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Abstract

High density oligonucleotide expression array technology is widely used in
many areas of biomedical research for quantitative and highly parallel measure-
ments of gene expression. In Affymetrix GeneChip array technology, each gene
is typically represented by a set of 11-20 pairs of oligonucleotides, separately
referred to as probes, arrayed on a silicon chip. After chip measurements are
preprocessed, a fluorescence intensity value for each probe is obtained. A nec-
essary step for defining a measure of expression (ME) is to summarize the probe
intensities for a given gene. In this paper, we review the ideas that motivate a sum-
mary statistic, referred to as the robust multi-array average (RMA)9 that improves
the default Affymetrix approach and provides substantial benefits to users of the
GeneChip technology.
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1 Introduction

High density oligonucleotide expression array technology is widely used in many ar-

eas of biomedical research for quantitative and highly parallel measurements of gene

expression. Affymetrix GeneChip arrays use oligonucleotides of length 25 base pairs

to probe genes. In this technology, each gene is typically represented by a set of 11-20

pairs of oligonucleotides, separately referred to as probes, arrayed on a silicon chip.

Details of this array technology are described by [1] and [10]. Briefly, though, RNA

samples are prepared according to a specific protocol. A fluorescently labeled RNA

sample is hybridized to probes on the chip. After some processing steps, the array is

scanned with a laser. This scan produces an image that is analyzed to produce an inten-

sity value for each probe (see [9] for more details). These intensities quantify the extent

of the hybridization between the labeled target sample and the oligonucleotide probe. A

final step to obtain a measure of gene expression (ME) is to summarize the intensities

for a given gene in order to quantify the amount of corresponding mRNA species in

the sample. The intensities obtained for each probe are denoted by PMijn and MMijni

i = 1,...,/, j = 1,... ,Λ, and n = 1,... ,N9 with i representing different RNA samples,

j representing the probe pair number (this number is related to the physical position of
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the oligonucleotide in the gene), and n representing the different genes. The number of

genes N usually ranges from 8,000 to 20,000, the number of arrays / is usually small

but may be as large as a few hundred, and the number of probe pairs within each gene

Jn usually ranges from 11 to 20. Throughout the text, indices are suppressed when there

is no ambiguity.

Several researchers have found problems with the ME provided by the first version

of the Affymetrix system [1] and have suggested alternatives, the most cited example

being that of Li and Wong [7]. In their most recent version, Affymetrix provides an

alternative as well [2]. There are papers in the literature that compare ME by assessing

variances, see [8] for an example. Typically, ME are obtained from arrays hybridized to

RNA aliquots (technical replicates). Throughout the text, we denote the ME obtained

for a given gene by £,, with i = 1,...,/ representing arrays. When there are replicate

arrays, we define the sample variance as σ 2 = Σί=\ (£/ - E)2 with E representing the

average. ME that, in general, have smaller σ are considered better. However, without

an accompanying assessment of the ability to detect signal (which can be thought of

as assessing bias), this could produce misleading results. For example, a ME that is

always Ek = 0 cannot be considered appropriate because of its small variance.

Irizarry et al [6] carried out a comparison study of ME using two data sets: (i)

part of the data from an extensive spike-in study conducted by GeneLogic and the Ge-

netics Institute involving about 95 HGU95A human GeneChip arrays, and (ii) part of a

dilution study conducted by GeneLogic involving 75 HGU95A GeneChip arrays. Four

ME are compared: (0 the Affymetrix commercial software MicroArray Suite MAS

4.0 default (AvDiff) (ii) their updated software MAS 5.0 default, (Hi) the Li and Wong

[7] multiplicative model-based ME, and (iv) a summary based on a log-scale additive

model, referred to as the log-scale robust multi-array average (RMA). This study seems

to be the first to compare ME and also to check the reliability of the technology with

data for which both bias and variance can be assessed. They find that in general the

technology works well, and also that RMA outperforms the other three ME. In this

paper, we give a brief overview of these findings, propose a statistical framework for

data using these arrays, and demonstrate with an example why RMA works better.

