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We propose a unifying principle which identifies a very broad class of hypotheses and
statistics for which a suitable application of the n out of n bootstrap yields asymptot-
ically correct critical values and power for contiguous alternatives. We also show that
this attractive principle can fail in situations which the m out of n bootstrap can deal
with (Bickel, Gδtze and van Zwet, 1997)(BGvZ). We formalize the m out of n bootstrap
theory for testing and show that under mild conditions, it provides correct significance
level, asymptotic power under contiguous alternatives, and consistency. We conclude with
simulation results supporting the asymptotics.
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1 Introduction

It is logically clear but not always noted that the usual nonparametric boot-
strap (the n out of n bootstrap) fails in setting critical values for test statis-
tics in hypothesis testing. The problem is that hypothesis restrictions are not
reflected adequately by the empirical distribution when one is resampling as
many observations as one has in the sample. For example, Preedman (1981)
points out that in setting confidence intervals for the usual slope estimate for
regression through the origin, one must resample not the residuals but the
residuals centered at their mean. If one considers setting confidence bands
as the dual of hypothesis testing, a moment's thought will show that not
centering the residuals is tantamount to not imposing the model require-
ment for the hypothesis tests that the expectation of the error is 0. For
more recent examples, see Hardle and Mammen (1993), Mammen (1992)
and Bickel, Gδtze and van Zwet (1997) (BGvZ). BGvZ note that the m
out of n bootstrap, m —> oo, ™ —> 0, is in principle usable. In particular,
Bickel and Ren (1996) study the following situation: testing for goodness of
fit with doubly censored data where the usual bootstrap as usual fails and
finding a distribution approximating the truth under Ho is difficult. They
propose using the m out of n bootstrap to set the critical value of the test
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and show that the proposed testing procedure is asymptotically consistent
and has correct power against \/n-alternatives.

There have been a number of papers in the literature detailing modifi-
cations of the bootstrap for correct use in testing, see Beran (1986), Beran
and Millar (1987), Hinkley (1987, 1988), Romano (1988, 1989), among oth-
ers. In particular, Hinkley indicated quite generally that bootstrapping from
a distribution obeying the constraints of the hypothesis which is closest in
some metric to the empirical distribution should give asymptotically correct
critical values. Unfortunately, this requires an exercise in ingenuity in most
cases, and as has been frequently noted, say, Shao and Tu (1995) for exam-
ple, that it may in practice be very difficult to construct such a distribution.
Romano showed that in an interesting class of situations, including testing
goodness of fit to parametric composite hypothesis and independence, there
was a natural definition of a distribution in the null hypothesis HQ closest
to the empirical, and that, for natural test statistics, bootstrapping from
this distribution would yield asymptotically appropriate critical values. In a
prescient paper, Beran (1986) gave two general principles for construction of
tests of abstract hypotheses in the presence of abstract nuisance parameters
and estimation of the power functions of such tests.

In Section 2, we propose a unifying principle which identifies a very broad
class of hypotheses and statistics including all those considered by Romano
(1988) for which a suitable application of the n out of n bootstrap yields
asymptotically correct critical values, power for contiguous alternatives, and
consistency under mild conditions. We state a general theorem and apply
it in eight examples including all those of Romano, those of Bickel and Ren
(1996), a test for change-point (Matthews, Farewell and Pyke, 1985) with
censored data, and a number of others. This result, Theorem 2.1, applies
only to test statistics which are regular in the sense of stabilizing on the
n"1/2 scale under the hypothesis. We then in Theorem 2.2 extend Theorem
2.1 to a broader class of statistics based on estimates of irregular parameters
such as densities. Moreover, we show that our proposed unifying principle
can fail in situations which the m out of n bootstrap can deal with.

Our unifying principle, though not our point of view, can be viewed
as a particular case of one of Beran's two approaches, even as Hinkley's
work corresponds to the other. However, that part of Beran's formulation
which is relevant to the principle we state emphasized construction of tests
from confidence region for abstract parameters in the presence of nuisance
parameters rather than the setting of critical values for natural test statis-
tics. Perhaps for this reason, the abstract point of view which obscured the
rather simple geometrically based special case we focus on and the general
conditions whose checking is usually the heart of the matter, the broad ap-
plicability of his argument was not appreciated (even by us until a referee
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brought his paper to our attention). We focus here on checkable conditions
and examples.

In Section 3, we state and prove a theorem showing that the m out of n
bootstrap is an approach that generally provides correct significance level,
asymptotic power under contiguous alternatives, and consistency. This is
essentially a formalization of the discussion of BGvZ.

We close with simulations and a brief appendix indicating where the
regularity conditions for the examples can be found.

