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Abstract

In linkage disequilibrium (LD) mapping, use of information on multiple mark-
ers simultaneously is expected to lead to greater power to detect association and
smaller confidence intervals (CIs) for the location of the variant of interest than
would be obtained from single-point analysis. Among the important challenges
facing case-control LD mapping methods are (i) even when an appropriate con-
trol sample is available, there may be background LD in the control sample which
must be taken into account in the analysis, especially when fine-scale data are col-
lected, and (ii) in practice, genotype rather than haplotype data are often available,
limiting the applicability of some methods. Furthermore, in cases when genotype
data can, in principle, be incorporated, it can be computationally challenging.
We focus on simultaneous solution of these problems in the context of the De-
cay of Haplotype Sharing (DHS) method. We develop a computationally efficient
method that allows for genotype or haplotype data on many loci and incorporates
background LD based on a Markov model of order η. The case of a Markov model
of order 2 is implemented in free software. In addition, we demonstrate that fail-
ure to adequately model background LD can potentially have a major effect on
the analysis, and we develop and apply methods for assessing the adequacy of the
model for background LD.

Keywords: Decay of Haplotype Sharing; linkage disequilibrium; fine-scale mapping;

background linkage disequilibrium; cystic fibrosis; hidden Markov model

1 Introduction

Linkage disequilibrium (LD) has been shown to be useful for fine-mapping of trait-

associated variants [6, 10, 11, 15]. While early approaches generally treated each

marker separately, haplotype-based LD mapping methods have the potential to provide

considerable additional information when dense marker data are available in a region.

There are several approaches that combine results across loci in various ways without

explicitly modeling dependence among loci [4, 7, 17, 23, 31, 32]. Among approaches

that explicitly model dependence across loci, Service et al. [29] and MacLean et al
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[20] perform haplotype-based tests for association, in which they use multilocus mod-
els for haplotypes descended from an ancestor, taking into account recombination and
mutation. They require haplotype data, assume background linkage equilibrium, and
do not consider effects of population structure. There are several methods that per-
form haplotype-based tests of association in trios consisting of parents and an affected
offspring, conditional on the transmitted and non-transmitted haplotypes in the parents
{e.g. [2, 3, 36]). Lam et al [16] use a parsimony method to build an evolutionary tree
of disease haplotypes assuming a disease mutation occurs in an intermarker interval.
They then compute the likelihood of the tree using a model for recombination and mu-
tation. They obtain a posterior distribution for the location of the variant. Their method
assumes haplotype data. Background linkage disequilibrium is taken into account by a
Markov-type method in which the lag at any stage is chosen to coincide with the longest
match in the control database.

McPeek and Strahs [22] form a confidence interval (CI) for the location of the
variant, in which they make use of a multilocus decay-of-haplotype-sharing (DHS)
model for haplotypes descended from an ancestor, taking into account recombination
and mutation. They propose a quasi-likelihood approach to take into account population
structure in the affecteds. Assuming a conditional coalescent model for the population
structure, McPeek and Strahs [22] derive an approximate correction factor for the like-
lihood, and they model background LD by a Markov chain with lag 1. Morris et al. [25]
concentrate on biallelic markers in a Bayesian framework and obtain the posterior dis-
tribution of the location of the trait-associated variant using Markov chain Monte Carlo
(MCMC). They use a similar approach to that of McPeek and Strahs [22] to correct for
population structure. Rannala and Reeve [28] also employ a Bayesian framework and
obtain the posterior density of the position of the trait-associated variant by employing
MCMC to integrate over coalescent genealogy trees, using biallelic marker data and in-
formation about candidate genes from an annotated human genome sequence. Neither
Morris et al [25] nor Rannala and Reeve [28] consider background LD.

Liu et al. [18] also obtain the posterior distribution of the location of the trait-
associated variant using MCMC. Their model for population structure groups the dis-
ease haplotypes into clusters corresponding to different ancestral haplotypes and as-
sumes a star-shaped genealogy for the haplotypes within each cluster given the ances-
tral haplotype. They model background LD by a Markov chain with lag 1. Zhang and
Zhao [34] extend McPeek and Strahs [22] by implementing a stepwise mutation model
for mutation in microsatellite markers. They extend the conditional coalescent model
of McPeek and Strahs [22] to allow variable population size. Morris et al. [24] ob-
tain the posterior distribution of location of the trait-associated variant and incorporate
a shattered coalescent model for genealogies of the disease haplotypes using MCMC.
They also model background LD using a Markov chain with lag 1.

In this study, we simultaneously tackle two of the major difficulties that arise in
multipoint LD mapping with data on random samples of cases and controls: (1) LD is
generally present in the controls as well as in the affecteds, and this background LD
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can have a major impact on the analysis; (2) data are typically in the form of genotypes

with unknown phase, rather than haplotypes. Dealing with both of these issues simulta-

neously presents particular computational challenges, and a focus of our work has been

development of an efficient algorithm to handle them.

To deal with the second problem, that data are typically in the form of (unphased)

genotypes, one possible solution is to try to reconstruct haplotypes based on population

information, using one of the available methods [9, 12, 18, 19, 30]. We prefer instead

to incorporate uncertainty about the haplotypes into the analysis. The likelihood frame-

work of DHS makes an extension from haplotype to genotype data straightforward in

principle: one need only sum the likelihoods of all possible sets of haplotypes compati-

ble with the observed genotype data. This approach is implemented by Zhang and Zhao

[35]. However, with more than a small number of loci, this straightforward approach

quickly becomes computationally infeasible. We introduce a more computationally

efficient approach using a hidden Markov model (HMM), in which we incorporate a

Markov model, with lag η , for LD in the controls.

