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1 Introduction

The comparison of random variables (r.v.'s) or distributions of random vari-
ables leads in a natural way to orderings of probability measures (p.m.'s).
For probability measures μi and μ2 on JR, μi is said to be smaller than μ2
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in a given order, if / fdμ\ < J fdμ2 for all functions / in a given associated
class of real-valued functions on JR, provided both integrals exist. For the
stochastic order the class of increasing functions is used, for the c-convex
order increasing convex functions, and for the fc-convex order convex func-
tions.

This paper identifies lattice structures of the stochastic and convex par-
tial orders, interprets these structures in terms of martingales and sub-
martingales, and provides a new connection between these structures and
Hardy-Littlewood functions. Completeness of the lattice structures is exhib-
ited, and is applied to ensure existence and develop properties of infima and
suprema of sets of p.m.'s connected to martingale theory.

These definitions for ordering probability measures allow the compari-
son of certain features of stochastic processes. Examples are the waiting
or service time for queueing systems (see e.g. Stoyan [20] and references
therein), the lifetime or reliability of components in complex systems (see
e.g. Marshall and Proschan [17]), and rates of return on stocks or mutual
funds from a given group (see e.g. Levy [16]). In statistics the stochastic
order appears already in the Neyman-Pearson theorem; the most powerful
test is the largest r.v. in the stochastic order within the set of tests to a given
level (Lehman [15]). The convex order (also called the Bishop-de Leeuw or-
der) is crucial for Choquet theory (Choquet [2], Phelps [19], Meyer [18]).
In potential theory, these orders appear in descriptions of balayage, dilation
and fusion of measures (Meyer [18], Elton and Hill [6]). A connection to
martingale theory was made by Strassen [21]; see Section 5 of this paper. It
is useful to consult a reference such as Durrett's book [5] for the context in
which additional connections of Hardy-Littlewood functions to martingale
theory can be seen. Other examples are scattered throughout the literature.

Our own interest in these orderings arose from 'prophet-gambler' in-
equalities (Krengel and Sucheston [14], Kertz and Rosier [12]). For a given
sequence of games (a given stochastic process), the prophet knows all the
outcomes — past, present and future, picks an outcome at any particular in-
stant of time, and receives a reward with a monotone-increasing dependence
upon the outcome for that game. The outcome chosen by the prophet is
the maximum of the stochastic process, a random variable with associated
p.m. ZΛ The gambler sees the outcomes of the games sequentially, and makes
a decision after every game whether to stop or to go on playing; he bases
his decision at each instant only on knowledge of the distributions of all
the games and the outcomes of this and the past games, and not on knowl-
edge of future outcomes. If he stops, he receives a reward with the same
monotone-increasing dependence upon the outcome at the moment he quits.
His decision rule is described mathematically by a stopping rule r, and the
outcome upon stopping is the value of the stochastic process at the stopping
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time; this outcome is a r.v. with associated p.m. μ. Under these restrictions
on play, the prophet and the gambler both try to walk away with as much
as possible, on the average. Of course, in an average-based comparison, the
gambler always receives less than the prophet. In the literature, prophet-
gambler inequalities seek to identify how close the gambler can be to the
prophet over all games of a given type. For example, the inequality might
state that the gambler always receives at least a certain proportion of what
the prophet receives, e.g. for game outcomes which are independent positive
r.v.'s and rewards equal to the outcomes, the proportionality constant is ^
(see Krengel and Sucheston [14]).

A most-interesting collection of sequences of games is the collection of
martingales. In a very exact sense, made precise by Hill and Kertz [10], this
collection provides the prophet with his greatest uniform advantage. For
martingales and convex increasing reward structure, the gambler can use
any stopping rule, by the optional sampling theorem. We assume that there
is a last outcome and the gambler takes this value. In this context theorems
by Hardy and Littlewood and others tell us that the prophet's outcome p.m.
v is stochastically smaller than the Hardy-Littlewood maximal p.m. μ* (see
Hardy and Littlewood [9], Blackwell and Dubins [1], and Dubins and Gilat
[4]). There is at least one martingale where the prophet actually chooses
outcomes with associated p.m. μ*, and the gambler chooses outcomes with
p.m. only μ. Kertz and Rosier [12], showed that for any v stochastically
between μ and μ*, there exists a martingale with outcome p.m. v for the
prophet and μ for the gambler.