2 Methods

2.1 Background Correction

Several processes can affect the intensities read from each probe. Apart from the

specific hybridization directly related to the quantity to be measured, there is also

background (or optical noise), nonspecific hybridization, and cross-hybridization. The

Affymetrix strategy for extracting the signal of interest from the observed PM (perfect

match) intensity is to subtract the corresponding MM (mismatch) probe intensity. In

MAS 4.0, an ME for a gene is formed by considering the average difference (AvDiff)

of the PM and MM in the probe set. More precisely, an ME for a gene is formed by
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defining

AvDiff = N^1 £ (PMj - MMj) (1)

with A the subset of probes for which dj = PMj - MMj are within 3 SDs away from
the average of rf(2),..,rf(y_i), where d(7 ) is the j t h smallest difference. NA represents
the number of probes in A. The MAS ME and the ME from the Li and Wong reduced
model, discussed in more detail in Section 2.4, are also based on PM - MM. Dividing
instead of subtracting, i.e. using PM/MM, has also been suggested.

The rationale for using the PM - MM quantities is that they correct the effects that
bias the PM quantities. Another measure offered in MAS 4.0 software is an average
based on the log of ratios PM/MM. There may be biological or physical motivation for
considering differences (or ratios). We believe, though, that it is important to corrobo-
rate such assumptions empirically.

Figure 1 shows intensities of the PM, MM, PM/MM and PM - MM values for each
of the 20 probes representing the BioB-5 probe set in a set of 12 arrays. BioB-5 has
been spiked-in on the 12 different arrays at concentrations of 0.5, 0.75, 1, 1.5, 2, 3,
5, 12.5, 25, 50, 75, and 150 picoMolar. All arrays had a common background cRNA
from an acute myeloid leukemia (AML) tumor cell line. All plots in Figure 1 are on
the log scale except for lc. The low values of the PM - MM are plotted on a linear
scale because there are several negative values (in fact about 1/3 of the non-spiked in
probes have PM - MM < 0). The 20 different probe pairs are represented with different
symbols and colors. As expected, the PM values are growing in proportion to the
concentration. Notice also that the lines representing the 20 probes are close to being
parallel showing that there is a strong additive (in the log scale) probe-specific effect.
The fact, seen in Figure lb, that the additive probe-specific effect is also detected by the
MM provides motivation for subtracting these values from the PM. However, in Figures
lc and Id the parallel lines are still seen in PM - MM, demonstrating that subtracting
is not enough to remove the probe effect. The lack of parallel lines in Figure le shows
that dividing by MM removes, to some degree, the probe effect. However, since the
MM also grow with concentration, and therefore detect signal as well as non-specific
binding, results in an attenuated signal. Notice in particular that using PM/MM would
make concentrations of 25 and 150, a six-fold difference, indistinguishable. The PM —
MM demonstrate some attenuation for the high concentration spike-ins but clearly not
as much as PM/MM. Since subtracting probe-specific MM adds noise with no obvious
gains in signal detection, and because PM/MM results in a biased signal, [6] propose
background correction approaches which are different from subtracting or dividing by
MM. We now give a brief review.

The horizontal lines in Figure 1 represent the median intensity obtained from an
array for which no spike-in for BioB-5 was added. The dashed lines represent the first
and third quartiles. For the lower concentrations, it is hard to distinguish the measured
intensities from this median value. Notice also that the signal is attenuated for the
lower concentrations. A possible explanation is that background correction is needed.
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Figure 1: PM, MM, PM/MM, PM - MM, and b{PM) intensities, for each of the 20 probes
representing BioB-5 in 12 arrays where the probe set has been spiked-in, plotted against
concentration. Except for l(c), axes are on the log scale. Different probes are represented by
the different colors and symbols. The horizontal line represents the median of the 20 BioB-5
probes from an array where no spike-in was added. The dashed lines are at the 25th and 75th
quantiles.