Methods for LD mapping generally consider two statistical problems, detection of

association (i.e. hypothesis testing) and localization (i.e. construction of a CI for the

variant of interest). If background LD, i.e. LD present in the controls as well as in the

affecteds, is not adequately captured by the model, it may be falsely attributed to the

presence of a variant associated with the trait. For the detection problem, unmodeled

background LD could result in excess false positive detections of association. For the

localization problem, unmodeled background LD could result in CIs that fail to have

the appropriate probability of covering the true location. For the detection problem,

a number of approaches have been developed that aim to produce valid hypothesis

tests in the presence of background LD [2, 8, 27, 36]. Here we instead focus on the

localization problem, which is not treated by these papers. In this context, McPeek

and Strahs [22] model background LD in control haplotypes by use of a Markov chain

model of lag η = 1. In analyzing the data set of Kerem et al [15], we find that a

Markov chain of lag η = 2 is preferable, as shown in the subsection "Importance of

modeling background LD" of the Results section. Incorporation of Markov models for

background LD is more challenging when genotype data are used instead of haplotype

data, because implementation of a Markov model requires one to keep track of phase

information. In this study, we devise a HMM to simultaneously incorporate genotype

data and a Markov model with lag η = 2 for background LD.

These new methods make it feasible to perform multipoint LD mapping on data

sets consisting of (unphased) genotypes for a large number of markers. We use sim-

ulated examples to compare fine-mapping based on genotype and haplotype data, and

we use the CF data set [15] to demonstrate the importance of the improved modeling

of background LD.
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2 Methods

DHS method for haplotype data

As developed in McPeek and Strahs [22], the DHS likelihood under the model for

a single observed haplotype hObs drawn from the population of affecteds, when there is

one ancestral haplotype h a n c , is

L(x,h a n c,τ" I,/?;ho bs) = (1 - p)l{x,Knc,τ~λ\\ϊohs) +/?/)nuii(hobs), (1)

where x is the location of the variant; τ is number of generations to the ancestor, or,

equivalently, τ " 1 is a measure of the amount of linkage disequilibrium and is equal to

the expected genetic distance from the variant to either edge of the ancestral segment

in an observed haplotype; p is a heterogeneity parameter representing the probability

that the haplotype hObs is not descended from the ancestral haplotype h a n c ; and Pnuii(h)

is the frequency of haplotype h in the control population. Furthermore,

he Ue Γ I

= Σ Σ s(τ~\-./\0 x Π m(k,τ,hΆnc(k),hobs(k)) x
1=07=0 L k=-j

) , . . . ,h o b s (/ r e )) x

is the likelihood assuming that observed haplotype hObs is a τth-generation descendent

of ancestral haplotype h a n c In the above expression, m(£,τ,α,β) models the mutation

process; it is the probability that allele β is observed at locus k, given that the hap-

lotype's τth generation ancestor at locus k had allele a. i and j index markers, with

marker 0 corresponding to the putative location x of the variant, and with markers on,

say, the distal side of x numbered with consecutive negative integers decreasing in the

direction away from the centromere and with markers on the proximal side of x num-

bered with consecutive positive integers increasing in the direction of the centromere.

(Note that the integer labels for the markers are defined relative to the putative position

x of the variant, which varies across the region during the analysis.) Here, — Ue is the

index corresponding to the "left edge" of the data set {i.e. the marker farthest from the

centromere), and lre is the index corresponding to the "right edge" of the data set {i.e.

the marker closest to the centromere). In the above expression, we sum over all possi-

ble choices of the marker intervals containing the two (unobserved) breakpoints of the

ancestral segment. Moreover,

is the probability that hObs inherits the variant and the ancestral segment, intact, between

loci — j and / inclusive but that it is no longer intact at locus —j — 1 nor at locus / + 1.
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Here, djj is the genetic distance between loci i and j . McPeek and Strahs [22] discuss

how to incorporate multiple ancestral haplotypes into this likelihood expression.

To combine likelihoods across observed haplotypes, one must make some assump-

tions about how the haplotypes are related. Under the assumption of independent re-

combinational histories (i.e. a star-shaped phylogeny), one can multiply the likelihoods

across haplotypes. This approach is generally anti-conservative when this assumption

does not hold. McPeek and Strahs [22] propose a quasi-likelihood approach to take

into account population structure, which in principle could be applied to any chosen

population model. For the case in which the affecteds are presumed to be only very dis-

tantly related with little else known about the population structure, McPeek and Strahs

[22] propose a conditional coalescent model for the phylogeny relating the affected in-

dividuals, conditional on the time to the common ancestor. With complete data, they

calculate and maximize a quasi-likelihood with respect to this model, and with incom-

plete data, they calculate and maximize a similar expression with the complete data

likelihoods replaced by incomplete data likelihoods. We employ the same approach

here. In the case of the conditional coalescent model or any other exchangeable pop-

ulation model, the parameter estimates obtained in this way are the same as under the

assumption of independence, but with the standard errors for the parameters inflated

and the log-likelihood deflated. When DHS is used to fine-map, this widens the CI for

the location of the trait-associated variant. In practice, then, to implement the condi-

tional coalescent model, we proceed as if the observations were independent, and then

implement the appropriate correction to the log-likelihood and standard errors at the

end. The approximate correction factor in the conditional coalescent case is

n-2

k=\

which corrects a typo in McPeek and Strahs [22] (factor of (-1) 1 vs. ( -1) I + 1 ) . The

DHS model can also be extended to the case when population structure is known [33].