2 A general approach to defining semiparametric hypotheses

For simplicity, we start this section with the case where the data ΛΊ,. . . , Xn

are independently and identically distributed (i.i.d.) taking values in A',
usually Rk, with an unknown distribution function (d.f.) F E f . However,
it should be apparent from our discussion that our approach is more generally
applicable.

Suppose that we want to test

(2.1) Ho:FeTovs. HuFφFo.

We begin with considering the case that X takes on k+1 values #o? #i? 5 #fc
only. Thus T is parametrized by

PeiP=lpeRk',pj>o, i<j<k,

A hypothesis To is then described by, say, {h(θ) E JP; θ E Rq, q < &}, where
θ -> h(θ) is 1-1. If h(θ) is continuously differentiate and (dhi(θ)/dθj)kxq

is of full rank, then h is an embedding of Rq in Rk (Vaisman, 1984, page 11,
13 and 15). This means that for any p0 E To = h(Rq) Π JP, there exist open
sets Upo and UQ in Rk and a differentiate function ηQ : UQ -¥ Rk~q, such
that pQ e Upo and UPo Π T* = {p E Uo \ ηo{p) = 0}. The map ("atlas") η0

can in many cases of interest be pieced together consistently to a single η0

such that
(2.2) To = {P € P I 77o(p) = 0}.3

Thus, if the random sample X i , . . . , X n is from some p E P, which is
in a neighborhood Upo of some p0 E To, and if ή = ηo(P), where p =
(ΛΓi/n, Λ^/n,... ,Nk/n)τ is the empirical distribution (vector of frequen-
cies) of XL, . . . ,Xn, typical tests are of the form (or asymptotically equiv-
alent to tests of the form): Reject if τ{y/nή) is large, where the function

3Even if the "atlas" can not be reduced to a single function, we still can naturally base
a test on ηo(p) for p as above and p 0 as the member of To closest to p.
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τ : Rk~q -> R+ is continuous with τ(t) = 0, iff t = 0. Typically, τ is

equivalent to a norm on Rk~q.

For instance, the usual Wald test is to use nηTTi~
ιη^ where Σ is an

estimate of the covariance matrix Σ(p) of r). This is equivalent to using
τ(x) = XTΣQ1X. In this situation, we can bootstrap parametrically in one
of two ways:

(a) Estimate θ by θo, the maximum likelihood estimator (MLE) under

Ho : ηo = 0, then use the appropriate percentile of the distribution of

τ{y/nff) as the critical value, where X*,... ,X* are i.i.d. p(0o);

(b) Note that y/n(ή — r/0) and y/nή have the same distributions under HQ
and use the appropriate percentile of the distribution of τ(\/n(ή* — ή))
as the critical value, but where now X*,..., X* may be obtained from
the 'nonparametric' bootstrap, i.e., i.i.d. p.

If ΘQ is uniformly consistent on Θ, it follows from, for example, a theorem

of Rao (1973, page 360-362) that these bootstraps are both valid. (Note that

p(0o) can be used instead of p in case (b).)
If X does not have finite support, the corresponding conditions for char-

acterization of an embedding in Hubert space are more involved. Nonethe-
less, as we shall see by example below, the equivalence (2.2) holds quite
broadly.

Sufficient conditions for use of bootstrap (b) are easily given. Suppose
that for hypothesis (2.1), there exists Γ : T —> T, where T is a Banach
space, possibly Rp but often a function space such as D[RP], such that

(2.3) To = {F; T(F) = 0}.

It is often convenient to think of both T and T as subsets of spaces of finite
signed measures defined on spaces of bounded functions Hx^Hy on X and
another space y and identify F as a member of loo{Ήχ),T(F) = G as a
member of loo(Hy) via,

(2.4) F(h) = Jh(x)dF(x), G(r) = Jr(y)dG(y).

We shall throughout assume that measurability technicalities are dealt with
by the Hoffman-J0rgensen approach — see van der Vaart and Wellner (1996).

Let Fn denote the empirical distribution of AΊ,. . . , Xn and r :T -> R+

be continuous with τ(t) = 0 iff t = 0. Tests for (2.1) are naturally based
on rejecting Ho for large τ(y/nT{Fn)) (provided that y/n(T(Fn) - T(F)) is
well behaved). In analogy to the multinomial situation, it seems natural to
use either
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(a) The quantiles of the distribution of τ(y/nT(F*)), where X*,... ,X*
are i.i.d. from Fo G To, which is a 'uniformly consistent' estimate of
F under HQ; or

(b) The quantiles of the nonparametric n out of n bootstrap distribution
of τ(y/fi(T(F*) - T(Fn))), where F* is the empirical distribution of
X*,..., Jf *, a sample from Fn;

as critical values for τ(y/nT{Fn)). In the framework of Beran (1986), this
can be viewed as using the test: Accept iff 0 G C(Fn), where C(Fn) is the
asymptotic 1 — α confidence region {ί; r(y/n(T(Fn) — ί)) < dn(Fn)} and
dn{F) is the 1 - α quantile of the distribution of τ(y/n(T(Fn) - T(F))).
We shall give sufficient conditions for the validity of alternative (b) in this
abstract framework below, but before doing so we give some examples where
(2.3) applies.

