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This work was prepared for presentation at the European Centre for Medium-Range
Weather Forecasts, Workshop on the Diagnosis of Data Assimilation Systems, Reading,
England, November 1998. Four dimensional variational data assimilation, called 4D-Vax in
the atmospheric sciences literature, is a method for combining forecast, dynamical systems
equations, prior information about properties of the atmosphere, and heterogeneous ob-
servations, to get an estimate of the evolving state of the atmosphere. 'Four dimensional'
refers to one time and three space variables, as opposed to three space variables alone. In
4D-Var an entire trajectory in time is fit to the available information. Some of my recent
research in this area is aimed at studying the use of GCV and GML methods in choosing
the numerous tuning parameters in this fitting problem. We (abstractly) generalize the
'toy' weak 4D-Var model in Gong, Wahba, Johnson and Tribbia (1998) to include adaptive
tuning of a variety of parameters throughout the 4D-Var variational problem, and note
issues of sensitivity and identifiability. We discuss 'models' for model errors which include
systematic, short memory and long memory errors. Finally we remark on the role of the
theory of representers in reproducing kernel Hubert spaces in the weak 4D-Var setting.
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1 Introduction

We first consider the general setup in the experiment in Gong, Wahba, John-
son and Tribbia (1998), which is a toy weak 4D-Var model (actually one
time and one space variable) with five unknown smoothing, weighting and
distributed parameters, which were simultaneously adaptively tuned using
generalized cross validation (GCV) calculated via the randomized trace tech-
nique. In that setup 'model error' was generated as the difference between a
'nature' model and the 'computer' model, but white noise model errors were
assumed in the weak 4D-Var variational problem. In this paper we then
(i) review the use of model errors as dual variables, (ii) review the GCV
and generalized maximum likelihood (GML) tuning methods, and pinpoint
sensitivity issues as tunable parameters are sprinkled liberally throughout

lrΓhis research was supported in part by NASA Grant NAG5-3769 and NSF Grant
DMS9121003.
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the weak 4D-Var problem, noting that they can be studied in the influence
matrix (or influence operator in the nonlinear case). Then (iii) we describe
some simple models for correlated model errors and the simultaneous consid-
eration of systematic (bias), short memory and long memory correlation. We
end with (iv) a summary of some representer theory in reproducing kernel
Hubert space (RKHS) relevant to the weak 4D-Var setting.

Let t = 1, , T denote discrete time and let Φ ί ? t = 1, T be a sequence
of state vectors representing (some part of) nature that evolves according to

(1) Φ t + 1 = M tΦ t + N t + &, ί = l, Γ - l ,

where Mt is the model evolution operator, (in matrix form here), N t is a

forcing function, (a vector here), and the ξt represent model errors, which

we will discuss in more detail later. Here Φ* is the forecast for t = 1 assumed

to satisfy

(2) Φi = Φ* + e,

with e* ~ ΛΓ(0,σ^Q*). M* = Mt(θfj\),Nt = Nt(0M) are assumed to contain
some tunable distributed parameters 0M . The observations are

(3) y t = K tΦ t + €U te Λ,

with et ~ Λf(0, cr^Si). The forward operator Kt is a map from state vector
space to observation space at time t E Λ, and Kt = Kt(0χ) m a Y also contain
some tunable parameters, for example calibration coefficients or bias correc-
tions. Here Λ is the set of observation times, which are assumed to be a
subset of the model update times t = 1, , T.

In Gong, Wahba, Johnson and Tribbia (1998), a toy weak 4D-Var prob-
lem was formulated as: Find Φ = (Φ'1? , Φτ)' 5 to minimize

T—1

(4) \ Σ iiy* - κ*φtiιl-i + \ Σ Hφ*+i - Mt(θM)*t - Nt(0M)iι2

Q-i +
σ° t€Λ ' °m t=l '

^ I I Φ . - Φ X I I ^ + ^ IΦTI I ] .