In that case, the shape of the likelihood curve and, in particular, the maximum, will

generally not be the same when population structure is taken into account as when

independence is assumed.

The formulae of this section give a mathematical representation of the likelihood.

However, for computational efficiency in calculating and maximizing the likelihood,

we reformulate the probability model as a hidden Markov model (HMM) in the sub-

section "HMM for haplotype data, with Markov(η) model for background LD" below.

Uncertainty in ancestral haplotype is incorporated in CI construction

To construct a CI for the location of the variant, McPeek and Strahs [22] invert an
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(approximate) likelihood-ratio test. At each putative location x, their approximate log-

likelihood is maximized over h a n c , 1/τ and /?, assuming that the variant is located at x.

(The properties of the profile likelihood are discussed in McCullagh and Nelder [21].)

The CI is then based on a comparison of the highest maximized log-likelihood to the

maximized log-likelihoods at other locations. We emphasize that inference about vari-

ant location is not performed conditional on the maximizing value of ancestral haplo-

type. The mapping approach of McPeek and Strahs [22] does, in fact, take into account

the uncertainty in ancestral haplotype.

Mode of inheritance, mutation, and background LD

Implicit in the method given in the previous sub-section is the assumption of a

multiplicative model for the mode of inheritance, similar to that described by Morris et

al. [25]. Where β* corresponds to allele k,

P{affected | (GUG2) = (ij)} = β, β,

for an individual with genotype (i,j) at the variant. The multiplicative model has the re-

cessive model as a special case, but also allows heterogeneity. This model is convenient

when one does not have the information of how the haplotypes are paired. When that

information is available, one could easily implement some other mode of inheritance in

the analysis.

The mutation model we use is the same as that given by McPeek and Strahs [22].

For biallelic loci, this amounts to assuming the same rate of mutation between the two

alleles. We assume the same mutation rate at all markers. These assumptions can be

easily modified [34].

When choosing mutation rates to use in the DHS analysis, it may not be appropriate

to use a rate as low as the value of « 10~9 - 10~8 given for SNP loci by Nielsen

[26]. The reason is that only SNPs that are polymorphic across the individuals in the

data set are chosen for analysis. Therefore, the ascertainment process for the data set

insures the existence of at least 1 mutation at the SNP within the time-frame of the

coalescence of the study sample at that SNP. Thus, conditional on a SNP being in the

data set, its mutation rate over the time since the most recent common ancestor of the

variant is substantially increased over the unconditional mutation rate given by Nielsen

[26]. The extent of the increase depends on assumptions about the population history,

but the conditional mutation rate could be several orders of magnitude larger than the

unconditional mutation rate. Specification of a larger mutation rate would be expected

to lead to a more conservative analysis. In our analysis of the CF data set, we use a

mutation rate of 1 x 10~4 mutations per meiosis per marker. Note that in contrast to

SNPs, microsatellites would be less affected by this selection effect. The mutation rate

of a microsatellite is typically sufficiently high that its conditional mutation rate, over

the time period since the most recent common ancestor of the variant, conditional on it

being polymorphic in the study sample is very close to its unconditional mutation rate.
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In expression (1), the model for background LD enters the likelihood through

Pnuiι{h), which gives the frequency of haplotype h in the control population. In princi-

ple, one could think of leaving the control haplotype frequencies unconstrained (beyond

the requirement that they sum to 1) when estimating them from data. However, with m

loci, the number of parameters is 2m - 1 for SNP data (with many more for microsatel-

lite data), and the size of the control sample available to estimate these parameters is

typically small. Our approach is to constrain the control haplotype frequency distri-

bution to be Markov (η), i.e. for a given lag η, we require Pnuii{h(t) = it\h(t — s) =

i,-,,... ,h(f - 1) = i,_i} =Pnuιι{h{ή = i , | h ( / - η ) = i,_η,... ,h( f- 1) = z,_i} for all

s such that η ^ s < / + le, and all choices it-s,...,/, for alleles, where h(/) is the allele

at locus / in the haplotype h. Such a Markov model can be useful as a simple tool for

capturing the local dependence structure among loci on haplotypes randomly selected

from a control population. McPeek and Strahs [22] implement the case η — 1 when

complete haplotype data are available. Here, we implement the cases η = 1 and η = 2,

when either haplotype or genotype data are available, by means of a HMM.

HMMfor haplotype data, with Markov(r\) model for background LD

For computational efficiency in calculating and maximizing the likelihood, we re-

formulate, as a HMM [1], the probability model of sub-section "DHS method for hap-

lotype data". The HMM we give here differs from the one given in McPeek and Strahs

[22]. Although the underlying likelihood is the same, the HMM given here has com-

putational advantages over the previous version. These advantages are related to the

extension of the HMM to allow background LD to be modeled by a Markov model

with lag η > 1, which is given at the end of this sub-section. In section "Extension of

HMM to genotype data", we extend this HMM to the case when only genotype data are

available.