Example 1 Goodness of fit to α single hypothesis. Here To = {Fo}, T is all
distributions and we can clearly take T = loo(X), finite signed measures on X
andT(F) = F-Fo. Possible r's are τ(μ) = ||/i||oo? where |H|oo = sup{|μ(/ι)| :
h e Ux) for X suitable Ux. For example, X = R, Ux = {l(_oo,ί)5 * G R}
gives the Kolmogorov-Smirnov test. Another possibility is weighted averages
of μ2(h) over Wx. Thus, τ(μ) = f(μ(—oo,x))2dFo(x) leads to the Cramer-
von Mises test. Option (b) corresponds to using the bootstrap distribution
of r(^/n(F* — Fn)), while (a) leads to simulating from FQ. D

Example 2 Goodness of fit to α composite hypothesis. Here JF0 = {FQ; θ G

Θ}, θ G Rd, say, and To is a regular parametric model. Suppose that
θ(Fn) G Θ is a regular estimate of θ in the sense of Bickel, Klaassen, Ritov
and Wellner (1993) (BKRW) where θ : T -* Θ is a parameter. For instance
Θ(F) = argmin||F — Fβlloo may be a possibility. Again we can take T C
ioo(Wx) and

T(F) = F - FΘ{F).

Note that we could take Θ(F) as any parameter defined on T such that
Θ(FΘ) = θ.

This example figures prominently in Romano (1988). There he consid-
ered To describable by To = {F; F = j(F)} and recommended scheme (a),
resampling from 7(Fn) for statistic \\Fn — 7(^)11 a n d Ί ( F ) = ^0(F) OU Γ

scheme simply rewrites F = j(F) as F - *y(F) = 0. However we prescribe
bootstrapping from the empirical for statistic y/n\\Fn - 7(^n) -F +
That is we use the bootstrap distribution of ^ll^t (K)

Example 3 Tests of location. Suppose X = Rq and T is a location parameter

(2.5) T(F( - θo)) = T{F) + ΘQ
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for all 0o e Rq Let JF0 = {F; T(F) = 0}. Thus if T(F) = fxdF, this is the
hypothesis that the population mean of F is 0. If T(F) = F~ι (g), then this
is the hypothesis that the population median is 0. We can similarly consider
trimmed means etc. In fact our discussion applies to scale parameters and
more generally transformation parameters — see BKRW (1993) — but we
do not pursue this. In this case our prescription is to use the bootstrap
distribution of y/n(T(F*) — T(F ?)). Here prescriptions (a) and (b) coincide
since the distribution of y/n{T{F*) - T(Fn)) under Ho is by (2.5) the same
as that of y/nT(F*) where F* is the empirical distribution of a sample
from Fn(- — T(Fn)). Equivalently say in the case of the mean the bootstrap
distribution of X* — Xn is the same as the distribution of Xn, the mean of a
resample from the residuals X\ — X,..., Xn — X. The latter (a) form is the
prescription of Preedman (1981) and Romano (1988), and the special case
of the mean is Example 2 of Beran (1986). α

We now turn to some simple results.
Suppose T is a subset of a space of finite signed measures with T viewed

as a subset of the Banach space loo(Ήy) as above.
Suppose T is extendable to T and,

(Al) T is Hadamard differentiate at all Fo G To as a map from (̂ *, || ||oo)
t° (T, || I loo) with derivative T : T —» looiUy), a continuous linear
transformation, and T a closed linear space containing T. That is

(2.6) sup{||T(F0 + λΔ) - T(FQ) - λΓ(F0)Δ| |;Δ G K} = o(λ)

where K is any compact subset of Zoo(7ΐx)
 a n d λ —> 0.

(A2) y/n{Fn — FQ) => Zp0 in the sense of weak convergence for probabilities
on loo(Hx) given by Hoffman-J0rgensen and P{ZF0 G F} = 1 for all
Fo G TQ.

Theorem 2.1 Under (Al) and (A2), for all Fo G T^

(2.7) Vϊι(T(Fn) - T(F0)) =• f (F0)ZFQ

and with probability 1,

(2.8) v^(T(Fn*) - T(Fn)) =• Γ(Fo)ZF o.

