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In practice the unknown parameter of an experiment is often bounded. Therefore there
is practical interest to include such additional knowledge into statistical procedures to
improve them. In this paper we consider minimax estimation of a bounded parameter.
The minimax principle is, at least from a theoretical point of view, very important. In the
last two decades of the last century a sequence of papers has treated such problems for
some densities that are smooth with respect to the unknown parameter and for specific
convex losses. It occurred that in all examples in which the loss is strictly convex and
the parameter interval is sufficiently small a minimax estimator exists which is Bayes with
respect to a two-point prior with mass at the boundaries. In this paper we show that
this result is true in general when the Lebesgue-densities are smooth with respect to the
unknown parameter and the loss is strictly convex, but do not necessarily penalize equally
underestimation and overestimation. Our result provides new classes of interesting losses
and densities for which the above statement holds true.

1. Introduction

In practice there are typical situations where it is most appealing to apply the
minimax principle. On the other hand, there are several reasons refraining
the utilization of minimax rules, for example:

• minimax rules are difficult to calculate,

• there is no universal method to construct a minimax rule,

• examples are known for which a decision rule exists whose maximal risk
is a little larger than the minimax risk but whose risk function is much
better than the risk function of the minimax rule for large parts of the
parameter space. This is especially the case when the minimax risk func-
tion is constant. In such a situation the minimax rule is not attractive to
a practitioner.

Nevertheless, from a theoretical point of view it is important to obtain min-
imax rules, see Brown (1994). Note that only if the risk function of the
minimax rule is known, rules that are more convenient with respect to the
risk function can be developed. Moreover, the situation is a little different
in case where the parameter space is restricted because then the risk func-
tion of the minimax estimator is typically not constant. Consequently the
risk functions of minimax estimators for restricted problems are often quite
more appealing than in the unbounded case where they are often constant.
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Professor Constance van Eeden was one of the first scientists who made
contributions to problems with restricted parameter spaces, see van Eeden
(1956, 1957a-c, 1958). Since that time she (sometimes with coauthors) has
provided main contributions to this topic. In this paper we consider only
bounded parameter spaces. Some history for results on other restricted pa-
rameter spaces is given in van Eeden (1996).

In the statistical literature it is often assumed that the parameter space
is unbounded which seems to be never fulfilled in practice if the parameter
describes, for example, the mean or the variance of a real phenomenon (e.g.,
rainfall-runoff, weight or height of persons/animals, values for controlling
an industrial process). Therefore there is practical interest to include such
additional information into statistical procedures to improve them. In this
paper we consider the minimax estimation of a bounded parameter. In the
last two decades of the last century a sequence of papers has treated such
problems for certain densities that are smooth with respect to the unknown
parameter and for specific convex losses. It occurred that in all examples
in which the loss is strictly convex and the parameter interval is sufficiently
small a minimax estimator exists which is Bayes with respect to a two-point
prior with mass at the boundaries. In this paper we show that this result is
true in general when the Lebesgue-densities are smooth with respect to the
unknown parameter and the loss is strictly convex, but do not necessarily
penalize equally underestimation and overestimation. So, our result provides
new classes of interesting losses and densities for which the above statement
holds true.

In the next section we give some historical remarks on the problem and
discuss the relevant literature. The main result and some examples are given
in Section 3. The arguments are contained in Section 4 and Section 5. More
precisely, in Section 4 the Bayes estimator of a two-point prior is determined
and properties of this estimator are given and in Section 5 the properties of
the risk function of that Bayes estimator are investigated and the proof of
the main result is given.

2. Historical remarks on estimating a bounded parameter

The first results on exact minimax estimation of a bounded parameter were
published by Casella and Strawderman (1981) and Zinzius (1979, 1981).
They gave the minimax estimator of a bounded normal mean θ with squared
error loss. More exactly, if θ G [α, b] C R and b - a is sufficiently small, then
the prior with mass 1/2 in a and 6, respectively, is least favorable and the
corresponding Bayes estimator is minimax. They used the following well-
known result (see, e.g., Lehmann and Casella, 1998, p. 310, Theorem 1.4):
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Theorem 2.1. If δ is a Bayes estimator with respect to a prior distribution
π and if the Bayes risk r(τr, ί) is equal to the supremum risk, supθR(θ,δ),
then δ is minimax and π is least favorable.