Suppose that, as in the previous subsection, the putative location of the variant of

interest is labeled marker 0, and the markers are numbered with consecutive positive

integers increasing in the direction of the centromere and consecutive negative inte-

gers decreasing in the direction away from the centromere. We define a discrete-time

Markov chain {Qι,0 ^ / ̂  /re}, where / indexes loci on the centromeric side of the

variant. The state space of {Qι} is {A,N}, where A stands for "ancestral" and N stands

for "non-ancestral." We define the event {Qι — A} to occur when the entire segment be-

tween locus / and the variant of interest (locus 0) is inherited, unbroken by crossovers,

from the ancestral haplotype. Note that {Q\ — A} holds in this case even if one or

more mutations have occurred at locus / (or elsewhere in the segment) in the time since

the ancestor. We define {Qι = N} = {Qι = A}c. The initial distribution of {£>/} is

P{Qo = N} = p = 1 - P{Qo — A}. The transition probability matrix for {Qι} is given

in Table la. In fact, we find it convenient to reverse the conditioning of Q. That is, we

define the initial distribution to be P{Qιre =A} = (1- p)e-τdv« = 1 - P{Qιre = N},

and we use the one-step transition probability matrix P{Qι\Qι+\} given in Table lb.
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The resulting process {£?/} has the same distribution as before. The computational

convenience of the reverse conditioning is related to the modeling of background LD

and is explained below after the observation distribution is introduced. We can define

a mirror-image Markov chain for the loci on the distal side of the variant, with the two

chains conditionally independent given Qo.

Table la: Transition probability matrix P{Qι\Qι-1)

Current State Probability that Next State Entered Is

A N
A e-tdiJ+\ \ _ e-tdu+\

N 0 1

Table lb: Transition probability matrix P{Qι\Qι+\)

Current State Probability that Next State Entered Is

A N

A 1 0

Consider the observation sequence {0/,O ^ / ̂  lre] associated with the Markov chain

{Qι,0 < / sζ lre}, where 0/ is the observed allele at locus /. Our formulation of the

distribution of 0/ conditional on Qι depends on our model for background LD as well

as on our model for mutations. For simplicity of exposition, we first assume background

linkage equilibrium. In that case,

pιn\n\-ί ™(ι^anc{l),Oι) ifβ/ = A
n ° / | y / ) " l//(o / ) ifβ/ = tf, w

where //(α) is the frequency of allele α at locus / in the controls. We can allow the

observed allele at locus / to be missing by setting P{Oι \ Q{\ = 1 when 0/ is missing.

This will yield the appropriate likelihood calculation for the case when the event that

Oι is missing is independent of Q\.

We now relax the assumption of background linkage equilibrium. Assuming a

Markov(l) model for background LD, the observation distribution for 0 < / < lre is

given by

ύ Qι - Ni

where /// + i (α |β) is the conditional frequency, in the controls, of allele α at locus /

given allele β at locus / + 1. If O/ is missing, we set P{Oι \ Qι,Oι+\} = 1, and i
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is missing, we set P{Oι \ Qι,Oι+\} equal to expression (2). P{Oιre\Qιre} remains the
same as in expression (2). Under our model, when 0 ̂  / < lre, P{Oι \ Qι,Qι+\, 0/+i} =
P{Oι I Qι,Oι+\}, which does not depend on g/+i. Note that if we had conditioned
in the other direction, P{Oι \ QhQt^uOι-\} would depend on g/_ l s and this is the
reason for our choice of the direction of conditioning. This is particularly useful for
implementing a Markov model of lag η > 1 for the background LD. In that case, the
observation distribution for 0 ̂  / ̂  lre - η becomes

-ί ™(',τ,lw(/),0/) ifQ ι =A
t //,...,/+η(<?/ I O/+1,... ,6>/+η) if Qι = N,

andP{O/ I β/,fi/+i,... , g/ + η ,0/ + l i . . . ,0/+ η} = P{Ot \ QhOM,... ,0 / + η } does not
depend on Qι+\,...,g/+η. This allows us to extend the model for background LD to
Markov of lag η > 1 without increasing the size of the state space of the hidden Markov
chain.

The joint process {Qι, 0/} was so far defined for 0 ̂  / ̂  lre. There is a correspond-
ing mirror-image process defined on — l\e ^ / ̂  0. When background linkage equilib-
rium is assumed, these two processes are conditionally independent given {Qo,Oo}.
When background LD is modeled by a Markov model of lag η > 0, the two processes
are conditionally independent given {£?o,Φb 7 ^ + η _ i } , for any choice of k with
- η + 1 ̂  k ̂  η - 1. In practice, however, we generally take the position of the vari-
ant (/ = 0) to be in between markers, rather than at a marker, so that Oo is always
missing (this is discussed further in Appendix A). We have developed extensions to the
Baum algorithms for likelihood calculation and maximization that are applicable to our
model, as outlined in Appendix A.

Extension ofHMM to genotype data

In practice, unambiguously-determined haplotype data are often unavailable. In-
stead, genotype data, in which phase is unknown, are commonly available. We de-
scribe an extension of the HMM of the previous sub-section to this case, which allows
computationally efficient analysis of data sets involving genotype data on many loci.

Consider the model for multilocus genotype data from a single individual. To sim-
plify the exposition, we first assume background linkage equilibrium. In that case,
we consider the Markov chain {Rf,0 ^ / ̂  /„,} = {(g^,gf),0 ^ / ̂  /re}, where
{βf^O ^ / ̂  /re} is the Markov chain of the previous subsection defined for the in-
dividual's maternally-inherited haplotype, while {Qf ,0 ζ / ̂  lre] is the Markov chain
of the previous subsection defined for the individual's paternally-inherited haplotype,
with {Qff} independent of {Qf}. The state space of {/?/} is {A,N}2, the transition
probabilities of {Λ/} are the products of the transition probabilities for the independent
chains {ζtf} and {fif}, and the initial distribution of {Λ/} is similarly obtained from
the initial distributions of {Q^} and {ζ?f}. The observation Of is the genotype data
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for the individual at locus /. The two possible phases for the genotype are a priori

equally likely, so the observation distribution takes a simple form, given in Appendix

B. As before, there is a corresponding mirror image process to {ζ?/, Of\ that is defined

on — lie ^ I ̂  0, with the two processes conditionally independent given {Qo, Go}.