To see this, consider a hypothetical case with two arrays where the signals of a probe

set is twice as big in one of the arrays, but an additive signal of 100 units occurs due
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to non-specific binding and/or background noise in both arrays. In this case, the ob-

served difference in the signals would be about Iog2(100 + 2s) — Iog2(100 + s) instead

of Iog2(2s) - Iog2(s) = 1. For small values of s, the incorrect difference would instead

be close to 0.
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Figure 2: Histograms (density scale) of log2(Λ/M) for an array in which no probe set was
spiked along with the 3 arrays in which BioB-5 was spiked-in at concentrations of 0.5, 0.75,
and 1 picoMolar. The observed PM values for the 20 probes associated with BioB-5 are
marked with crosses and the average with an arrow.

Figure 2 shows histograms of MM for an array in which no probe set was spiked,

along with the 3 arrays in which BioB-5 was spiked-in at concentrations of 0.5, 0.75,

and 1 picoMolar. The observed PM values for the 20 probes associated with BioB-5

are marked with crosses and the average with an arrow. All the average PM values are

close to 100. Thus, based solely on the average, a difference would be hard to detect.

Figures 2 and 3 suggest that the MM to the left of the mode of the histogram are similar

to the left half of a normal distribution. This suggests that the MM are a mixture of (/)

probes for which an intensity is read due to non-specific binding and background noise

and (//) probes detecting transcript signal (cross-hybridization) just like the PM. The

distance of the average PM from the average background noise does in fact increase

with concentration. This suggests that background correction of the data is necessary.

As noted earlier, PM-MM is not a solution we recommend.

The approach suggested by [6] is to use a global, instead of probe specific, back-
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Figure 3: (a) Histogram of log2(MΛ/) for spike-in concentration 12.5 picoMolar array in
the varying concentration series, (b) QQ plot of the MM left of the mode of histogram (a)
compared to a log-normal distribution with mean and SD estimated from the data.

ground correction. We assume that the observed intensity for each PM probe is the sum

of a specific binding component and a background component (which may include non-

specific binding). Denote these by PM = S+B. Because we are interested in S9 we use

b(PM) = E[5|PM]. We refer to b as a background correcting transformation. Irizarry et

al [6] assume B is normally distributed and that S follows an exponential distribution.

This assumption is convenient because in this case there is a closed-form solution to

E[S\PM]. The solution depends on the mean and variance of the normal distribution

and the rate of the exponential distribution. These parameters can be estimated from

the PM and MM probe level data. Figure If shows the background-corrected PM for

the BioB-5 probes. After background transformation, the low concentration values can

be distinguished from the values obtained for the array with no spike-in (represented

by the horizontal line). In addition, the fact that the slope is larger for the low concen-

trations in Figure If than in Figure la demonstrates that the signal is less attenuated

for low intensities. However, the intensity values for PM and b(PM) do not grow as

a straight line (in the log scale). Further improvements may be obtained with array

normalization.

2.2 Normalization

In many of the applications of high density oligonucleotide arrays, the goal is to learn

how RNA populations differ in expression in response to genetic and environmental

differences. For example, large expression of a particular gene or genes may cause an

illness resulting in variation between diseased and normal tissue. Observed expression

levels also include variation introduced during sample preparation and array manufac-

ture and processing. Unless arrays are appropriately normalized, comparisons of data

from different arrays can lead to misleading results. One approach is quantile normal-

ization [6], which forces the empirical distributions of probe intensities from all arrays
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to be equal. The approach works well in practice, see [3] for details.

2.3 Statistical Models

Figure If demonstrates that the background corrected probe intensities follow an ad-

ditive model in the log scale. Irizarry et al. [6] propose the following model for each

probe set

\og2{b(PMij)}=μi + a J + ε i j , i = l , . . . , / , y = l , . . . , . / , ( 2 )

with μι representing the log scale ME for array /, α 7 a probe affinity effect, and ε/y

representing an independent identically distributed error term with mean 0. For iden-

tifiability of the parameters, we assume that Yέ) α 7 = 0 for all n. This assumption is

equivalent to saying that Afϊymetrix technology has chosen probes with expected in-

tensities that on average are representative of the associated gene expression.