Proof By Gine and Zinn (1990), (A2) implies that

(2.9) yft(K - Fn) =ϊ ZFo

with probability 1. Now apply a standard argument. By Hadamard differ-
entiability

(2.10) MT(Fn) - T(F0)) = r(F0)Vn(Fn - Fo) + op(l)
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(2.11) v^(T(Fn*) - Γ(Fo)) = t(F0)Vϊι(K - Fo) + op(l)

(2.10) yields (2.7) and subtracting (2.10) from (2.11) yields (2.8). •

Now letting Co be the distribution of T(T(FQ)ZFΌ), we have the following
corollary.

Corollary 2.1 Under the assumptions of Theorem 2.1, if Co is continuous,

and respectively, Ca and C% are the (1 — a)-quantiles of τ(y/n[T(F*) —

T(Fn)]) and Co, then as n -> oo,

(2.12) P{τ(VET(Fn)) > C W I HΌ} -> a.

In fact, as n —>• oo,

(2.13) P{[τ(VET(Fn)) > C*a^]A[τ(V^T(Fn)) > C°a] \ HQ} -> 0.

If {Fn} is a sequence of alternatives contiguous to Fo E T$, then (2.13)

continues to hold with P replaced by Pn corresponding to Fn, and hence the

power functions for the tests using Ca and Ca are the same.

If (Al) and (A2) hold for all F e T not just T§ and τ(t) -> oo, as

||*||oo —>• oo, then the test based on Ca is consistent for all F £ T§.

Proof (2.12) and (2.13) follow from C* ( r ι ) 4 c£ 0 ) for all Fo G JF0, an imme-

diate consequence of the theorem and Polya's theorem. Contiguity preserves

convergence in probability to constants so that equivalence of the power func-

tions follows. Finally consistency follows since under the assumption Ca

converges in probability under F to the (1 — α)-quantile of CF(T(T(F)ZF)).

But,

4 oo

since the first term in the norm is tight while the second term has norm of

the order y/n since T(F) ^ 0 . •

The examples 1-3 cited above all satisfy our assumptions essentially un-

der the mild regularity conditions needed to justify that the test statistics

in question have a limit law under Ho. We discuss the conditions briefly in

the appendix. Now we turn to some further examples and a mild extension.
Our next example falls outside of the Romano domain.

Example 4 Goodness of fit test of a lifetime distribution under censoring.
Suppose that for a desired observation T ,̂ there are right censoring variable
Ci and left censoring variable B{ such that T{ is independent from (B^Ci)
and that the available observations are in the form X{ = (Yί,£i), where in
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the right censored sample case, we have Y{ = min{Ti,Ci},δi = I{T{ < C^},
and in the doubly censored sample case (Turnbull, 1974), we have Y{ =
max{mm{TuCi},Bi},δi = I{B{ < T{ < d} + 2I{Ti > d} + 3/{Ti < J3;}
with P{B{ < Ci} — 1. Let G be the distribution function of T;, then in this
frame work the goodness of fit test HQ: G = Go, for a given Go, is important.
We write F as the distribution of X = (Y,δ). Then if G is identifiable,
we have G = φ{F) with Gn = φ(Fn) to be the nonparametric maximum
likelihood estimate (NPMLE) for G (see Bickel and Ren, 1996). Thus, we
can take T(F) = φ(F) - G o = G - G o. Although Γ( ) is not Hadamard
differentiate here, prescription (b) says to use the bootstrap distribution of
r(y/n(G^ - Gn)). As Bickel and Ren (1996) point out, it is difficult to fulfill
prescription (a) in this case for doubly censored data since it is not clear
what to use as the member of T§ from which we should resample. We will
return to this example subsequently in Section 4. α

Example 5 U statistics. A natural generalization of Example 3 is testing
Ho : T(F) = 0 where T(F) = EFφ{Xu... ,X fc), k > 1. The statistic we
would be led to is the V statistic

Typically, however, one considers the equivalent

(2.15) un =
71 i

where T(F,s) = Π t i ' Γ i i j /••• / Ψ{xu...,xt)ΠUdF(xi'> B!aA

Xl< ... <Xk

T(F, 0) = T(F) if F is continuous.

This example is not quite covered by our theory on two grounds.

(i) F -> T(F) is not Hadamard differentiate with respect to any of the

usual metrics unless φ is of bounded variation.

(ii) T(Fn) is not the statistic Un one wants to consider.

Both are covered by noting that all we need to do for (ii) is to replace
T(F) by T(F,s), 0 < 5 < 1 and T by T x [0,1], following a suggestion of
Reeds (1976). For (i) we note that (2.7) and (2.8) can be established di-
rectly for such statistics, (Arcones and Gine, 1993). So again, bootstrapping

n \T (P*, l/nj — T ί F n , 1/nJ j gives the correct answer.
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Another interesting possibility suggested by this example is f(F) = 0 in
which case the limit law CQ is point mass at 0. We need to renormalize. It is
easy to see (Bretagnolle, 1981) that in this case, (2.7) holds with n replacing
yjΰ and a suitable limit, but (2.8) fails. It is possible to bring this example
also into our framework obtaining a solution proposed by Arcones and Gine
(1993), but the hypothesis implicitly tested, Ho : T(F) = 0, t{F) = 0 is
somewhat artificial. D

Next is a complex example illustrating the broad applicability of our
approach to semiparametric hypotheses.

