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Abstract

There are many sources of systematic variation in microarray experiments
which affect the measured gene expression levels. Normalization is the term used
to describe the process of removing such variation. Two-color cDNA microarray
experiments are comparative in nature; therefore, commonly used normalization
methods focus on adjusting the value of log-intensity ratios between the red and
the green channels. This paper reviews some normalization procedures required
to ensure that observed differences across spots both within and between slides are
reliably measured. In addition, the paper investigates the possibility of obtaining
meaningful single-channel information from two-color microarray experiments
after careful single-channel normalization.
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1 Introduction

Microarray experiments measure the expression of thousands of genes simultaneously
and generate large and complex multivariate datasets. One of the challenges imposed
by the enormous growth in this area of biology is the development of computational
and statistical tools for processing such datasets. Pre-processing steps such as image
analysis and normalization are important aspects of microarray experiments, since they
can have a potentially large impact on subsequent data analyses such as clustering or
the identification of differentially expressed genes. This paper is concerned with the
normalization of two-color cDNA microarray data and examines various procedures
applicable to different types of datasets. Normalization is essential to extract reliable
measures of the fluorescence intensities and to ensure that the observed differences in
intensity indeed reflect differential gene expression and not artefactual bias inherent to
the experiment.

We begin in Section 2 with a brief introduction to the biology and technology of
cDNA microarrays. This is followed by a discussion in Section 3 on the motivation be-
hind the two main types of normalization procedures: two-channel and single-channel.

*Both authors contributed equally to this work.
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Sections 4 and 5 review a number of two-channel and single-channel normalization
methods respectively. In particular, Section 5 investigates the possibility of getting use-
ful information from the normalization and analysis of single-channel data from cDNA
microarrays. Finally, Section 6 discusses the implications for assessing these different
normalization procedures and outlines some of the open questions that remain on this
topic.

2 Background on DNA microarrays

DNA microarrays are part of a new class of biotechnologies which allow the monitoring
of expression levels for thousands of genes simultaneously. Applications of microar-
rays range from the study of gene expression in yeast under different environmental
stress conditions [6, 10, 13, 22] to the comparison of gene expression profiles for tu-
mors from cancer patients [2, 3, 9, 12, 18, 19]. In addition to the enormous scientific
potential of microarrays to help in understanding gene regulation and gene interactions,
microarrays are being used increasingly in pharmaceutical and clinical research. Our
focus here is on complementary DNA (cDNA) microarrays, where thousands of dis-
tinct DNA sequences representing different genes are printed in a high-density array
on a glass microscope slide using a robotic arrayer. The relative abundance of each of
these genes in two RNA samples may be estimated by fluorescently labeling the two
samples, mixing them in equal amounts, and hybridizing the mixture to the sequences
on the glass slide. More fully, the two samples of messenger RNA (mRNA) from cells
(known as target) are reverse-transcribed into cDNA, and labeled using differently flu-
orescing dyes (usually the red fluorescent dye Cyanine 5 and the green fluorescent dye
Cyanine 3). The mixture then reacts with the arrayed cDNA sequences (known as
probes following the definitions adopted in "The Chipping Forecast", a January 1999
supplement to Nature Genetics). This chemical reaction, known as competitive hy-
bridization, results in complementary DNA sequences from the targets and the probes
base-pairing with one another. The slides are scanned at wavelengths appropriate for
the two dyes, giving fluorescence measurements for each dye for each spot on the array.
The underlying assumption in microarray analysis is that these red and green fluores-
cence intensities for a typical spot represent the amount of mRNA (gene expression)
from the corresponding gene in the respective samples. We refer the reader to Schena
[21] for a more detailed introduction to the biology and technology of cDNA microar-
rays.