Here ||v||£ = v'Cv for C a non-negative definite matrix. This formulation

corresponds to ξt ~ Λf(0, σ^Qt), independent from time to time, and a prior

belief that | |Φr | | j is 'small' where J is a quadratic penalty representing a toy

version of e.g. a penalty for lack of balance. Letting 7 = σl/σ^, α = σ^/σ^

and η = σ^/6, then the minimizer of (4) is the same as the minimizer of

T-l

teΛ * t=i

+
(5) =
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say. The J terms have their usual meaning as observation, model, forecast
(called 'background' in the Atmospheric Sciences literature) and constraint
except that the coefficients in front have been scaled relative to observations.
The major tuning parameters {7, α, 77} and a two coefficient distributed pa-
rameter #M in the model were simultaneously tuned by the GCV method
using the randomized trace technique, which allows the computation of the
cross-validation function to be carried out by rerunning the model with per-
turbed data. Details of the randomized trace technique may be found in
Girard (1998) or Gong, Wahba, Johnson and Tribbia (1998). For more on
the GCV method see Wahba (1990) and references cited there. 'Nature' was
simulated using the barotropic vorticity equation on a latitude circle, solved
with a high order method on a fine time and space grid, and noisy observa-
tions were generated from nature using a random number generator. S* was
taken as I both in generating the data and in analyzing it via (5), and e* was
generated as a zero mean random Gaussian vector with covariance a multi-
ple of Q*. 'The model' was based on a cruder integration of the barotropic
vorticity equation, so that 'model error' may be thought of as the difference
between 'nature' and 'the model'. In this case, as in nature, model error
is not readily describable in terms of means and covariances, nevertheless,
they may be a convenient, although crude way of dealing with model error
that is not well understood. In the experiment Qt was taken as the identity
matrix. The five tuning parameters were selected for adaptive tuning via
the GCV method because it was believed, as a result of some preliminary
experiments, (plus guesswork) that the solution and the 'predicted' obser-
vations computed from the solution, were sensitive to them. It turned out
that the predictive mean square error, based on ytrue — yfitted ? where ytrue
is what would have been observed if there were no errors anywhere, (known
only in a simulation, of course), was sensitive to all five parameters, but, on
comparable scales, α, the parameter relating observational to model error,
had a much broader, flat minimum. One possible explanation is that the
'white noise' assumption for model error was not a very good representa-
tion for model error. Although the sensitivity to α was not great, the weak
constraint estimate gave better results than the strong constraint (α -> 00).
Dealing with model error is an open scientific issue, according to Courtier
(1997) and others. Before going on to some speculative discussion of ap-
proaches to model error in the weak 4D-Var problem, we note that it was
clear in the experiments in Gong, Wahba, Johnson and Tribbia (1998) that
the five parameters being tuned interacted with one another. For example
the optimal value of one of the physical parameters in 0M was systemati-
cally larger than the 'true' or 'nature' value but it depended on the choice
of (7, α,η).

With regard to 0M, in the present study, 0M contributed essentially two
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degrees of freedom to the fit. In practice, 0M may be widely distributed. If it
contributes many degrees of freedom, then in general it will be appropriate
to include a (tunable) penalty term, say £| |0M|ID *° ^ e variational problem,
see Wahba, (1990b), O'Sullivan (1991), Navon (1998), Evensen, Dee and
Schroter (1998).