Example 6 Test of change-point (Matthews, Farewell and Pyke, 1985).
Consider a parametric problem where F has the following hazard rate func-
tion:

λ ' i f θ < t < 0
\£t>θ

where 0 < ξ < 1 and λ > 0 are unknown, and θ > 0 is the unknown change-
point parameter for the hazard rate which changes from λ to (1 — £)λ at
time θ. If θ is confined to a finite interval [#i, #2], the following test statistic
was proposed on maximum likelihood grounds by Matthews, Farewell and
Pyke (1985) for the irregular hypothesis Ho : ξ = 0 vs. H1 : ξ φ 0

(2.17) Tn= sup \Zn(θ)\
Θ1<θ<θ2

where λn = \(Fn) = [JxdFn(x)) and

(2.18) Zn(θ) = (1- e-^Θ)-ιl2{ne^θ)1'2 Γ((x - θ)\n - 1) dFn(x).
Jθ

Under Ho we have F(x) = F\(x) = 1 - e~λx, thus by integration by parts,
Zn can be expressed as

(2.19)Zn(0) = -(l-e-^y^e^^hn 1^ U(x,Fn)dx -

where U(x, Fn) = Fn{x)-Fχ{Pn)(x). The limiting distribution of Tn in (2.19)

is studied by Matthews, Farewell and Pyke (1985).
Now suppose that we have right censored data or doubly censored data

as in Example 4. Then the analogous test statistic is obtained by making Fn

in U( ,Fn) and Xn = λ(Fn) be the NPMLE (the Kaplan-Meier estimate for
right censored data) of F for doubly censored data. We modify Tn slightly
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to avoid the usual technicalities in censoring replacing Zn by Zff given by

,n f U(x,Fn)dx-U{θ,Fn)\
Jθ J

(2.20)
where M > 02- Under HQ and some regularity conditions, λn converges to
λ in probability and y/nU(',Fn) converges weakly to a centered Gaussian
process G\ on [0χ,M]. Therefore we know that under HQ, Z^(θ) weakly
converges to

(2.21) ZM(Θ) = -(1 - e-λ*)-i/2eλ*/2 J λ / Gx{x)dx - Gχ(θ) S

and
(2.22) = sup \Z^f(i

θι<θ<θ
2

9)| -̂  sup
θι<θ<θ

2

\z
M
(θ)\, as n --> 00.

Write Z™(•) = y/nT{Fn), where

I Λ
(2.23)
To obtain critical values for Tn, again we simply need to use the bootstrap
distribution of sup{y/n\T(F*)(θ) - T(Fn)(0)|; 0i < 0 < θ2}. •

Our next example illustrates another extension of the paradigm beyond
Theorem 2.1.

Example 7 Goodness of fit test using kernel density estimates. Consider
the problem of Bickel and Rosenblatt (1973). We have observations on
X = R and wish to test HQ : F = FQ where F' = f exists and, in fact,
H/Ίloo < Mo < oo for all F G f , and inf{/(x); \x\ < M} > e > 0 for some
constant M > 0.

A natural test statistic is sup{|/n(x) — EQfn(x)\; \x\ < M}, where

(2-24) fn(x) = Jκhn(x-y)dFn(y)

and Kh{y) = h~1K(y/h), where K is at least twice differentiate, has
compact support, is symmetric about 0, J^°oQK(y)dy = 1, and hn = n~^,
0 < β < 1 for some β.

This test is consistent against F φ FQ concentrating on \—M,M\ and
the natural Tn(F) = Tn(ΊF) here is

= f -y)d(F(y) -F 0 (y)).
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Of course, y/nTn(Fn) diverges, but

(2.25) Un(x) = ^hn(Tn(xJn)-Tn(x,F))^λί(0,σ2(x,F)),

where σ2(x,F) = f(x)fK2(y)dy, and for x φ y, Un(x) and Un(y) are
asymptotically independent. If our prescription is valid, the distribution of
the test statistic

(2.26) Tn = sup{\Un(x)\;\x\<M}

should be approximable by the bootstrap distribution of

(2.27) f: / ^ J J

This is valid, under the conditions of Bickel and Rosenblatt4 (1973), by
applying the strong approximation to the empirical process and extreme
value theory used in Bickel and Rosenblatt (1973) to satisfy the conditions
of Theorem 2.2 below.