3 Normalization

Microarray experiments are performed to investigate relationships between different
biological samples based on their genes expression. A general approach is to identify
genes with relative differential expression between different target samples. The rela-
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tive expression from each array is usually measured as the ratio of the red and green
fluorescence intensities for each spot. This ratio represents the relative abundance of
the corresponding DNA probe in the two mRNA samples. Although these ratios, or
fold-changes, provide an intuitive measure of relative expression, they have the disad-
vantage of treating up- and down- regulated genes differently. Using a log (base 2) scale
for intensity is preferred for a number of reasons, including: variation of log-ratios is
less dependent on absolute magnitude, and taking the log of the ratio evens out the
highly skewed distribution, providing a more realistic sense of variation. For the rest of
this review, we base our discussion on log-ratios and log-intensities.

In general, before performing statistical analysis, it is necessary to identify and
adjust for artefactual systematic variation in intensities between samples on the same
slide and also between slides; that is, variation which cannot be attributed to true bio-
logical differences between mRNA samples. This process is known as normalization.
We define normalization methods based on adjusting the log-ratios as two-channel nor-
malization. The need for normalization can be seen most clearly in Figure 1, which
shows a plot of a self-self hybridization. Here, two identical mRNA samples are la-
beled with different dyes and hybridized to the same slide. The data are represented by
an M versus Λ plot, or MA plot, where the log-ratios are given by M = log2(/?/G) and
average log-intensity by A = log2 y/RG. Because there is no true differential expression
in a self-self hybridization, one would expect the red and green intensities to be equal.
However, we observe from Figure 1 that the red intensities tend to be lower than the
green intensities. This systematic variation may be a consequence of different labeling
efficiencies and scanning properties of the Cy3 and Cy5 dyes; different scanning pa-
rameters, such as PMT (photo multiplier tube) settings; print-tip, spatial, or PCR plate
effects. Furthermore, the imbalance in the red and green intensities is usually not con-
stant across the spots within and between arrays, and can vary according to overall spot
intensity A, location on the array, plate origin, and possibly other variables. Section 4
describes procedures for two-channel normalization.

The advantage of relying on the log-ratio for measuring relative gene expression
within two samples on the same slide rather than considering log-intensity values for
individual channels is because log-ratios are considered to be more stable than the ab-
solute intensities across slides. Absolute log-intensities are often confounded by spot-
spot variation inherent to printed microarrays. This is demonstrated in Figure 2, where
we show the spatial plots of an experiment comparing stages ElS' and El8 of the ol-
factory epithelium (OE) in embryonic mice. Panels (a) and (b) show spatial plots of
log-intensities from the red channel (Cyanine 5) and green channel (Cyanine 3) respec-
tively. Panel (c) shows the same spatial plot of log-ratios. We observe reproducible
spatial effects of the single channels within a slide that are effectively canceled out
by the log ratios. This demonstrates the stability of log-ratios in general compared to
log-intensities, and provides a clear warning that analysis of single-channel data should
proceed with great care.

The main disadvantage of an analysis based solely on log-ratios is that it constrains
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researchers to comparative investigations. At times the nature of the research problem
requires single-channel analysis, for example, when the aim is to identify genes that
are expressed in a certain sample, or perhaps at particular time points in a time series
experiment. In this case, the quantity of interest is a separate log-intensity measurement
for each channel. Compared to log-ratios, separate log-intensities are usually less stable
in cDNA microarrays.
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Figure 1: Self-self hybridization illustrating systematic variation. Colored lines indicate the
loess fit for each of 4 print-tips used to spot the array.

Given the breadth and nature of systematic variation observed in log-ratios, there
is an inevitable step-up in complexity of biases for single-channel data. Therefore, the
problem of normalization to make the channels from multiple arrays comparable is a
more challenging one. Section 5 presents some procedures for single-channel normal-
ization and a discussion on the assessment of single-channel normalization methods.