We now extend the method to allow the background LD to be modeled by a Markov

chain with lag η > 1. In order to implement a Markov model of lag η , we need to retain,

at each locus /, the information of the phase of the genotype at / with respect to the

genotypes a t / - f l , . . . , / + η . When the genotype at locus / is recorded in a computer file,

an arbitrary order of the two alleles at locus / is chosen, and we introduce the random

variable Φ/ which represents the arbitrary order of the alleles in the recorded genotype.

We assume that Φ/ = (M,P) or (P,M) with chance 1/2 each, where {Φ/ = (M,P)}

denotes the event that the first allele listed in the file is the maternal allele and the second

allele listed is the paternal allele, and vice versa for {Φ/ = (P,M)}. For each / we define

(β/,β?) = (βf,βf) if */ = (M,P) and (Q},0) = (βf.βf) if Φ7 = (P,M). That is,
Q\ is the ancestral state corresponding to the ith recorded allele in the genotype, / = 1,2.

Furthermore, we define Iμ+\ to be the indicator of the event {Φ/ = Φ/+i}, that is, the

indicator of the event that the genotypes at loci / and / + 1 happen to be recorded so that

their phase with respect to one another is correct. We define the hidden Markov chain

{Rf,(K K U by Rfu = (QJκ,Ql) € {A,N}2 andRf = {Q),QJ,I,,l+ι) for (K / < lre,
except that when Q) = Qj = A, the information of 7/5/+i is not needed, so we collapse

the two states (A,A, 1) and (A,A,Q) into a single state. The state space for {Rf,0 < / <

lre] is thus {(A,A)} U [{(A,N),(N,A),{N,N)} x {0,1}]. The initial distribution and

transition probabilities for this chain are easily determined, assuming that {Q^} and

{Qf} are independent copies of the Markov chain in the previous sub-section, with the

Φ/ i.i.d as given above. The observation distribution is given in Appendix B.

Note that in order to accommodate a Markov model of lag 1 for the background

LD, we have increased the size of the state space from 4 to 7. Interestingly, we are able

to accommodate a Markov model of lag 2 without any change in the state space. This

is because, in the calculation of the observation distribution by the Baum algorithm,

both Rf and Rf+ι are available to condition on, as well as θf+x and O^_2>
 s o there is

no need to store extra information. As in sub-section "HMM for haplotype data, with

Markov(η) model for background LD," we extend to our model the Baum algorithms

for likelihood calculation and maximization (see Appendix A).

Choice ofr\for modeling background LD

For modeling background LD, we have defined a nested sequence of Markov mod-

els indexed by the lag η . The question arises as to how η should be chosen in prac-

tice. The usual trade-offs apply. In our case, if η is too small, background LD may

be erroneously identified as LD with a trait-associated variant, while if η is too large,

overfitting will quickly become a problem, as the number of parameters increases ex-

ponentially with η .



Importance of Modeling Background Linkage Disequilibrium 353

We view the choice of η as a problem of model selection. We consider two criteria,

the Akaike information criterion (AIC) (Akaike 1972) and the Bayesian information

criterion (BIC) (Schwartz 1978). Comparable formulations of these criteria are^/C =

—2L + 2k and BIC = — 2L + klogn, where L is the log-likelihood and k is the number

of parameters. For AIC and BIC, the model that minimizes the criterion would be

selected. The likelihood component L will always increase with η ; both procedures

include a penalty for the number of parameters, which offers some protection against

overfitting.

In addition to these generic model selection techniques, we also perform an infor-

mal diagnostic, suggested by Paul Van Eerdewegh (personal communication), which is

more specific to our method. To perform this diagnostic, which we call "mapping in

controls", we plug the control haplotypes/genotypes into the mapping program in place

of the affecteds' haplotypes/genotypes. We use the same control haplotypes to fit the

Markov(η) model for background LD. To assess the results of mapping in controls, we

generate the resulting log profile likelihood plot for the location of the variant. Because

the same data are used both to estimate the parameters of the model for background LD

and for mapping, if the model for background LD is adequate, the procedure should

"recognize" these data as fitting the model. The existence of a pronounced peak in the

resulting plot would suggest the presence of LD in the controls that is not adequately

modeled by the Markov (η) model. If this peak coincides with the peak in the affecteds,

then this suggests that the peak in the affecteds may be spurious or at least higher than

is warranted. To remedy this, we would try increasing the lag η to capture more of the

background LD.

3 Results

Importance of modeling background LD

We demonstrate the importance of modeling background LD in the CF data set of

Kerem etal [15]. The data set includes 94 haplotypes from affected individuals and 92

haplotypes from normal individuals. Pairs of haplotypes in individuals are not identi-

fied. Each haplotype consists of 23 biallelic markers within a 2-Mb region covering the

gene. All physical distances are converted to genetic distances by use of the equivalence

1Mb « 1 cM. Note that if the mutation rate were assumed to be 0, then the DHS results

would be invariant under a rescaling of distance, i.e. 1Mb « k cM for any k. When the

mutation rate is low, the DHS results would be expected to be robust to deviation of k

from 1. We further note that experiments (results not shown) have demonstrated that

the method is relatively robust to misspecifications of genetic distances while errors in

map order of the marker loci may have a more serious effect.