Casella and Strawderman investigated the risk function of the two-point
Bayes estimator mentioned above using a result by Karlin (1957). So, they
could establish that the condition for the risk function given in the above
theorem is fulfilled if and only if b — a < mo, where mo ~ 2.1 is calculated
numerically. In contrast, Zinzius proved his result by using the following
corollary to the above theorem.

Corollary 2.1 (Convexity technique). If δ is a Bayes estimator with
respect to a two-point prior π with mass in a and b and if R(-,δ) is convex
with R(a,δ) = R(b,δ), then δ is minimax and π is least favorable.

Obviously, Zinzius could only obtain a smaller bound than mo and the
best known bound analytically calculated with the convexity technique was
stated in Bischoff and Fieger (1992): rri\ — \[2. Following these papers,
minimax estimation of a bounded one dimensional parameter has been con-
sidered by many authors for different distributions and loss functions, see
Eichenauer (1986), Chen and Eichenauer (1988), Eichenauer-Herrmann and
Fieger (1989, 1992), Bischoίf (1992), Bischoff and Fieger (1992), Bischoff,
Fieger and Wulfert (1995), van Eeden and Zidek (1999), Marchand and
MacGibbon (2000), Wan, Zou and Lee (2000) and the papers cited there.
These papers have in common the following facts: if the length of the pa-
rameter interval is sufficiently small, then a two-point prior with mass at
the boundaries of the parameter interval is least favorable, and the corre-
sponding Bayes estimator is minimax. Furthermore, all papers assumed a
strictly convex loss and densities being smooth with respect to the unknown
parameter. It is worth mentioning that all these results have been proven
using the convexity or a related technique. Furthermore, we like to mention
that minimaxity results have also been obtained without the restriction that
the parameter space has to be sufficiently small, see, e.g., Moors (1985) and
Berry (1989).

It is worth noting that we assume a specific form of the loss function,
see the next section. For instance the loss function considered by van Eeden
and Zidek (1999) does not fulfill our assumptions. In a forthcoming paper,
however, it will be shown that such loss functions and problems satisfy our
conditions after a certain transformation.

In this paper we consider only the case where the parameter space is a
subset of R. However we will make the following remarks about multivariate
spaces. The technique used by Casella and Strawderman could only be
successfully applied to a multivariate normal with a mean vector bounded
to a sufficient small sphere, see Berry (1990). For other problems, however,
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the technique used by Casella and Strawderman has not been applied up to
now in contrast to the convexity technique. DasGupta (1985) rediscovered
the convexity technique and generalized Corollary 2.1 to the case that the
parameter region is multivariate, but he only applied the convexity technique
to one dimensional problems. A two dimensional problem, which can not
be handled with Berry's results mentioned above, was analyzed in Bischoff,
Fieger and Ochtrop (1995) using the convexity technique.

In case where the loss is only convex but not strictly convex, Eichenauer-
Herrmann and Ickstadt (1992), and Bischoff and Fieger (1993) under milder
conditions, showed that there are cases where there does not exist a two-point
prior which is least favorable and whose corresponding Bayes estimator is
minimax. For example, this is the case for the bounded normal mean and the
Li-loss, L(θ,a) = \θ — a\. Hence the question arises under which conditions
the following statement holds true:

Statement 2.2. A two-point prior with mass in a and b is least favorable
and the corresponding Bayes estimator is minimax.