In main results of this paper given in Section 3, complete lattice struc-
tures are given for sets of p.m.'s with the stochastic and convex orders.
Specifically, let V be the set of probability measures on JR, V+ be the sub-
set of p.m.'s with finite first moment integral over M+, and Vr be the set
of p.m.'s on M with first moment integral equal to the real number r. It is
shown in Section 3 that ('P, -<s), (P+, -<c)

 a n d (P r ? -<k) a r e complete lattices.
By complete, we mean that any set bounded below has an infimum and any
set bounded above has a supremum. The complete lattice structure for the
last two sets appears to be new.

This lattice completeness is applied in Theorems 3.5 and 3.7 to obtain
results on infima and suprema of specific sets of p.m.'s in the stochastic and
convex orders. These sets of p.m.'s are related to sets of p.m.'s used in the
'prophet vs. gambler' comparisons in Kertz and Rosier [13].

In Section 4 we use the result that two right-tail integrable p.m.'s are
c-convex ordered if and only if the associated Hardy-Littlewood maximal
p.m.'s are stochastically ordered to obtain a complete lattice structure on
the set of Hardy-Littlewood maximal p.m.'s. Through a natural isomorphic
representation between this set and a set of concave functions, this natural
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lattice structure on the set of Hardy-Littlewood maximal p.m.'s is shown to
be related to the lattice structure based on the stochastic order.

Martingale connections to these orders on p.m.'s and to the suprema
and inίima results are given in Section 5. In particular, in Theorem 5.2 an
extension of a representation result for submartingales given by Strassen [21]
is given in a generalized-submartingale context. Martingale interpretations
of Theorems 3.5 and 4.9 are given in Theorems 5.3 and 5.5.

2 The stochastic and convex partial orders

On the set V(M) of all probability measures on IR we introduce the three

relations -<8J -<c and -<&. Define μ\ -<s μ2, μi <c M2, Ml ~<k M2 iff

j f(x)dμι(x) < J f(x)dμ2(x) (2.1)

for all functions / : M —* M for which the integrals are well defined and / is
increasing, respectively increasing and convex, respectively convex. We use
increasing for x < y =Φ f(x) < f(y) and positive for x > 0. If we need the
strict inequality, we use strictly increasing or strictly positive.

The relation -<s is called the stochastic order; and the relation -<k is called
the convex order (see Stoyan [20] for an account). We shall use c-convex
and fc-convex to distinguish the two orders -<c and -<(&. These relations are
obviously transitive and reflexive. If two p.m.'s are ordered in the stochastic
order or the fc-convex order, then they are ordered in the c-convex order.

The set of positive functions / : IR —• IR which are increasing, respec-
tively increasing and convex, respectively convex, form a cone. The extremal
elements are, in addition to the constant function 1, the step functions in
x G JR, U<x, h<x, t E M] respectively (x — £)+, t € M] respectively
(x — ί ) + , (t — x)+, t G M. The + denotes the positive part.

The integral over the step functions is always finite. Therefore, the
stochastic order is in fact a partial order. We consider the relation -<5 on the
set V(M). For the -<c relation we require that the p.m.'s under comparison
have a finite integral with at least one non constant, convex and increasing
function /. But then for such a p.m., the integral for any extremal function
(x — ί ) + is finite. This natural requirement leads to the smaller class

/•oo

V+ := {μ e V(M) : / xdμ(x) < oo}
Jo

of probability measures. The relation -<c is in fact a partial order on this
class. Obviously the relation -<& is even stronger than the relation -<c. There-
fore, we require that p.m.'s under this comparison have finite integral with
at least one convex function / which does not belong to the previous class.
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But then for such a p.m., the integral for any of the extremal functions is
finite. The natural class of probability measures here is

V(M) : / \x\dμ(x) < oo}.

The relation -<(& is a partial order on this set.
For each p.m. μ on iR, F = Fμ denotes the distribution function of μ.

We always drop indices like μ whenever possible. The left continuous inverse
F'1 : (0,1) -> M is as usual defined by F~1(w) = inί{z : F(z) > w}. If
appropriate we use the continuous extension F~λ : [0,1] —> M U {—oo} U

The following basic results are well known (see e.g. Stoyan [20])

L e m m a 2.1 Each of the following is equivalent for μi, μ 2 € V{JR).

(i) μι -<s μ2-

(ii) J fdμi < f fdμ2 for all positive increasing functions f : M —• M.

(Hi) J fdμi < J fdμ2 for all (extremal) indicator functions f = lt<., t G M.

(iv) Fμ2 < Fμi pointwise.

(v) F~^ < F~^ pointwise.

A similar result holds for the <c order (see again Stoyan [20]).