To demonstrate the importance of modeling background LD in the CF data set of

Kerem et al [15], we first perform mapping in the controls. Figure 1 gives the profile

log-likelihood curves for the control haplotypes for LE (η = 0), η = 1 and η = 2. For
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both η = 0 and η = 1, the plot for mapping in the controls is sharply peaked, suggesting

that background LD that is present in the controls could be driving some of the mapping

results in the affecteds. In contrast, the plot for η = 2 is completely flat, suggesting that

there is little unmodeled background LD detected in the controls, but leaving open the

possibility that the Markov(2) model could be overfitting the data. Table 2 gives the

results of the AIC and BIC model selection procedures, where we have added constants

to AIC and BIC so that each has value 0 for η = 0. The results indicate that the model

with η = 2 is strongly preferred over η = 0 and η = 1 by both the AIC and BIC criteria.

This leaves open the possibility that a value of η > 2 may be optimal according to the

AIC and/or BIC criteria. However, the results of our diagnostic in Figure 1 suggest that

additional unmodeled background LD, if present, is having little effect on the proce-

dure.

Table 2: Model Selection for background LD in CF data set of Kerem et al. [15]

log-lik. #param. AIC BIC

-1208.325 23 0 0

-739.951 45 -892.748 -837.269

-628.621 87 -1031.408 -870.013

Figure 2 shows the results of LD mapping when each of the three models for back-

ground LD is used. In the case of η = 0 (linkage equilibrium), the resulting profile log-

likelihood curve for the affecteds resembles the profile log-likelihood for the controls

given in Figure 1, suggesting that the mapping results in this case may be misleading

due to unmodeled background LD. In fact, neither the 95% CI assuming independence

of recombinational histories nor that assuming the conditional-coalescent model con-

tain the true location of the variant. The resemblance between the curves for cases and

controls is less strong for the case of η = 1 and non-existent for the case of η = 2. In

both of these cases, the CIs cover the true location of the variant. In this data set, LD

around the Δ508 mutation in the affecteds is very strong relative to the background LD,

but if the LD signal were weaker, as might be expected in many data sets, the model for

background LD would presumably become even more critical.

Mapping results for genotype vs. haplotype data

The cystic fibrosis (CF) data set of Kerem et al [15] has almost complete haplotype

information for affecteds and controls. By randomly combining haplotypes into geno-

types and then throwing away the phase information, we can compare the results of LD

mapping based on haplotype data with the results when only genotype data are avail-

able. Figure 3 gives the profile likelihood curve for one random pairing of affecteds'

haplotypes to form genotypes for 47 individuals, where we treat phase as unknown.

Here, a Markov model with lag η = 2 is used to capture background LD in the analysis.

For comparison, figure 2 gives the same plot assuming haplotype data are available.
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Figure 1: Results of mapping-in-controls diagnostic for DHS analysis of CF data set of
Kerem et al. [15], where background LD is modeled as Markov(η) with η = 0 (upper left),
η = 1 (upper right), η = 2 (lower left). Curve gives log profile likelihood vs. (putative)
location* of variant, where x is expressed as distance from D21S1885. The dotted vertical
line is the estimated variant location in controls, the unbroken vertical line is the true variant
location, the dotted horizontal line is the 95% CI when independence of recombinational
histories is assumed, and the unbroken horizontal line is the 95% CI when a conditional-
coalescent model is assumed. The assumed mutation rate is 10~4 mutations per marker per
meiosis. The hash marks give the locations of the biallelic markers. (Because the curve is flat
for η = 2, we omit the CIs, both of which cover the entire region.)
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Figure 2: Results of LD mapping for CF haplotype data by the DHS method, where
background LD is modeled as Markov(η) with η = 0 (upper left), η = 1 (upper right), η = 2
(lower left). Curve gives log profile likelihood vs. (putative) location x of variant, where x
is expressed as distance from D21S1885. The dotted vertical line is the estimated variant
location based on affecteds' haplotypes. The unbroken vertical line, unbroken and dotted
horizontal lines, and the hash marks have the same meaning as in Figure 1.
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The curves are nearly identical (after rescaling of the vertical axis), and the CIs for

genotype data are only slightly wider, reflecting a slight decrease in information about

the location of the variant due to the missing phase. This is expected because CF has a

recessive mode of inheritance and low heterogeneity. This lack of heterogeneity means

that many loci are homozygous and little information about phase is lost.

Figure 3: Results of LD mapping for CF genotype data based on a random pairing of
affecteds' haplotypes Curve gives log profile likelihood vs. (putative) location x of variant,
where x is expressed as distance from D21S1885, and where background LD is modeled as
η = 2. The dotted vertical line is estimated location based on affecteds' unphased genotype
data. The unbroken vertical line, unbroken and dotted horizontal lines, and the hash marks
have the same meaning as in Figure 1.

To add more heterogeneity, we sample 47 affecteds' haplotypes without replace-

ment and pair each with a randomly chosen control haplotype. This mimics the case

of a rare dominant trait. We then assume we have only (unphased) genotype infor-

mation for these 47 pseudo-individuals. The resulting log-likelihood curve, and the

log-likelihood curve for the same data assuming haplotypes are available, are given in

figure 4. In this case, the difference in the CIs between the cases when only genotype

data are available and when haplotype data are available is somewhat more noticeable.
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For this simulated example, the assumption of a multiplicative model for the mode of

inheritance does not hold, but, at least in this case, the DHS method appears to be

relatively robust to the deviation from that assumption.