There are two papers that investigate this problem. Namely, Eichenauer-
Herrmann and Fieger (1992) and Boratyήska (2001). The first paper investi-
gates minimax estimation under convex loss when the parameter is bounded,
this for a class of special truncated Lebesgue densities. Boratyήska (2001)
proves Statement 2.2 in the case where: the parameter interval is sufficiently
small, the loss function is strictly convex and three times continuously differ-
ent iable, the densities are twice different iable with respect to the unknown
parameter and certain integrability conditions are satisfied. There are many
loss functions and some interesting classes of densities, see Section 3, that do
not fulfill these assumptions. We show, under weaker/different assumptions
than those given by Boratyήska (2001), that Statement 2.2 holds true. It is
worth mentioning that to show convexity we use a different approach than
the one used by Boratyήska (2001).

3. Main results and examples

We investigate a real random variable X distributed according to a probabil-
ity measure P#, where θ is an unknown parameter that belongs to a bounded
parameter space Θ = [#o, #o + TΠ] C R with fixed θo and m e (0, M), where
M > 0. (Note that we introduce the constant M only to facilitate the
statement of some assumptions.)

Remark 3.1. We like to emphasize, that in many cases our one-dimensional
sample space R is not a restriction at all. Often one has n independent
and identically distributed real random variables X\,..., Xn and a sufficient
statistic X: R n —> R. So we can apply our result to X and it still holds true
for the original problem by the Rao-Blackwell Theorem.
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Equipping the sample space R with its Borel σ-algebra B and Θ with its
Borel σ-algebra #(θ), the risk function for a given loss function LQ\ R —*
[0, oo), # G Θ, and an arbitrary randomized estimator δ: R x B(Θ) —> [0,1],
is defined by

R(θ,δ)= ί [ Lθ{a)δ(x,da)Pθ(dx).
JΈLJΘ

Hence, our estimators satisfy the natural condition

Pθ({x G R I δ(x, θ) = 1}) = 1, θ G θ,

that is for a nonrandomized estimator 5, PΘ({X G R | δ(x) G θ}) = 1, θ G θ .
An estimator δ* is called minimax if

supR(θ, δ*) = inf supΛ(0,ί),

where Δ denotes the set of all randomized estimators for the unknown pa-
rameter θ. Moreover, if π is a prior distribution on #(θ), then the Bayes
risk of an arbitrary estimator δ is given by

(7r,(J) = [ R(θ,δ)π(dθ).
Jθ

We assume that the loss Lβ(a) can be written as a function h: (—M,M) —>
[0, oo) of the difference between the parameter θ and the decision a:

V 0 , α e θ : Lθ(a) = h(θ-ά).

In this case the function h is also called loss function. Further we assume
that the family of probability measures {PQ \ θ G θ} has a density with
respect to the Lebesgue-measure λ on (R, B):

To establish our main result we need the following assumptions on the loss
function h and the densities /#.

Assumption on the loss function h. The function h: (—M, M) —> [0, oo)
has the following properties:

A.I \/s < t < 0; h(s) > h(t) > h(0) = 0 and V0 < t < s: 0 = Λ(0) < h(t) <
h(s),

A.2 h is continuously differentiate and /I|(_M,O)U(O,M) ^S twice continuously
differentiate with h"(s) > 0,
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and for s G (—M, 0), respectively s G (0, M), /i satisfies one of the following
conditions (not necessarily the same on both sides of the origin)

A.3 3K>0Vse (-M,0) (orVse (0,M) r e ^ J : Λ"(s) > K,

A.4 3K,fc: (0,oo) -> (0,oo)V0 <m<MV-m<s<0(orV0<s<m

resp.)

^>K(m), WL<k(m), lim A-(m) = oo, hmMm) = 0.

As a consequence of these assumptions we get immediately that

(3.1) h'(s) < 0, s G (-M,0); Λ'(s) > 0, 5 G (0, M); Λ'(0) = 0,

and

(3.2) Gm:(-m,0)^(0,oo), S ^ ^ L

is bijective and strictly decreasing.

Assumption on the densities /#. The density functions /#: R x [#o?

M) -^ [0, (X)) have the following properties:

A.5 Vx G R; df(x,θ)/dθ exists up to countably many θ G (0o,0o + ^ )
is uniformly bounded,

A.6 Vx G R: d2f(x,θ)/dθ2 exists up to countably many θ G (#o>#o +
5 uniformly bounded.