Suppose T n(F n), as in Theorem 2.1, are such that

(Al'):

(2.28) | |Γn(Fn) - Tn(F) - fn(F)(Fn - F ) | U = op{n~ιl2)

for all F G f o Suppose further that X is such that a strong approximation
theorem of the following form applies:

(A2'): There exists a probability space on which we can construct /oo(^χ)

valued random elements y/n(Fn—F) having the same distribution as y/n(Fn—

F) and also loo(Ήχ) valued Gaussian random elements Zp(') with mean 0

and the same covaxiance structure as y/n(Fn — F) for which both

(2.29) \\y/ϊiφn - F)( ) -

and

(2.30) ||Vn(Fn - Fn)( ) -

For such results see Csόrgό and Revesz (1983), Massart (1989), and Einmahl

(1989).

Theorem 2.2 Under (Al') and (A2') suppose that

(2.31) \\Tn{F)\\o0 = 0[rC)
4Bickel and Rosenblatt (1973) did not use the Komlos-Maior-Tusnady (1976) strong

approximation, so their results and the bootstrap extension are weaker than they need
be, which is why the optimal bandwidth hn = rf1^ is used in our simulation studies in
Section 4.
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and T is a seminorm, τ{ct) = cr(t) for c>0, and r is subadditive. Suppose

also that there exist {an}, {bn} scalar possibly depending on F such that

(2.32) an T{tn{F)n-l'2ZF) + bn^CF

and an = o(nιl2). Then,

anτ{Tn(Fn))+bn^CF

and in probability

an τ{Tn{F*) - Tn{Fn)) + bn =» £F.

Proof By our previous argument and (Al')

(2.33) Tn(Fn*) - Tn(Fn) = Tn(F)(F* - Fn) + o^n

and the corresponding statement holds for Tn(Fn) — Tn(F).
Under (A27) and since r is a seminorm,

anτ(Tn(F)(Fn-F)) + bn = anτ(Tn(F)n-V2ZF)

+&n + O p ( α n | | T n ( F ) | | 0 0 n

= an τ(fn(F)ZFn-^2) +bn + op(l) =• CF.

The last identity uses (2.31) and an = o(nιl2). But, under ifo,

anτ(Tn(Fn)) + bn = anτ(Tn(Fn)-Tn(F))+bn

so that an r(Tn(Fn))+bn =*• Cp The same argument applies to an τ(Tn(F*) —
Tn(Fn)) + bn and the theorem follows. •

We close this section with an old example in which although our for-
malism applies, the conditions (Al) or (Al') of our theorems fail and our
solution is incorrect.

Example 8 Test of distribution support Suppose T — {F; F has support
on [0,6] with unknown 6, continuous density / and f(b—) > 0}. Then, as is
well known, if X^ < . . . < X{n) are the ordered -XVs, n(b — X(n)) has a lim-
iting distribution (f(b—))~1Exp(l), where Exp(μ) denotes the exponential
distribution with mean μ. Thus the natural test statistic for HQ : b = bo is
Tn = n(X ( n) - 6Q) If we let T(F) = F " 1 ^ ) - b0, we have put the hypothesis
in our framework and have noted that under i?

-Tn = -nT(Fn) =
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However, the bootstrap distribution of n(T(F*) —T(Fn)) does not converge
as was already noted by Bickel and Preedman (1981) — see also BGvZ.
Although Putter and van Zwet (1996) gave a method for repairing bootstrap
inconsistency for a similar case in their Example 3.2, there is a much more
general solution for this problem discussed in BGvZ, which we recapitulate
and discuss briefly in the next section. D

3 The m out of n bootstrap hypothesis tests

This method, presented generally in Bickel, Gόtze and van Zwet (1997)

(BGvZ) and in an alternative form by Politis and Romano (1996), is based

on the assumption that under HQ : F G To, the test statistic, Tn — Tn(Fn)

is such that

(3.1) Tn =ϊ CF

which is nondegenerate. The m out of n bootstrap prescribes that the ap-
propriate quantile of the bootstrap distribution of T m (F^) be used, that is
of the distribution of the statistic based on m observations resampled from
Xi,... ,Xn. The history of this approach which goes back to Bickel and
Preedman (1981) and Bretagnolle (1981) is partially reviewed in BGvZ. If
m —> oo and ™ —> 0 the prescription succeeds in giving an asymptotically
correct level under very mild conditions which we detail below. Politis and
Romano (1996) argue that by resampling without replacement this conclu-
sion holds with no conditions.

Bickel and Ren (1996) checked the regularity condition for the applica-
bility of this method in Example 4 when data are doubly censored. BGvZ
shows its applicability in Example 8. Here is a formal theorem. Let Tn be
as above, T^ = Tm(F^) and C* be given by

(3.2) Pn{T^ > C*α} = α.