Illllllll II I

Figure 4: Results of LD mapping for CF genotype data with added heterogeneity (left)
with results assuming haplotype data with added heterogeneity shown (right) for comparison.
In each case, the curve gives log profile likelihood vs. (putative) location x of variant, where JC
is expressed as distance from D21S1885, and where background LD is modeled as η = 2. In
the top plot, the dotted vertical line is estimated location based on unphased genotype data,
while in the bottom plot, the dotted vertical line is estimated location based on haplotype
data. The unbroken vertical line, unbroken and dotted horizontal lines, and the hash marks
have the same meaning as in Figure 1. The details of the added heterogeneity are given in the
text.

4 Discussion

In LD mapping, the presence of unmodeled background LD can have potentially serious

consequences. LD that is common to both cases and controls may be mistaken for LD

in cases that is due to the presence of a trait-associated variant. This is particularly

likely to happen when markers are densely-spaced. For instance, in the CF data set

of Kerem et ah [15], when background LD is inadequately modeled (η = 0 or 1)

and the mapping-in-controls diagnostic is performed, the highest peak based on the

DHS analysis corresponds to the most densely-genotyped region. That background

LD would tend to be stronger among closely-spaced markers is to be expected under

a model in which LD is broken up by recombination, leading to a sharp drop-off in

LD with distance. As a result, if background LD is not appropriately modeled when

performing localization, then the tendency will be for the estimated location of the
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variant to fall in the most densely-genotyped region or in a region of very low marker

information adjacent to the most densely-genotyped region. In addition to the effects

of marker spacing, the degree of polymorphism of the markers is also a factor. The lag

η of the Markov model may need to be greater with less polymorphic loci. Thus, for

example, larger η may be required to adequately model background LD in SNP data

than in microsatellite data of the same marker density.

The conclusions regarding importance of adequately modeling background LD

would be expected to hold not only for the DHS method, but for other methods with a

similar case-control approach, including those of Service et al [29], Morris et al [25],

Liu et al [18], and Morris et al. [24]. Our results address the effects of background LD

on the localization problem. For the problem of detecting association with a variant,

when such methods are applied, the presence of unmodeled background LD could be

expected to increase the chance of false positive detection of association.

We extend the DHS methodology of McPeek and Strahs [22], who allow for haplo-

type data and model background LD using a Markov model with lag 1. For haplotype

data, we develop a computationally efficient method that allows a Markov model for

background LD with lag η . We also extend the method to allow use of (unphased)

genotype data, which are much more commonly available than haplotype data. In prac-

tice, the order of the Markov model for background LD is limited by the size of the

sample of controls needed to estimate the frequency parameters and by the increas-

ing computational demands of higher order models, especially for genotype data. We

have implemented, in free software, the DHS method for both haplotype and geno-

type data, with background LD modeled as Markov(η) where η < 2. These methods

are implemented, for both haplotype and genotype data, using an efficient HMM. The

genotype-data DHS HMM incorporates uncertainty about phase into the likelihood and

allows the method to operate on data sets with a large numbers of marker loci. In addi-

tion to the CF data set which includes 23 markers, we have applied the methodology to

data sets with (unphased) genotype data on 80+ markers (data not shown).

We demonstrate the importance of modeling background LD using the CF data

set. For that data set, our results indicate that when background LD is assumed absent

(η = 0) or is modeled by a Markov (η = 1) model, additional unmodeled background

LD present in the controls could be driving some of the mapping results in the affecteds.

The model selection criteria AIC and BIC both prefer the Markov model with η = 2

to those with η = 1 or η = 0. Based on the mapping-in-controls diagnostic, there is

no detectable unmodeled background LD in the controls when the model with η = 2

is used. When mapping (with affecteds) is performed, the 95% CI for location does

not cover the true variant when η = 0 is used, while the CIs do cover the true location

in the cases η = 1 and η = 2. In the CF example, there is little heterogeneity among

the affecteds, so the model for background LD plays less of a role in the analysis than

it would in a situation of greater heterogeneity. Thus, we might reasonably expect

the effects of background LD to be more important in other data sets. In practical

situations, one could apply the AIC and BIC model selection criteria to compare models
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of background LD, and one could apply the mapping-in-controls diagnostic to assess

the adequacy of the chosen model.

We have extended our methods to allow for unphased genotype data as well as for

haplotype data. While in some cases, genotype data on close family members may

provide considerable haplotype information, our extension to unphased genotype data

may be particularly useful when it is difficult to obtain genetic data from close relatives,

as may happen when studying diseases with a late age of onset, such as Type 2 diabetes.

In addition to allowing for haplotype or unphased genotype data, the DHS method can

also be extended to allow for trio data [33].

There have been some interesting recent results regarding the possible nature of

background linkage disequilibrium [5, 14]. These results suggest that high-resolution

haplotype structure, at least in certain regions of the human genome, takes a relative

simple form. This consists of disjoint haplotype blocks (of tens to hundreds of kb),

where within each block there is very strong LD with only a few {e.g. ~2-7) commonly-

occurring haplotypes. Between the blocks are regions over which there is lower LD

(possibly representing recombination hotspots, at least in some cases [13]). Many ques-

tions remain about the extrapolation of these observations to the human genome as a

whole and to various human populations, from the select regions, populations, and data

sets that have so far been studied. There is currently some interest in a large-scale ef-

fort to explore this hypothesis and to take advantage of it for LD mapping (e.g. see

h t t p : //www.genome.gov/page.cfm?pageID=1000167β). The Markov models con-

sidered by [5] are extensions of the models we consider here. In order to characterize

this block structure, if it exists, a tremendous amount of data would need to be col-

lected and an enormous number of parameters estimated (including start and end points

of blocks, common haplotypes in blocks and their frequencies, associations between

common haplotypes in different blocks, and also characteristics of the regions of low

LD between blocks). Were such information available, these more detailed models for

background LD could be incorporated in a natural way in the DHS model. Further-

more, the DHS likelihood for a single haplotype could itself be modified to incorporate

a model of block structure for fine-resolution haplotypes.

