-τv,oo)(pΔ(^ I t)-p(xj | 7o))<-e.

The strong law of large numbers implies that

/ I n \
M ~ Σ ^ Δ ( x i I *) ~ P(xi I 7o)]l(-τv,oo) (pA(xj I *) - P(xj I To)) > 0 -^ 0,

which proves (3.4). D

Now we turn to the estimation problem of (7, θ). Our main result for the
case where 7 is unknown is the following.

Theorem 3.1. Under condition (C), let the independent random variables

Xj, j = l , . . . , n have distributions PΊ+ψjβ. There exists a consistent esti-

mator (7*,$*) of the pair (7,0) (explicitly defined in (3.5) below). Under

assumptions A.I-A.IΠ with θ replaced by (7,0), this pair can be chosen to

be asymptotically normal and asymptotically efficient.

Proof. According to condition (C) with Δj = ψjθ, j = 1,. . . , ra, one can find
a consistent estimator 7* = 7*(#i , . . . , xm) on the basis of the first m = o(n),
m —•> 00, observations x i , . . . , x m . This estimator can be used as a plug-in
estimate of 7 in the rule δ from Proposition 3.1, i.e.,

^3 ^3 j=m+l

Then the resulting estimator θ* is also consistent, and asymptotically normal.

We use this pair (7*,$*) as a one-step approximation to the likelihood

equation in the Newton-Raphson method. Namely, put

7 *
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Then

7, θ)L\n | 7, β)L(n|7 *) ( £ I

i7,«oΣ

Let 7, θ denote the maximum likelihood estimators. Then because of
the known results concerning the asymptotic behavior of maximum likeli-
hood estimators under local asymptotic normality conditions (Theorem 8.1
of Chapter I in Ibragimov and Hasminski (1981)), the estimators 7, θ are
jointly asymptotically normal, and

L "(»I,,«(2:2)-L-/»(»W..,Σ

It follows that

and L1//2(n | 7 ,β) ( L i ) is asymptotically normal with zero mean and

identity covariance matrix. D

Consistency part of Theorem 3.1 holds for M-estimators of (7,0), which
are defined as the solution of the equation, ΣjΨj(xj I 7 + Ψjθ) ~ 0? a s

well as for the M-estimators, which maximize Σj Pj(xj I 7 + Ψjθ) When
independent observations xi,... ,xn have different distributions for different
contrast functions pj or ψj, it is assumed that for (7,0) 7̂  (70, ô)>

xj I 7 + ψjθ) - Pj(Xj I 70 + Ψ3Θ0)] < 0,

or the (unique) solution of EΊo+φjθoψj(Xj \ 7 + ψjθ) = 0 is (7,(9) = (7o,#o)

More precisely, for M-estimators with s = (7,^), let

= sup
ueA(s)
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ηf(x, s) = «f (x, 5) - pi(x I 5).

The following conditions B.I-B.II and C.I-C.Π with p — pj, guarantee
that the M-estimator of (7,0) is consistent. Also the condition (C) holds
then with 7* being the M-estimator (or M-estimator).

B.I. For any δ > 0 and t, \t - (7, θ)\ > δ, one can find Δ > 0 and N such
that with

bn(t) = ΣEΊ+φ3θ\η£(XjJt)\l{_N^)(ηf(Xj,t)) -> 00,
3=1

one has

- e ,

B.Π. For any r > 0 and ί ,

limsup — — > EΊ+φjθη? (Xj, *)l(r&n(t),oo) {Vi(Xj^)) = 0.

Thus conditions B.I and B.Π can be used as a replacement for the con-
dition C.III. While B.Π is similar in spirit to C.III, to elucidate the role of
condition B.I assume that for some c > 0,

n

/ I 7 + Ψjθ) ~ p(xj I 70 + ψjθo)]

Then B.I implies that the sum in the right-hand side tends to infinity for
any parametric values 7,0 different from the true values 7o,0o

For the maximum likelihood estimator, when p{x \ t) = \ogf(x \ £), this
fact means that

, f(xj 1 70 -

i.e., the series formed by information numbers diverges.
Denote by

L(n I 7, *) -

the sum of information matrices for Xj about two parameters 7 and θ. The
divergence above holds if the minimal eigenvalue of L(n|7, θ) tends to infinity,

(3.6)
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If (3.6) holds and the minimal eigenvalue, λ m i n (7(7 + <^ 0)), is bounded from

below by a positive constant,

infλπΰn(7(7 + ^-0)) > λ > 0 ,
θ

then, by taking θ = 0, one obtains

λ .

Thus, in this situation, B.I with ψ = n~1 ]C?=i ψj implies that

< 3 7 ) i + Σ?= 1^/«
To implement (3.5), observe that the inverse of the matrix L(n | 7,0) is

needed. In the simplest case when θ = 0, it has the form

Notice that an asymptotically optimal test of the null hypothesis θ — 0
can be taken to have the critical region {θ* > C}.

4. Example and application

Assume that the density, /(• | 0), of P#, belongs to an exponential family,

i.e.,

In this situation the maximum likelihood estimators 7 and θ satisfy the

following simultaneous equations,

3=1
n

3=1 3=1

Notice that in this case statistics ^ Xj and ]Γ) Ψjxj a r e sufficient for param-
eters 7 and θ.

In the particular case when / is in the family of multivariate normal
densities with identity covariance matrix, χ(t) = | | t | | 2/2, so that

.j Γ n n n n

2 ,
j=l j=l j=l

n n n
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Both of these normally distributed estimators are unbiased. The condition
for their consistency is given by (3.7), which can be verified directly by
evaluation of the corresponding covariance matrices.

An application of smooth-change models appears in volumetric analy-
sis where the chemical analysis is performed by measuring the volume of a
solution needed to react completely with the substance of interest. In the
so-called tit rat ion method, an analyte is added progressively to a reagent
(titrant) solution until all analyte is consumed (i.e., the equivalence point
is reached.) The data, consisting of subsequent readings of the analyte in
the solution, can be interpreted as as observations from the family of distri-
butions in our model with φ(j, n) = φnF(j/n) with a distribution function
F defined on the unit interval [0,1]. (The shape of this function is deter-
mined by the strength of the acid and of the base, and can be assumed
known.) Commonly, the data is believed to be log-normally distributed and
the uniform distribution function F, F(x) = x is accepted.

The estimators 7 and θ above, with x i , . . . , xn being replaced by the log-
arithms of observed analyte's content, turn out to be unbiased and efficient
provided that φn —• 0, which implies conditions (3.2), (3.3) and (3.7).
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