Let n = {h : M -+ 1R; \h(x) - h(y)\ <\x- y|, \\h\\ < 1}, and for h G U,

θm(F) = EF{h(Tm{Xi,..., X

where Tm{Xu ...,Xm;F) = Tm(Xu... , X m ) - μ m ( F ) and/im(F) = 0 if F E

Jb Furthermore, with X^ = (X*,..., X<)iχj,

Theorem 3.1 Let m = o[n) with m -ϊ oo, as n -> oo and let C* be given

by (3.2). Assume forO<a<l
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(α) Tn(Xu..., Xn] F) =* WF where WF ~ CF for all F e T and CF is

continuous for F G To-

(b) μ>n(F) —> oo, μm(F) — μn(F) —> —oo uniformly on bounded Lipschitz
compacts contained in T§ if m -* oo, ™ -» 0.

(c) swphen \θm9n(F) - θm(F)\ = o(l), for all FeT.

Then,

(i) l i m ^ o o P ^ > C* I Ho} = P{WF >C% \ F

(ii) For alternatives Hn : F = Fn such that for some F o G To, {Fn} are

contiguous to Fo, we have that under Hnj

C* -> C°, as n -> oo

and Λence the tests based on the critical values C* and C% have the

same asymptotic power functions;

(Hi) For a fixed alternative Hi : F = JF\ £ ̂ b,^{T n > C* | i ί j -> 1, as
n —>> oo.

Remark. Assumption (c) essentially says that Tm is not really perturbed

by o(\/n) ties in its arguments — see BGvZ.

Proof Theorem 2 in BGvZ shows that (c), m —>• oo, m/n -> 0 implies that,

(3.3) 4

where WF ~ £F. But bounded Lipschitz convergence is equivalent to weak

convergence. Thus, noting that under Ho-, the identity T n ( X i , . . . , Xn\ F) =

T n ( X i , . . . , Xn), (3.3) and Polya's theorem imply that C* 4 C% and another

application of Polya's theorem yields (i). Assertion (ii) follows from the

definition of contiguity. To argue for (iii), note that Theorem 2 of BGvZ

implies that for all F
(3.4) T^-μm(Fn)^CF.

Therefore under F ̂  To,

(3.5) C*a-μm(Fn) = Op(l).

But Tn - μm(Fn) =Tn- μn(Fn) + {μn{Fn) - μm(Fn)) 4 oo. Thereto reject
iff Tn > C* is equivalent to reject iff T n - μm{Fn) > C* - μm{Fn). The
result follows from (3.5). •

The proof shows that C* -> oo if F £ To and thus we expect that the
power of this test is less than that of the tests proposed in Section 2 where



The Bootstrap in Hypothesis Testing 105

these are valid. We give some simulations to show that this is indeed the
case. The question naturally presents itself: Is there a way of correcting
the m out of n bootstrap to give results comparable to those we obtain by
simulating the tests of Section 2? A systematic answer is given in Bickel and
Sakov (1999) (in preparation) and the 1998 thesis of Sakov.

We note that the m out of n bootstrap has the additional advantage of
computational savings, see Bickel and Yahav (1988) for instance. In fact
the computational savings can be garnered in the context of Section 2 also.
Specifically it is clear that the conclusions of Theorem 2.1 continue to hold if
the bootstrap distribution of τ(y/n(T(F*)— T(Fn))) is replaced in calculating
the critical value by that oΐτ(y/fn(T(F^ι) — T(Fn))) as long as m -> oo. It is
intuitively clear that m « n may give poor critical values. But, in practice,
the effect as long as m is moderate seems small in the simulations we have
conducted. Further investigation is necessary.

4 Simulations

In this section we present some simulation results exhibiting the success of
the method given in Theorem 2.1 and Corollary 2.1 by a number of our
examples and the inferior behavior of the m out of n bootstrap in all cases
but Example 8.

We give simulations for Example 3 — the median test, Example 4 — the
goodness of fit test with doubly censored data, Example 7 and Example 8.
In our studies, the following power curves are compared:

P0(θ) = P{Tn > C£O|0}, PQ :

Pn(θ) = P{Tn > C*αW\θ}, Pn:

where α = 0.05, Tn is the test statistic, Cα is the true critical value obtained
by the Monte Carlo method, Cα is the critical value based on the adjusted
n out of n bootstrap as in Corollary 2.1, C* is the critical value based on
the m out of n bootstrap as in Theorem 3.1, and θ is the parameter used
to compute the power of the test. For each simulation run, Cα and Cα

are based on 400 bootstrap samples, and Po{θ),Pn(θ),Pm(θ) are computed
based on 400 random samples for each θ.