A.7 (Only needed in combination with Assumption A.4.)

Vx G R: [df(x,θ)/θθ}/f(x,θ) and [d2f{x,θ)/dθ2]/f(x,θ) are uni-

formly bounded up to countably many θ G (#o5 #o + -W) where § = 0.

We state now our main result which will be a consequence of Corollary 2.1

stated above and of Corollary 5.1 and Lemma 5.2 that will follow.

Theorem 3.1. Under the Assumptions A.1-A.7 there exists a constant

mo £ (0, M) sΐ/c/i £/iα£ /or eαc/i m G (0, mo] Statement 2.2 Λo/ds ίr-ue tyiί/i

α = 0o and 6 = 0O + m, if Pθ({x G R | /(x,0 o )/(x,0 o + m) > 0}) > 0 for

Note that PΘO({X G R | f(x,θo)f(x,θo + m) > 0}) = 0 implies R(θo,δ) =
0 and P0 o + m({x G R | /(x, 0o)/(x, 0O+m) > 0}) - 0 implies i?(0 o+m, δ) = 0
for each Bayes estimator with respect to a two-point prior with mass in
{0o? 00 + fft}, see Section 5. Thus the last assumption in the above theorem is
a necessary condition for Statement 2.2 to be true for a — ΘQ and b = 0Q + ra.
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It is worth mentioning that an L^-loss

h: (-

for p > 1 fulfills our Assumption on the loss function h whereas the assump-
tions of Boratyήska (2001) only cover the case p = 2. Moreover, uniform
distributions satisfy our Assumption on the densities fo but not the assump-
tion of Boratyήska (2001). Very often in practice we need a loss function
where over- and underestimation is judged by different losses. As a conse-
quence the loss function is not as smooth at the origin as often assumed. To
end this section we present some important examples of loss functions.

Example 3.1. Here we have a look at Lp-losses with different p on the right-
and the left-hand side of the origin. Let

, , , f \ s \ , s < 0
hus) =

with pi,p2 > l
Obviously Assumptions A.I and A.2 are fulfilled; we see, that hi is not

twice differentiate in the origin if p\ < 2 or p2 < 2. Moreover, we can easily
verify Assumption A.3 for 1 < pi < 2, i = 1 or i = 2, and Assumption A.4
for 2 < pi, i = 1 or i = 2.

We can also combine Lp-losses with the well-known Linex Loss.

Example 3.2. Let

1̂7 (exp{αs} — as — 1), s > 0,

with p > 1, a > 0 and 7 > 0.
Here Assumption A.1-A.3 (or A.4 for p > 2 on the left-hand side of the

origin) holds true and /i2 is not twice differentiate in the origin except for
the case where p = 7a 2 = 2.

Example 3.3. Similarly to /i2 we consider

f 7 (exp{αs} - as - 1), s < 0
= <

[\s\i 5 > 0,

with p > 1, a > 0 and 7 > 0.
Again Assumption A.1-A.3 (or A.4 for p > 2 on the right-hand side of

the origin) holds true and /13 is not twice differentiate in the origin except
for the case p = 7a 2 = 2.
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4. The Bayes estimator with respect to the two-point prior at the
boundary

In this section we determine the Bayes estimator δ^'m with respect to the

two-point prior πβ,β G [0,1], defined by

^({0o» = β, πβ({θ0 + m}) = l-β.

The Bayes risk of an arbitrary randomized estimator δ with respect to the

prior πβ is given by

= [ R(θ,δ)πβ(dθ) = ί [ f h(θ-a)δ(x,da)f(x,θ)\(dx)πβ(dθ)
Jθ Jθ JΈL Jθ

= f f h(θo-a)f(x,θo)β+h(θo+m-a)f(x,θo+m)(l-β)δ(x,da)\(dx).