4 Two-channel normalization

The process of two-channel normalization can be separated into two main components:
location and scale. In general, methods for location and scale normalization adjust
the center and spread, respectively, of the distribution of log-ratios. The normalized
intensity log-ratios Mnorm are generally given by

M-l
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(a) (b) (c)

Figure 2: Illustration of the spatial effects that exist in the log-intensities from single-channels
that are not observed in the log-ratios. Shown are spatial plots from a single slide in the OE
dataset. (a) Spatial plot of red channel, (b) Spatial plot of green channel, (c) Spatial plot of
log-ratios.

where / and s denote the location and scale normalization values respectively.

Location normalization

The location value / can be obtained by a wide range of methods. The most com-
monly used method is global normalization with / equal to a constant c and s = 1; that
is, log-ratios are corrected by subtracting a constant c with Mnorm — M — c. Common
choices for this constant c are the median or the mean of the log-intensity ratios (M)
for a specified set of genes assumed not to be differentially expressed. There are also
many other estimation methods for the constant c. For example, Chen et al. [5] propose
an iterative method based on ratio statistics for estimating normalization constants. In
another approach, Kerr et al. [16] and Wolfinger et al [23] propose an ANOVA model
for the single channels and perform normalization by including a dye main effect and
treatment and array interaction terms in the model. This is followed by adjusting every
gene on the array by the same fitted value obtained from model. Figure 3(a) shows an
MA plot of a mutant swirl versus wild type comparison of zebrafish prior to normaliza-
tion. The goal of the swirl experiment is to identify genes with altered expression in
the mutant compared to wild type zebrafish. In this instance, the vast majority of genes
on the microarray should show no difference in expression level. This figure depicts
a clear dye bias which appears to be dependent on spot intensity. All global methods
which subtract the same constant c from every log-ratio on the array do not correct such
intensity-dependent biases.

It follows that location normalization methods which account for such biases are
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often necessary. The intensity-dependent bias is noticeable in an MA plot (Figure 3(a))
as a distinct curve in the scatter plot varying with spot intensity. The log-ratios can be
normalized by Mmrm = M — c(Λ), where c(A) is a function of average spot intensity A.
Several intensity-dependent methods have been proposed for location normalization. In
Yang et al [24, 25], estimates of c(A) are made using the local scatter plot smoother
function loess [7, 8] within the software package R. Kepler et al [15] propose a sim-
ilar approach using a different local regression method. Finkelstein et al [11] present
an iterative linear normalization, also known as a robust linear regression, which can
be viewed as a constrained version of the robust locally-weighted intensity-dependent
normalization.

Figure 3(b) shows boxplots of log-ratios stratified by print-tip groups after intensity-
dependent normalization. This figure shows that after intensity-dependent normaliza-
tion, other systematic biases still remain. We can generalize further to account for other
bias by fitting different intensity-dependent curves to different regions of the array:
Mnonn = Λί — Q(A), where i indexes different regions of the array. For example, Yang
et al [24] to use i to index print-tip groups. Often, systematic differences result from
such differences between the print-tips as slight variations in length or in the size of
the tip opening, or variable tip deformation after many hours of printing. In addition,
because each tip prints DNA spots on different areas of the slide, print-tip groups are
proxies for spatial effects on the slide. Figure 3(c) shows an MA plot after print-tip
group loess normalization.

Scale normalization: within and between slides

The effect of location normalization is to center log-ratios around zero by account-
ing for intensity- and spatially-dependent bias. In addition, it is important to consider
scale normalization, since large scale differences between multiple slides can lead some
slides giving undue weight to an average of log-ratios across slides. One common
method of scale normalization is to divide each intensity by the total of the intensities
on the slide, so that all slides then have the same total intensity. Yang et al [24] instead
propose a robust estimate of scale, such as the median absolute deviation (MAD), for
both within-slide and multiple-slide (across slide) scale adjustment. Yang et al [24]
also discuss that the need for scale normalization is often determined empirically, as
there is a trade-off between the gains achieved by scale normalization and the pos-
sible increase in variability introduced by this additional step. In cases where scale
differences appear fairly small, it may thus be preferable to perform only a location
normalization.