(I). In Example 3, we consider test Ho : θ = 0 vs. Hi : θ > 0, where θ is
the median of the distribution F from which X\,..., Xn is drawn. Figure 1
compares the power curves Po,Pn and P m , where n = 400, F is the normal
distribution with mean θ and variance 25, and all power curves are the
average of 500 simulation runs.
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-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Median of Normal Distribution with Variance 25

Figure 1. Power curves of median test with complete sample of size 400.

Here m — \/n = 20 is used since for the median an Edgworth expansion
to terms of order -4= is valid if the density F has a finite derivative F' and

the Edgworth expansion for the m out of n bootstrap is valid for m = O(y/n)
under the same conditions with the same leading term and error terms -7=

and y/ψ (Sakov and Bickel, 1998). The "optimal" rate of m then balances

\/f a n d ^ t o Sive m = y/n.
(II). In Example 4, we consider the goodness of fit test HQ : G = Go

vs. Hi : G φ GQ for doubly censored data using the Cramer-von Mises test
statistic:

= nJ(Gn-Go)2dGo.

Denoting Exp(0) as the exponential distribution with mean 0, for n =
200,m = y/ή,Gv = Exp(l),C = Exp(3),£ = §C - 2.5 (which, under iί0,
gives 55.7% uncensored, 25.2% right censored and 19.1% left censored ob-
servations), Figure 2 compares the power curves Po,Pn and P m , which are
the average of 100 simulation runs.

(III). In Example 7, we consider test Ho : F = Fo vs. Hi : F φ Fo,
with Fo = Exp(l). For test statistic Tn given by (2.26) with n = 400, hn =
n~ι^,M = 3, K = U(—1,1) and θ as the mean of the exponential dis-
tribution, Figure 3 compares the power curves Po? Pn and P m , which are
the average of 100 simulation runs. Here for m = y/n, the power curve
P m by the m out of n bootstrap uses the critical value based on f^ =
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0.8 1 1.2
Mean of Exponential Distribution

Figure 2. Power Curves of GOF Test with Doubly Censored Sample of Size 200.

m — /n |; \x\ < M}, which coincides with T* given by (2.27) if
m — n.

(IV). In Example 8, we consider test HQ : b = 1 vs. Hi : b > 1, with
F = [7(0,6). For n = 400, m = n1/3 and θ = 6, Figure 4 compares the power
curves Po,Pn and P m , which are the average of 1000 simulation runs.

In this case, the power function Pn{β), when the adjusted n out of n
bootstrap is used, is a total breakdown under HQ. One should note that in
Figure 4, the power Pn{θ) under Ho, i.e., when θ = 1, is always 0, while
α = 0.05, although it seems that Pn(θ) and Po{θ) are quite close overall.
Here the heuristics based on the asymptotic expansion the distribution of
the maximum whose first error term is of order ^ and heuristics discussed
in BGvZ suggest that an appropriate order of m = n1/3, in this case m = 7.

5 Appendix

We give brief arguments for the validity of the application of Theorem 2.1
in our examples.

Example 1 Taking %x = Hy = indicators of rays for R and r corresponding
to the Kolmogorov, Smirnov and Cramer - von Mises tests are covered by
Corollary 2.1 as are the analogous tests when one takes Wx to be a universal
Donsker class in higher dimensions (van der Vaart and Wellner (1996).

Example 2 Suppose the model T is regular and θ(Fn) is a regular estimate
in the sense of BKRW. Suppose also that θ : T -> Rd is Hadamard differen-
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0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
Mean of Exponential Distribution

Figure 3. Power Curves of GOF Test Using Density with Complete Sample of Size 400.

1.002 1.004 1.006
b of Uniform Distribution (0,b)

1.008 1.01

Figure 4. Power Curves of Support Test with Complete Sample of Size 400.
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tiable with respect to || H^ (in loo(Hx)) with derivative θ : T -> Rd. Then

F —>- ifyF) is Hadamard diίferentiable since θ —>• i ^ is Hadamard differen-

tiable from i?d to ^Ό by the regularity of the model and thus the composition

F -> Θ(F) -» ifyF ) is also.

Example 3 The satisfaction of the conditions here on the sets T = {F :

EF\X\2+δ < oo, ί > 0} and 7* = {F : / ' > 0} is well known.

Example 4 The appropriateness of the conditions for right censored data
may be obtained from Anderson, Borgen, Gill and Keiding (ABGK) (1993)
and for the doubly censored case in Bickel and Ren (1996).

Example 5 Appropriate references are cited in the example.

Example 6 The arguments for the uncensored case is in Matthews et al
(1985). The censored case modifications axe clear from the theory of the
Kaplan-Meier for right censored data or the NPMLE for doubly censored
data (see Bickel and Ren, 1996).

Example 7 The arguments based on Bickel and Rosenblatt (1973) are
sketched in the example.

Example 8 The arguments are given in BGvZ.
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