To determine a Bayes estimator 5^ ' m , /?G [0,1], m > 0 arbitrarily fixed, we
discuss for each fixed x G R under which conditions the function

Hβ,m,x: [0o,0o + m] -> [0,oo)

a •-> h(θo-a)f(x,θo)β+h(θo+m - ά)f{x,θo+m)(l-β)

has a minimum. Since the loss h is continuous

M(β,m,x) := {s G Θ | Hβ^x(s) - mmHβ^x(a)} φ 0

for each x G R , and therefore each measurable function δ^'m: R, —> Θ with
δ^'m{x) G M(/3, m, x) is a Bayes estimator with respect to π^. We have to
discuss different situations:

• If /(x,#o) — f(χiθo + m) = 0, then the above function is minimal for
each α.

• If /(#, 0o) = 0, and /(#, 0o + m) > 0, then the above function is minimal
for a — ΘQ + m.

• If /(a;, #o) > 0, and /(x, 0o + ̂ ) — 0, then the above function is minimal
for a = #o

• Finally we have to consider the case where /(x,0o) > 0, and
f(x,θo + m) >0.

The following lemmas are useful to calculate δP>m(x) for β G (0,1).

Lemma 4.1. Lei/?E (0,1), m>0, andxe{xeR \ f(x,θo)f(x,θo + m)>O}.
Then we have:
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(a) s G M(/?, ra, x) if and only if\/a G [0o?s) :

h(θ0 -a)- h(θ0 - s) θ

s — a
^ h(θ0 + m - α) - h(θ0 + m - s)
> J\X,vo + raj(l — pj,

a — s

and V a G (5, #0 + ra] :

h(θ0 -s)- h(θo - a)

s — a

a — s

(b) // the right hand derivative h+ of h exists in —m, then a necessary

condition for ΘQ + m G M(/3, m, re) is

-h'+(-m)f(x, θo)β < h'(O)f(x, θ0 + m)(l - β).

(c) If the left hand derivative h~~ofh exists in m, then a necessary condition

for θo G M(/3, ra, x) is ^iϊ en by:

-Λ;(O)/(x, 0O)/? > h'-(m)f(x, θ0 + m)(l - ^ ) .

(d) // ί/ιe derivative h! of h exists in θo — 5 G (—ra, 0) and in #0 + ra — s G
(0,ra), £/ιen a necessary condition for s G M(β,m,x) is given by:

(4.1) -ti(θ0 - 5)/(x, 6>o)/? = /i;(0o + m - s)/(x, 0O + m)(l - /?).

(e) Let 5 G (0o,0o + m) be arbitrary fixed and h differentiable. Then a
necessary condition for s G M(/3, ra, x) is given by:

(4.2) 3 e > 0 : (<90 - s - e, 0O - 5 + e) -> R, t^Gm(t) is decreasing,

where Gm is defined in (3.2).

Proof. Note that s G M(β,m,x) if and only if for each a G [#o,#o + ra] we

have

h(θ0 - s)f(x, θo)β + h(θ0 + m- 5 )/(x, θ0 + ra)(l - /3)

< h(θ0 - α)/(x, 0o)iS + h{θ0 + m- α)/(x, 0O + ra)(l - /?).

Then (a) follows easily, (a) implies (b) and (c) by taking first limits from

the right and the left, and then putting s = θo + m and s = 0o, respectively.

Result (d) is a consequence of the proof of b) and c). Let the conditions of e)

be fulfilled. Then by (4.1) a necessary and sufficient condition for Hβ^x(-)

to have a local minimum in s is given by (4.2). •
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Lemma 4.1(b), (c) and (3.1) imply immediately the following result.

Lemma 4.2. Let β G (0,1), m G (0, M), x G {x G R | f(x, θo)f(x, θo+m) >
0}. Let the function h fulfill Assumption A.I-A.4. Then

(4.3) M(/3, ra, x) C (0O, #o + m).

Lemma 4.3. Lei /? G (0,1), m G (0,M), x G DθoβQ+m := {x G R |
f(x,θo)f(x,θo + m) > 0}. Lei ί/ιe function h fulfill Assumption A.1-A.4.
ThenδP'™ : Dθoβo+m —• [^o,^o+^] ^ measurable andδf3^rn(x),x G Dθo^o+mj

is uniquely determined by the equation

-ti(θ0 - δβ'm{x))f(x, θo)β = ti(θ0 + m- δβ'm(x))f{x, θ0 + m)(l - β).