Under model (2), an unbiased estimate of///, the log scale ME for each array, can

be obtained using the average

μi=J-ι^\og2{b(PMiJ)}. (3)

Model (2) lends itself to various practical extensions. For example, to compare two

populations of RNA species for which there are technical replicates assumed to have

the same expected RNA expression, we can write

Here i denotes replicate and a the population. The natural estimate of μa would be based

on / times more data than (3). If instead of technical replicates there were biological

replicates, a term Z z ;, representing a random effect, could be added to the model.

Li and Wong [7] demonstrate that estimation procedures that remove outliers re-

duce the variance of ME estimates. Model (2) can be easily extended to a context that

motivates robust estimates of μ. We refer to the ME obtained from estimating μ in

model (2) using a robust method, such as the median polish approach used by [4] or

robust linear regression, as KM A (robust multi-array average).

2.4 Measures of Expression

Figure 4 shows a standard deviation versus average probe intensities scatter-plot from

a random sample of PM and MM obtained from five replicate arrays. Figure 4a shows

that the SD increases from roughly 50 to 5000, a factor of 100 fold, as the average

increases on its entire range. Figure 4b shows that after a log transformation of the

intensities there is only a 1.5 fold increase. This makes the log scale a more natural

scale for operations such as averaging. Apparently Afϊymetrix has also noticed this and,
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unlike the MAS 4.0 ME AvDiff, their MAS 5.0 ME is based on a log scale average.

Specifically, for each probe set the MAS 5.0 signal (measure) is defined as

signal = exp{Tukey Biweight(log(PM/ - C7}))}

with CTj = MMj ϊϊPMj > MM/, if PMj < MMj, then CTj is a quantity derived from

the MM that is never bigger than its PMpair. See [5] for more details.

(a) SD vs. Avg for PM (b) SD vs. Avg for log2(PM)

500 1000 2000 5000 10000 20000

Avq

Figure 4: Standard deviations (SDs) plotted against averages from 5 MGU74A mouse arrays
for a random sample of 2000 defective probe sets for (a) PM and (b) Iog2(/W). The curves
are loess fits.

Li and Wong [7] propose using the following model to obtain ME:

(4)

with φy representing the probe-specific affinities and independent identically distributed

mean 0 normally distributed errors 8/y. For each probe set, an ME is defined as the

maximum likelihood estimate of θ, , i = 1,...,/ obtained from fitting the multiplicative

model. The estimation procedure includes rules for outlier removal. For computational

speed, Li and Wong [7] use an iterative procedure that leads to estimates of the form

(5)

which is basically a weighted version of (1), although their algorithm does remove

outliers. This means that probes that are in general high will have a larger influence

on θ, . If in fact (2) is a better approximation than (4), then (5) leads to an expression

measure with larger variance than RMA (see [6]).

3 Results and Discussion

There is no gold standard to compare and test summaries of probe level data. For

this reason, data from spike-in experiments have been used to assess the technology
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and to motivate normalization procedures. In a similar way, [6] used data from spike-

in and dilution experiments to assess the MAS 4.0, MAS 5.0, Li and Wong [7], and

RMA expression measures. These data are especially useful because here there is an

expected result. Irizarry et al. [6] demonstrate through examples that RMA provides

more precise estimates of expression, as well as better specificity and sensitivity for

detection of differential expression, than the other three measures. In this section, we

give some specific examples that demonstrate why RMA performs better.