2 Dual variables, nonlinear forward operators and models, cor-
related model errors

Following Bennett (1997) and Courtier (1997), notice, assuming that Φ*

and the Nt known, that Φi , , Φ ^ are determined by e* and the vector

£ — (fί j ' ϊfT-i)7 and vice versa. Thus one may change variables from

Φi, , Φ τ i n ( 5 ) to(e*,ξ) to get

T-l

y* " K i Φ ^ O l g . ! + α Σ II6IIQΓI + 7lk*||J-i + η\\9τ(e*,ξ)\\l

and solve the variational problem for e* and ξ instead of for Φ 2 . To take a
closer look at this problem, let Kt = K^Φt, x = (e*,^')', and redesign Jc so
that it is quadratic in x, letting J c(x) = | |x | | j , J = J(0C). Concatenate the
yt, Kί,Sf and Qt in an obvious way, and allow more tuning parameters to
get K(0K), S = S(0O) and Q = Q(0j), and let Q* = Q*{θb). Furthermore, we
specifically do not want to restrict Q to be block diagonal, so that we can
allow for model errors correlated from time to time. Let λ~ x Σ = λ~1Σ(θ^)
be a quadratic form standing in collectively for αQ,7Q* and 77J. The result
is the variational problem

(7) (y - Kx/S" 1 (y - Kx) + λ x ' Σ ^ x ,

with tuning parameters θ = (0κ5^M5^θ5^^fe5 0c) We note that (7) is not
changed if the Kt and Mt are nonlinear, in that case K is a nonlinear map from
x to y, but under the assumption about J c , the second term is quadratic.

If K = K, meaning K is linear, then the minimizer XΛ of (7) is3

(8) x λ = (K'S^K + λ Σ - 1 ) - 1 ^ " ^ = ΣK'(KΣK'

where ηi is the ith column of ΣK', and, letting c = (ci, >Cn)', (KΣK' +
λS)c = y. This is a trivial example of representer theory (implemented,

2The reader may consult Bennett (1992, 1997) or Courtier (1997) to see how these toy
models relate to operational ocean and numerical weather prediction models

3This formula assumes that the quadratic form x'Σ~1x is of full rank. If it is not,
see Kimeldorf and Wahba (1971), Wahba (1971), Wahba (1990). Having already abused
notation, replace x /Σ~1x by x'Px. For (7) to have a unique minimizer in the linear case it
is necessary and sufficient that x 'Px = 0 and Kx = 0 imply that x = 0. In practice users
should make sure that the null space of P is not too big!
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for example in PSAS, Cohn, Dasilva, Guo, Sienkiewicz and Lamich (1998)),
where a system of size the dimension of y is to be solved even if the dimension
of XA is much bigger than the dimension of y.

3 Tuning methods

With the dimension of x orders of magnitude greater than the dimension
of y, it is clear that the number of tunable parameters in K, S and Σ is
limited by the amount of information in y, and by the possibility of alias-
ing/identifiability. (Of course to the extent that desirable values of these
parameters do not vary over long periods of time, historical information
may be collected). In any case, it is neither possible, nor even desirable
to have models for the model error covariance matrix Q, the forecast error
matrix Q* or the constraint functional Jc to have an overabundance of free
parameters. Furthermore, the solution should be sensitive to any parameters
considered for adaptive tuning.

Equation (7) may be interpreted as the variational problem associated
with the statistical assumptions

(9) y = Kx + e, e~Λf(0,σ2S), x - Λf(0,6Σ), λ = σ2jb.

The influence matrix A(λ, 0), which maps S - 1/2y into S - 1 / 2 KXA
 4 is given

by
(10) A = S-^KίK'S^K + XΣ-^K'S-1'2 = B(B + I)'\

where B = B(λ,0) = ^S-1/2KΣK/S~1/2. It is clear that B must be sensitive
to a component of θ in order for estimation of that component to make sense
and aliasing of parameters inside B is to be avoided 5 . The GML estimate
for λ, θ is the minimizer of

(11) } [detS~l]l/n[det(\ -

and the GML estimate for σ2 is ^y/S"1/2(l - A)S~1/2y. The GML estimate
has certain optimality properties when the stochastic model (9) is correct
up to the unknown parameters. Little is known concerning its robustness
to this assumption, see Wahba (1985). Note that there are other forms of
maximum likelihood estimates , depending on which unknowns are included
and how they enter into the formulas. The GCV estimate is the minimizer
of