Furthermore, δβiΊΎl(x),x G D θ̂56io+m; is strictly decreasing with respect to β.
Moreover, δβ'm{x)^x G Dβo^o+πι, is continuous with respect to β G (0,1).

Proof The continuity of h and (4.3) imply 0 7̂  M(β,m,x) C (0o,#o + m).
Hence, we can apply Lemma 4.1(d) and see that each element of M(/?, m, x)
fulfills equation (4.1). This equation can be written as

(ΛΛ\ r (o <Λ f ^ ^ o + m) 1-β

(4.4) Gm(θ0 - s) = -jjr^ j->

which by (3.2), has a unique solution s G (—m,0). Thus δβ'm(x) is uniquely
determined by

(4,) O.K-^))-'-<%£>.ψ

Moreover, (3.2) implies the existence and measurability of G^1. Hence,

is measurable. By equation (4.6) we see that δβ'm{x) is strictly decreasing
with respect to β. Moreover, it is easy to see that G^1 is continuous. Thus
δβ'm{x) is continuous with respect to β G (0,1). D

The discussion at the very beginning of this section and Lemma 4.3 imply
the following

Corollary 4.1. Let β G [0,1], m G (0,M), and let the function h fulfill
Assumption A.1-A.4. Then

Λ°.™ 1R-*Γ0 0 -Lml r^ίθo' iff(x,θo)>O,f(x,θo + m) = O
0 . K —> [#0, c/o + mj, a; 1—> <

I ΘQ + m,



Old and New Aspects of Minimax Estimation of a Bounded Parameter 25

and

d 1 . K — > [6/0,6/0 + ^ J 5

 x »-* < Λ

[00,

are Bayes estimators with respect to πp, β G {0,1}. For β G (0,1)

iff(xΛ) > 0, /(Mo + m) - 0

, θ0 + m)/(βf(x, flo))),

i/ /(x, ^o)/(^, 6>0 + m) > 0

0 + (1 " β)(θo + m), iff(x,θ0) = 0, /(x,0o + m) = 0

0o) = 0, f(x, θo + m)>O

is a Bayes estimator with respect to πβ, β G (0,1). The function [0,1] —•
[θo,θo + m], β \—> δ^'m is continuous. Moreover, δ^'m is strictly decreasing
with respect to β G [0,1] for x G {x G R | f(x,θo)f(x,θo + m) > 0 or
/(x,0o) — 0, /(x,#o + r n ) — 0}, elsewhere δ^'m is constant with respect to

5. The risk function of the Bayes estimator δ(3'rn

In this section we investigate the properties of the risk function

, δβ'm) = [ h(θ - δ^m{x)) Pθ{dx).

of the Bayes estimator δβ'm determined in Corollary 4.1.

Lemma 5.1. Let Assumption A.1-A.4 be fulfilled. Then, for m G (0,M),
θ G θ the function

[0,1]-[0,oo), β~R(θ,δf>>m)

is continuous. Furthermore,

lim R(θ,δβ'm) = h(θ-θo-m)Pθ({x € R | f(x,θ0) = 0 or f(x,θo+m) > 0})

+ h(θ - Θ0)PΘ({X € R I f(x, ΘQ) > 0, f{x, θo + m) = 0}),

and

lim R(θ, δβ'm) = h(θ - θo)Pθ({x € R I f(x, θ0) > 0 or f(χ, θo + m) = 0})