Comparing different methods

We can compare different within-slide normalization methods by examining their ef-
fects on the location and scale of the normalized log-ratios Mmrm. Figure 3(d) shows
density plots of the log-ratios for different normalization methods. Without normaliza-
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tion (black curve), the log-ratios are centered around -0.5 indicating a bias toward the
green (Cy3) dye. A global median normalization (red curve) shifts the center of the log-
ratio distribution to zero but does not affect the spread. The dependence of the log-ratio
M on the overall intensity A is also still present. Both the intensity-dependent (green
curve) and within print-tip group (blue curve) location normalization methods reduce
the spread of the log-ratios compared to a global normalization. It is important to note
that these approaches implicitly assume that relatively few genes are differentially ex-
pressed, or there is no systematic relationship between differential gene expression and
intensity or location of the spots on the slide.

Control genes

For most of the methods described, the set of genes to use for the normalization must
be decided. In general, the set of genes most appropriate for normalization depends on
the nature of the experiment, the amount of observed variation in gene expression, and
possibly also on the normalization method applied to the data. Frequently, biological
comparisons made on microarrays are of a very specific nature, and differences in gene
expression are only detected in a small proportion of genes. In these experiments, it is
usual to use most of the genes on the array. Instead of using all genes for normaliza-
tion, one may use a selected subset of constantly expressed genes. These include the
traditional "housekeeping genes", spiked controls, genomic DNA, Microarray Sample
Pooled (MSP) titration series [24] and rank-invariant genes. Further details on the effect
of different sets of control genes on normalization procedures are provided in [24].

5 Single-channel normalization

Single-channel normalization aims to remove systematic intensity bias, that is, intensity
not due to real gene expression, from the red (Cy5) and green (Cy3) channels separately,
both within and between arrays. This normalization allows comparisons of absolute
intensities between arrays.

Jin et al. [14] performed a factorial experiment on age, sex and genotype (two
levels for each factor) of Drosophila melanogaster flies, where age was the only fac-
tor compared within slides. The main effects for the remaining factors were estimable
only via single-channel analysis, not by analysis of the log-ratios. Notably, a different
experimental design would have enabled all main effects and interactions to be esti-
mated from log-ratios while still maintaining a reasonable level of replication for each
comparison type. Here we draw attention to the fact that complex multi-factor designs
may not facilitate the estimation of all contrasts of interest from log-ratios alone. In
such cases, it may be desirable to recover information from single-channel analysis.
Indeed, future complex microarray experiments may be specifically designed to incor-
porate both log-ratio and log-intensity single-channel analysis methods. In time series
experiments, absolute intensity estimates at each time could tell us which genes are
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Figure 3: Illustration of two-channel normalization using the swirl dataset. (a) MA plot be-
fore normalization; the green curve corresponds to the loess fit for the entire dataset. (b)
Boxplots, stratified by print-tip group, of log-ratios after intensity-dependent (loess) nor-
malization, but before within print-tip group normalization, (c) MA plot after within print-tip
group normalization, (d) Density plots of the log-ratios for different normalization proce-
dures. The solid black curve represents the density of the log-ratios without normalization.
The red, green, and blue curves represent the densities after global median normalization,
intensity-dependent location normalization, and within print-tip group location normaliza-
tion, respectively.
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expressed or not at any given time, or allow estimation of between array single-channel

comparisons of time points.

Analysis methods that use ANOVA to model the log-intensities rather than the log-

ratios have been investigated by Kerr et ah [16] and Wolfinger eί α/. [23]. As mentioned

in Section 4, these ANOVA models essentially perform constant global normalization

and are therefore inadequate for correcting the nonlinear and spatial systematic vari-

ation observed, e.g. in Figure 2. Analysis methods that model single-channel inten-

sities have been proposed for "one-color" technologies such as nylon filter arrays and

Afϊymetrix GeneChip. Unlike the cDNA arrays, these technologies generate only a

single channel of absolute expression data from each array. Various methods have been

proposed [1,4,17,20] to normalize multiple Afϊymetrix arrays. In this section, we look

at extending some of these methods for single-channel normalization of cDNA arrays.