(12) V(\,θ) =
=

(ifrαce(l-A))2 " (±irαce(l -4In the nonlinear case use this to define the influence operator.
5That is, in principle at least, the Hessian of B with respect to (λ,0) should be well

conditioned.
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In theory it may not be suitable for estimating sensitive parameters inside
S (i.e. 0O), since it is theoretically based on assuming that the problem is
being scaled so that S~ι/2e ~ N(0,σ*\) where S is assumed reasonably cor-
rect. Subsets of observations where this is not true, (for example radiance
data), may be excluded from V by partial GCV, see Wahba, Johnson, Gao
and Gong (1994). There (I - A) is replaced by E(l - A) where E is a possibly
weighted indicator matrix for the observations to be included. However the
GCV estimate is robust to various assumptions about K, Σ and x. We remark
that both the GCV and GML estimate can be defined when K is nonlinear.
In either the linear or nonlinear case the trace of A may be estimated by the
randomized trace method without having A explicitly, given a 'black box'
which produces KXΛ given y, see Wahba, Johnson, Gao and Gong (1995).
Dee and Dasilva (1998) and Dee, Gaspari, Redder, Rukhovets and DaSilva
(1999) have used maximum likelihood methods to estimate parameters in
forecast error covariances in several practical examples, and have compared
some of the results with GCV estimates, obtaining generally similar results
in the examples tried. It may be possible to combine the strengths of both
methods by iterating back and forth, using likelihood methods for param-
eters in S and GCV for parameters in K and Σ. This is speculative at the
moment. The ordinary cross-validation 'warhorse' of leaving out a subset of
the observations may also be used (with care).

4 Models for model error, discrete time case

We outline some classes of models for time dependent model error, t =
1, ,T. Let g be a generic index, g = (Zαί, long, z, type) where type in-
dexes the analysis variables, i.e. type = surface temperature, type = vortic-
ity, etc. See Wahba (1992) for more on generic indices. We list some stochas-
tic models for ξt(g) which remove the restriction that Eξt = 0, Eξf

sξt = 0, s φ
t. A fairly general class of models is

(13) ξt(g) = μt(g)
k=l

where μt(g) = Σi) l i dvFv{t,g) is a mean function (bias term) specified ex-

cept for a modest number of coefficients dv,v = 1, ,M, to be found,

the λfc and Φk are specified up to some parameters 0ξ, and Ezk(t) =

0,Ezk(a)zι{t)=rktl(8,t). Then

(14) covξs(g)ξt(h) =

The simplest generalization over model error independent from time to time

is the tensor product case, rkj(s,t) = 0,fc φ l,rk,k = r(s,t), independent of
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fc, and λfc(s) = λfc independent of 5, which gives

(15) EξΛ(g)ζt(h)=r(8,t)R(g,h),

where R(g,h) = ΣkλkΦk(g)Φk(h). This gives the penalty term for model
error as

Γ-l

s,t=l

where rst is the (s,t)th entry of the inverse of the matrix with (s,t) entry
r(s,ί). Here the coefficients in μt become part of the variational problem.
Simple examples include z( ) an autoregressive scheme or moving average
where the correlation structure of the z( ) process can be defined as short or
long memory. A model like

(17) Eξs(9)ξt(h) =

would allow for different time scales in the rα. Luo, Wahba and Johnson
(1998) consider (15) in a simple situation with g on the sphere, R an isotropic
covariance on the sphere and z(-) a second order difference scheme forced
by white noise. They used this model to estimate the linear time trend as a
function of space given historical data irregular in time and space, by using
the fact that the time trend is obtained as an orthogonal projection of the
fit onto the relevant subspace of the implied RKHS. It may be possible to
use similar techniques to diagnose model error. Griffith and Nichols (1998)
have recently examined some simplified dynamical models for model error.