+ h(θ -ΘQ- m)Pθ({x € R I f{x, θ0) = 0, f{x, θo + m)> 0}).
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Thus for the special parameter θ = θo and θ = θo + m we have, under the

additional assumption PQQ{{X G R | /(X,#O + TΠ) > 0}) > 0, that

[0,1]-[0,oo), β»R(θo,δP'm)

is strictly decreasing with

lim R(θo,δ
β>m) = h(-m)Pθo({x G R | f(x,θo + m) > 0}) =

lim R(θo,δ
β>m) = h(0) =0 = β ( 0 o , ί l ι m ) ,

and under the additional assumption Pβo+m({x G R | f(x,θo) > 0}) > 0,

that

[0,1] -> [0, oo), β» R(θ0 + m, δβ>m)

is strictly increasing with

lim R(θ0 + m, ί A m ) = Λ(0) = 0 = R(θ0 + m, ί ° ' m ),

lim i?(0o + m, ^ ' m ) = h(m)PθQ+m({x G R | /(x, θ0) > 0})

Proof. We have

/ h(θ- δβ*m{x)) Pθ{dx) + f h(θ- θ0) Pθ(dx)

+ / h(θ - θ0 - m) Pθ(dx)

+ ί h(θ- βθ0 - (1 - β)(θΌ + m)) Pθ{dx).

J{f(x,θo)=0J(x,θo+m)=0}

Therefore, [0,1] -> [0,oo), β ^ R(θ,δβ>m) is continuous, because [0,1] -^
[<9o,6>o + m], β »-> ί^m is continuous by Corollary 4.1 and (90 < ^ ' m ( x ) <
θo+m by Lebegue's theorem on dominated convergence. The other assertions
follow easily. D

The above lemma immediately implies the following

Corollary 5.1. Let Assumptions A.1-A.4 be fulfilled, and let PΘ({X G R |
f(x,θo)f{x,θo + m) > 0}) >Oforθe {θo,θo + m}, then for each m G (0,M)
there exists a unique β*(m) G (0,1) such that

where δm =
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Next we show that our assumptions given in Theorem 3.1 imply that the
risk function is convex.

L e m m a 5.2. Let Assumptions A.1-A.7 be fulfilled. Then a constant rao > 0
exists such that for all m G (0, mo] the risk function R(θ, δm), θ G [θo, θo+m],
is convex.

Proof. We define
G(x,θ):=h(θ-δm(x))f(x,θ).

Obviously, G( ,θ) is integrable for each θ e θ. Next we distinguish the
following three cases.

(a) Let Assumptions A.1-A.3 (with A.3 on both sides of the origin) and
A.4, A.5 be fulfilled. Then for each i e E w e have for θ $ Nx := {θ € θ |
θ = δm(x) or d2f{x,θ)/dθ2 does not exist}:

^G(x,θ) = h"{θ - δm(x))f(x,θ) + 2h'(θ - δm(x))-^f(χ,θ)

(b) Let Assumption A.I, A.2, A.4 (with A.4 on both sides of the origin)
and A.5-A.7 be fulfilled. Then for each x € R we have for θ <£ Nx := {θ €
β I θ = δm{x) or d2f(x,θ)/dθ2 does not exist}:

^G(x,θ)>\h'(θ-δm(x))\f(x,θ)

h"(θ-δm(x)) |&/(s,0)| h{θ-δm(x))

}h'{θ-δm{x))\ f(x,θ) \h'(θ-δm(x))\ f(x,θ)

(c) Let Assumption A.1-A.7 (with A.3 on one and A.4 on the other side
of the origin) be fulfilled. Then

can be proved by showing d2G(x,θ)/dθ2 > 0 for θ with θ - δm(x) > 0
and θ with θ — δm(x) < 0 separately. These two inequalities can be shown
according to the proofs of (a) and (b), respectively.

Then by our assumptions in each of the three cases (a), (b), (c) a constant
mo exists which is independent of x such that d2G(x,θ)/dθ2 > 0 up to
countably many θ G [#o> #o + m o] Hence, G(x, •) is convex for each x G R
implying that

R(θ, δm) = J h(θ - δm(x))f(x, θ) \(dx)

is convex. Π
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Proof of Theorem 3.1. For the Bayes estimator δ^'m with respect to πβ the
assumptions of Corollary 2.1 are fulfilled by Corollary 5.1 and Lemma 5.2.
Hence the assertion of Theorem 3.1 holds. D
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