Figure 5 shows MVA plots: log ratios (or log fold changes) Mn = \og(Eιn/E2n)

versus average expression An = \og{y/E\nE2n) = (log£Ίn + log£2w)/2 for ME E\n and

Ein for all genes, n=l,...^V on two arrays. The arrays being compared here are part

of the spike-in experiment described in [6]. We show MVA plots for ME obtained

using MAS 5.0, Li and Wong [7], and RMA. To be able to fit the Li and Wong model

and to use a median polish for RMA, we compute ME using all 33 arrays that were

part of the experiment. Because MAS 5.0 is an improved version of MAS 4.0 [2, 6],

MAS 4.0 is not shown in Figure 5. The two arrays have 11 control genes spiked-in

at different concentrations, but for illustrative purposes we show only DapX-M, which

has been spiked in at concentrations of 2 picoMolar and 1 picoMolar on the two arrays

respectively. The log ratio for DapX-M should be about 1, corresponding to a fold

change of about 2. All other genes represented in the MVA plots should have log ratios

of 0 (fold changes of 1, or equal expression) because the samples hybridized to the

arrays represent the same biological assay. In the figures, genes having bigger observed

fold changes than DapX-M (false positives) are represented with big dots. Only RMA

has no false positives here. All measures result in an observed log fold change for

DapX-M of over 2, which is quite different from 1. Error associated with adding the

spike-in to the hybridization sample may account for this difference.

The barplots in Figure 5 show the PM and MM values for DapX-M and for two

other genes that produce false results. One had a large fold change (false positive)

estimated from the Li and Wong model (4), the other had a large fold change estimated

from MAS 5.0. The barplots show why subtracting the MM can cause problems. Notice

in particular the 11th probe in DapX-M, where the MM are several times higher than

the PM. They also demonstrate why giving large weight to probes with high values can

produce misleading results. For example, probe 13 in the set 33007^at, which is not

called an outlier by the Li and Wong algorithm, will have a large weight. Numerical

results obtained from these genes are given in Table 1. Table 1 shows that different

results can be obtained by using the different ME. The values shown in the barplot

for probe set 33658_at suggest that there is no fold change occurring for that gene.

However, the MAS 5.0 ME gives a log ratio of 1/40. The variance added by subtracting

the MM values causes MAS 5.0 to incorrectly assign a large fold change to this gene.

A possible explanation for why RMA outperforms the Li and Wong model is that

model (2) fits the data better than (4). The following example supports this explanation.

The method of Li and Wong provides not only an estimate of 0/ but a nominal SE for

this estimate, denoted here with d, . Under (2), one can obtain a naive nominal estimate
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Figure 5: MVA plots indicating the position of the DapX-M which was spiked in at a con-
centration of 2:1. Barplot for the three genes highlighted in the MVA-plots.

for the SE of μ using an analysis of variance approach. Because there are five replicates,

one can also obtain an observed SE of any estimate by simply considering SD;. If the

model is close to the actual mechanism giving rise to the data, the nominal and observed

SE should agree. Figure 6 plots the log ratio of nominal to observed variance versus

expression measure. These show that in general, the observed and nominal standard

errors are closer when using (2) instead of (4).



Expression Measures 401

Table 1: ME obtained using RMA, the Li and Wong model, and MAS 5.0 for three different
genes shown in Figure 5. Only DapX-M should be found to have true fold change.

Gene

DapX-M

DapX-M
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33007-at
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ME
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LiWong
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RMA

LiWong

MAS 5.0

RMA

LiWong

MAS 5.0
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85.4

2595.6

8.4

10.0

25.3

0.3
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46.1
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74.6

11.7

3.9

9.9

22.7

12.0

Obs. Iog2 ratio

2.7

2.8

2.4

0.1
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1.1

0.0

0.1

-5.4

Obs. fold change
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5.2
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1/40

(a) Li and Wong model (b) RMA
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Figure 6: (a) \og(σ2/SD2) plotted against log expression of the Li and Wong ME; (b)
log^/SD1) plotted against RMA

Irizarry et al [6] developed RMA, a summary of Aflfymetrix GeneChip probe level

data, that provides a measure of gene expression, which gives an improved measure

compared to other standard measures. The above serves as a specific example demon-

strating why RMA works better.
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These data are especially useful because we can define outcomes for which there is an
expected result.
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