We illustrate the problem of single-channel normalization with a time series dataset

examining the olfactory epithelium (OE) of embryonic mice with all possible pair-

wise dye-swap comparisons of stages E13, E14, till E18. In this paper, we do not

explicitly investigate the biological problem of which genes are expressed over time,

but rather use the dataset for illustrative purposes only. In addition to the balanced,

highly replicated design of this experiment, this dataset is appealing because it contains

many controls of different known concentrations. Every print-tip group on every slide

includes two different Microarray Sample Pooled (MSP) titration controls of 5 and 6

concentrations respectively [24]. We later outline possible uses for this in assessing

single-channel normalization methods.

Single-channel normalization of two-color cDNA microarray experiments can be

considered as a two stage process: within-array normalization followed by between-

array (between all channels from multiple arrays) normalization.

In addressing the within-array single-channel normalization problem we see that

many parallels can be drawn from the two-channel location normalization approach,

such as removing systematic imbalances between the log/? and logG intensities and

correcting for spatial effects within slides. For dye bias correction, we can adjust the

log-red and log-green intensity by logRp = log/? — \ci{A) and logG^ = logG+ \ci(A)

where Cj(A) denotes the normalization adjustment estimated from "print-tip loess" nor-

malization within each slide. We notice that in addition to normalizing spatial effects

based on the log-ratios, we must also address spatial effects of the absolute intensity of

both channels. This is evident in Figure 2, where we see that even though there is no ob-

servable systematic spatial variation in the log-ratios we can still observe reproducible

spatial effects of the single-channels. We refer to such arrays as having systematic

spatial variation in intensity within slides. Efforts are underway to investigate spatial

normalization methods which will be robust to extreme local intensity values.

The second stage of single-channel normalization, between-array single-channel

normalization, is concerned with comparability of the distributions of log-intensities

between arrays. Like the two-channel problem, we wish for the single-channels to have

similar scale and location values. At this stage, we do not distinguish which channel is
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red and which green, and assume that red-green imbalances were removed by within-
array normalization.

For the OE dataset in Figure 4 we see that the distributions of all 60 channels from
the 30 arrays are quite varied. The density curves differ in location, variation and
shape. Interestingly, the red and green channels within arrays are very close in distri-
bution (data not shown). To adjust for the difference in distribution between channels
from multiple arrays, we consider methods developed for Asymetrix technology. In
particular, we adapt the quantile normalization method proposed in Bolstad et al [4].
This method extends the idea of normalizing for equivalent medians or quartiles of
the single-channels by requiring every quantile across channels be equivalent, and thus
forcing each channel to share a common distribution. The distribution is estimated by
averaging across channels for each quantile. We refer the reader to Bolstad et al [4]
for further details on this method and an algorithm for its implementation. Of particular
concern with the use of this method is that replacing quantile values with an average
might attenuate log-intensity values, particularly in the tails of the distribution where
real expression is potentially affected.

In assessing the performance of these methods, we recommend constructing MA
plots based on normalized log-intensities to check that dye-biases have been removed.
Figure 5 displays MA plots for a typical array from the OE dataset showing the effect
of different single channel normalization methods. Panel (a) shows the data before any
normalization. Between-array quantile normalization (Panel (c)), based on the entire
OE dataset, appears to be just as effective at removing intensity dependent dye-bias as
the within-array "print-tip loess" single-channel normalization shown in panel (b). We
advise using boxplots of the red and green channels to assess red-green imbalances and
to check the location and scale of log-intensity distributions after different levels of nor-
malization. It is beneficial to highlight any previously known differentially expressed
genes on the MA plots to check that they remain distinguishable after normalization.