Another interesting extension would be to combine the DHS method with a method

such as the structured association method of Pritchard et al. [27], which uses genotypes

at unlinked markers to infer population substructure which is then used to test associ-

ation at the locus of interest. The information of population substructure could pre-

sumably also be used for the localization problem with multilocus data. Alternatively,

an idea similar to that of genomic control [8] might be adaptable to the localization

problem.
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Appendix A: Likelihood calculation and maximization

We have developed extensions to the Baum algorithms for likelihood calculation and

maximization that are applicable to our model. We first define yι{i), for a given sam-

pled haplotype, as the probability that Q\ — i at locus /, conditional on the observed

haplotype and the parameter values (all of the following probabilities are conditional

on the parameter values), i.e.,

yι(i)=P{Q, = i\O},

which by the definition of conditional probability is P{Qι — i',O}/P{O}. The numera-

tor is computed as the product of two complementary recursively generated variables,

a "forward variable" α and a "backward variable" β. For /, —//e ^ / < 0,

P{Qι = i,O} =

P{Oι+x,..., O,re_,, O,re I O-,u,. ..,O,,Q, = i}

= P{O-,le, O-ιle+ι, ...,OhQι = i} x

i,...,O,re_i,Oίre \Oh...,O/-η+i,Q, = i}

where

and

β/(i) = P { 0 / + i , . . . ,0/,. I 0/,0/- η + i ,β/ = i}.

The definitions for the forward and backward variables on the centromeric side of

locus 0 are mirror images of the previous case, i.e., for /, 0 < / ^ lre,

e ,O-/ f c + i , . . . ,O/-i I 0/,... ,
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and

We note that the left and right sides of the chain are dependent, conditional on Qo,
only for Qo = N. In this case, the likelihood of the haplotype is just PΛU//(h0^). For

= /-//#f-//β+i(h(-//e),h(-//e+l))x

We note that we "skip over" locus 0 in this product, e.g., we include (recall that Go
is missing) P{OX \ O0,O-U... ,0_η} rather than P{0\ \ O0,O-h... ,O_η_!}, as a
Markov model of order η generally implies. Were we to include the latter, the like-
lihood given Qo = N would depend on the marker interval within which the variant
is assumed to lie, although, according to our model, the haplotype is drawn from the
normal population. Thus, we use

to compute γo(/).

Where h indexes the sampled haplotypes, c* = ΣhY/,h(̂ ) and b* = ΣhΎ/,h(̂ ) x

h(i)ίκnc(i)> t h e n (c-/,.^-/,.v ^ i i ^ I i ^ o ^ ΐ ^ ΐ ^ ^ L ^ L ) i s t h e conditional ex-
pectation of the complete data sufficient statistic for (1/τ,/?) given the data and current
model. The model parameters are then re-estimated by maximizing the complete data
log-likelihood, substituting this statistic for the complete data sufficient statistic.

The extension to genotype data is straightforward. The primary differences are (1)
the state space of the Markov chain is larger and (2) c* is formed by summing over the
genotypes, rather than the haplotypes.

Appendix B: Genotype HMM Observation Distributions

Assuming linkage equilibrium,

P{Of = (α,β) I Rf} = \/2P{df = a | Q?}P{Of = β | fif}
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for the case when both α Φ β and Q™ φ Qj, and

P{θf = (α, β) I Rf} = P{OY = a \ QT}P{θf = β | βf}

if either α = β or Qf = Qf, where Of1 is defined to be the allele at locus / on the

maternally-inherited haplotype, Of is defined to be the allele at locus / on the paternally-

inherited haplotype, and P{θf \ Qf} and P{θf \ ζtf} are given by expression (2).

Let Of = (θ},0f) be the alleles of the genotype at locus /, given in order Φ/. For

a Markov model of lag 1, the observation distribution is given by

P{Of \R?,Of+l} =P(θ}\Qλ

hO
ι

l+ι)P(Of\Qi,Oj+ι)Iυ+ι

+P(Oj\Qj,Oj+ι)P(Oj\QJ,Oj+i)(l-Iυ+ι)

for 0 < / < lre, where P(Oι\Qι, O/+i) is given by expression (3). When Q\ = Qf = A,

this equation reduces toP(θf\Q] = Qf =A,θf+ι) =P{Oj\QJ =A)P(θf\0 =A). For
a Markov model of lag 2, the observation distribution is given by

p(oj \Q), o}+1, όf+2)P(d}\Qί, df+u

P(Oj\Q},Of+uOf+2)P(0}\Q},θ}+uθ}+2)(l -Iυ

+ P(0}\Q},0Ϊ+u0}+2)P(0}\Qi},0}+ι,d}+2)(l -//,

for 0 ^ / < Ire - 1, where P(Oι\Qι,Oι+\,Oι+2) is as given by expression (4). When

Qj = Qj —^> this equation reduces to

P(Of\Q] = Q}=A,Rf+l,Of+l,Of+2)=P(O]\Q} =A)P(O}\Q}=A).
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