5 Elements of representer theory

In this section, time is continuous, t E [0,1], and some components of g
(e.g. space variables) are also to be thought of as continuous. Continuous
time representer theory in RKHS has recently been applied in a number of
places, see Bennett (1992), Bennett (1997), Bennett, Chuaand Leslie (1996),
Bennett, Chua and Leslie (1997), Eknes and Evensen (1997), Evensen, Dee
and Schroter (1999), Amodei (1997), Wahba (1992). We remind the reader
that for every positive definite function i ? o n T ® T , where T is an abstract
index set, there exists a unique RKHS and vice versa (The Moore-Aronszajn
Theorem). There also exists a well defined zero mean Gaussian stochastic
process with R as its covariance, however, sample functions of the stochastic
process are not, with probability 1, in the RKHS if the RKHS is infinite
dimensional. See Wahba (1990), Weinert (1982) for more on reproducing
kernel Hubert spaces.

Let

(18) £t(g) = $(g) + $(g),
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where

(19) £ξ?(9) = 0, Bξl(g)=Q,

where Ct is a (linear) evolution operator, and B are initial/boundary con-
ditions which serve to make the solution of differential equation unique, so
that

(20) ξt(g) = $(g) + J <?(*, g; t, g)u(t, g)dtdg

for some u(-) where G is the Green's function for C and B. If u is treated
as though is is a zero mean Gaussian stochastic process with covariance
Ru(s,g;t,h) then

(21) EξKg^Kh) = j J' G(8,g\S,g)G(t,h&h)R«{8^

= Rι(s,g-,t,h), [say].

Let

(22) EG(g)8ih)=&{8,g;t,h),

and suppose that ξ® and ξ] are independent, then

(23) Eξs(g)ξt(h) = R(8,git,h)

= R°9b(s,g;t,h)+RlM{s,g;t,h).

Under general circumstances £R°(s,g;, , •) = 0, where £ is applied to R°

considered as a function of ( , •) for each fixed (5, g). Furthermore, the RKHS

Ή,R with reproducing kernel (RK) given by R = R° + R1 of (23) consists of

the direct sum of the orthogonal subspaces T-LR — HRO 0 Ή#i, respectively

containing solutions of the homogeneous equation and solutions to the dif-

ferential equation satisfying homogeneous boundary conditions. Changing

notation from ξt(g) to ft{g) to indicate that we are now letting / be an

element of UR, we have that if Z1 G ΉRi, then | | / 1 | | ^ β l = IIA/Ml^ where

II | | ^ is the square norm in T-LR^ If u had instead been taken as 'white

noise' then Ru would not appear in (21) and the T-LR^ norm would be re-

placed with the usual L2 norm. Decomposing / into /°and fι analogous to

(18,19) gives (the obvious) \\f\\fa = | |/°| |^o + \\f^Rχ

Let Li, • • , Ln be n bounded linear functionals on HR. Basic representer
theory (see Kimeldorf and Wahba (1971)), Wahba (1990)) in RKHS tells us
that the solution to the problem: find / G Ή,R to minimize

(24)
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is in the span of the n representers ηι of Li in %R, where

(25) η%{s,g) = Li{tλ)R{s,g;t,h),

where £*(*&) means Li applied to what follows considered as a function
of (t,h). We may replace \\f\\^R in (24) by e.g. | |/° | |^ o + H l / Ί ^ ,
the new problem is in theory solved with the aid of the RK R°(s,g;t,h) +
υ;~1i?1(5,g;t,/ι); w -> oo corresponds to the 'perfect model' assumption.
Simple prototypes appear in Kimeldorf and Wahba (1971) and Wahba (1990)
where a seminorm penalty is also allowed.

Tuning for model error may have potential to provide diagnostic infor-
mation concerning model error. Tony Weaver (personal communication)
has remarked on the necessity of considering extrapolating (forecasting) the
correlated part of any fit to model error. Most desirable, of course, is to
eliminate model error to the greatest extent possible.

Recently Lin, Wahba, Xiang, Gao, Klein and Klein (1998), in a different
(and much simpler) context, but with a relatively large, irregularly spaced
data set, solved the variational problem under consideration in the span of
a selected subset of the representers ηi,i = 1, , n, with excellent results.
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