In the OE dataset, the intensity values of MSP titration controls should remain con-
stant across all 60 channels regardless of what is hybridized. Thus, we can easily deter-
mine whether normalization decreases the variability of these control measurements in
the single-channels. However, determining bias before and after normalization is more
challenging. To measure bias we must be able to compare observed intensities with
something known; that is, some truth must be available. The truth regarding absolute
intensities for the MSP titration controls is unknown, but there is some knowledge about
their relative absolute intensities based on the concentrations of the titration series. We
can check (data not shown) that the ratios of intensities between different controls get
closer to what we expect. Currently in progress is a variance-bias assessment of the
performance of the normalization methods on OE and other similar datasets.
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Figure 4: Single-Channel Quantile Normalization. Density plots of each of 30 red and green
log-transformed single-channels from the OE dataset. The densities of red and green channels
within slides are usually very similar. The solid black curve represents the density of all
channels after quantile normalization.
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Figure 5: MA plots with loess curve for a typical array from the OE data (a) before nor-
malization, (b) after single-channel quantile normalization and (c) after "print-tip group"
single-channel normalization.
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6 Discussion

We have reviewed various normalization approaches applicable to different types of mi-
croarray experiments. Most of the normalization work to date is based on two-channel
normalization procedures that adjust the log-ratios. However, we have also considered
the problem of normalizing single-channels from two-color cDNA microarrays. We
have also raised the question of how to assess single-channel normalization is prefer-
able, and what aspects to consider when comparing normalization methods. We neither
advocate nor promote the notion of single-channel data analysis in general, but instead
suggest that satisfactory normalization of single-channel data is what is lacking for it to
be considered a promising option for researchers.

We demonstrate that single-channel analysis is potentially useful in certain cir-
cumstances where the nature of the research problem suggests single-channel analysis.
Though analyzing microarray data based solely on single-channels is not a new concept
[4, 20], limited attention has been given to single-channel normalization of two-color
cDNA microarrays. As a place to begin, we have adapted existing procedures from both
two-color cDNA and from single-color (e.g. Affymetrix) normalizations. The investi-
gation into single-channel normalization raises many other issues of interest, including,
in particular, the implications for normalization of log-ratios, for experimental design
and analysis and for the replication required for reasonable precision of between array
single-channel contrasts.

In any microarray experiment it is important to adjust for the inherent artefactual
bias, as well as to understand the assumptions behind any procedure used. In addition,
it should be checked that systematic errors are reduced after normalization and that any
observed gene expression differences are meaningful (scientific validation). Diagnostic
plots such as MA plots, spatial plots, density and boxplots can assist in the decision
of the level of adjustment needed for both single- and two-channel normalization, and
can be used to check that artefacts have been removed by normalization. For exam-
ple, investigators may decide whether to perform within-slide scale normalization for a
dataset by examining boxplots of log-ratios stratified by different print-tip groups.

In general, one should be careful that the gains achieved by further levels of nor-
malization do not introduce a large increase in variability. An important problem
that should be addressed is to define formal criteria to assess the effectiveness of var-
ious normalization procedures. That is, the issues of bias and variance should be
addressed simultaneously. In practice, it is relatively easy to show whether a new
normalization method decreases variance. However, it is more challenging to estab-
lish that this reduction in variance did not come at the cost of attenuating absolute
and relative intensity values (increased bias). To fully address this issue, it is im-
portant to obtain a specially constructed dataset with known levels of absolute and
differential gene expression, as well as a reasonable number of replications. Exam-
ples of such datasets are available for Affymetrix technology h t tp : / /qo lo tus02 .
genelogic . com/datasets. nsf / and some initial analyses of these data are available
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at h t t p : //www. s t a t . Berkeley. EDU/users/ terry/ zarray/Af f y /af f y_index. html.
In conclusion, until such datasets are available for two-color cDNA microarrays, or un-
til further understanding of the effects of different normalization procedures is gained,
it is important to apply normalization algorithms with caution.
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