Lemma 2.2 Each of the following is equivalent for μ\,μ<ι G V+.

(i) μι -<cμ2-

(ii) f fdμi < f fdμ2 for all positive increasing convex functions f : M —•

M.

(in) J fdμi < f fdμ2 for all (extremal) functions /(.) = (. — ί ) + , t G M.

(iv) /°°(1 - Fμi(s))ds < J°°(l - Fμ2{s))ds pointwise.

(v) J1 F~^(u)du < f1 Fμ2

ι{u)du pointwise.

And a similar result holds for the -<k order.

Lemma 2.3 Each of the following is equivalent for μi, μ2 G Vf.

(i) μi -<k μ2.

^ / fdμ2 for all positive convex functions f : M —* M.
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(in) J fdμi < J fdμ2 for all (extremal) functions /(.) = (. — i ) + , or /(.) =

(ί-.)+, teM.

(iv) /°°(1 - Fμi(s))ds < /°°(1 - Fμ2(s))ds pointwise and JxdFμi(x) =
fxdFμ2(x).

(υ) f1 Fμ^{u)du < J 1 Fμ2

ι(u)du pointwise and β Fμ^(u)du = j j Fμ2

ι{u)du.

(vi) μ\ -<c μ2 and f xdμ\{x) = J xdμ2{x).

For the equivalence (v) in each of Lemmas 2.1 and 2.2, see Lemma 1.8 of
Kertz and Rosier [13]. Lemma 2.3 shows μ\ <k M2 for μi,μ2 € Vf already
implies that μ\ and μ<ι have the same finite expectation. Therefore it is
reasonable to consider the partial order -<̂  only on a set

Vr := {μ e V(R) : ί xdμ{x) = r}

for fixed r G M. But on Vr the partial orders -<c and -<k a r e the same. An
easy criterion for fc-convexity is the cut criterion by Karlin and Novikoίf [11].

Proposition 2.4 Let μ\,μ2 be in Vr and the function Fμi — Fμ2 be negative

from minus infinity to some point and then positive. Then μ\ -<k μ>2-

To complete the picture, and for later use, we define the relation - ^ on
V(M) by μi -<d μ2 iff (2.1) holds for all functions / : M -> M for which the
integrals are well defined and / is decreasing and convex. The relation -<d
is a partial order on the set of p.m.'s

_ : = {μ G V{JR) : / xdμ(x) > -oo}.
J—oo

We use the terminology 'd-convex order' when referring to the -<d order.
The following gives characterizations of this -<<* order, and an immediate
connection to the <c and <k orders. The proof is immediate from the
definitions and Lemmas 2.2 and 2.3.

Lemma 2.5 (a) Each of the following is equivalent for μi, μ2 € V-.

(i) μi -<dμ2

fa) f fdμi < / fdμ2 for all positive decreasing convex functions

(in) f fdμi < f fdμ2 for all functions /(.) = (. — t)~ = (t — .)+, teM.

(iv) fiooFμ^ds < fl^F^^ds pointwise.
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M foFμ2

l(u)du ^ JoFto(u)du Pointwise.

(vi) μ~χλ <c M-X2> w/iere X\ and X2 are r.υ.'s with associated p.m.'s μ\
and μ2 respectively.

(b) For μ\,μ2^Vf, μ\ <k M2 if and only if both μ\ -<c μ2 and μι -<d M2

3 The lattice structures

We shall first discuss (P(JR),-<s), (V+,-<c) a n d (Pf,^k) a s lattices. We
call a lattice complete, if (i) any nonempty subset which is bounded above
has a supremum (least upper bound) and (ii) any nonempty subset which is
bounded below has an infimum (greatest lower bound) (for reference, see e.g.
Chapter 6 of Gleason [8]). As shown in Proposition 6-5.1 of [8], if either of
(i) or (ii) in this definition holds, then the other also holds. In the following
the symbols V and Λ denote the supremum and infimum of real numbers in
the usual order.

Lemma 3.1 (P(iR),^ s) is a complete lattice. The operations of supremum
Vs and infimum Λs are given for μi, μ2 G V(IR) by

(μi Vs μ2)([z, 00)) = μi([x, 00)) V μ2([z, 00))

(μi Λs μ2)([z, 00)) = μi([x, 00)) Λ μ2([x, 00))

for all x G M.

Proof: It is straightforward to show that (V(M),<S) is a lattice. To
show this lattice is complete, let K be any nonempty subset of V(M) which
is bounded from above; then the supremum ofX,V s{μ:μGϋΓ}, is the left-
continuous modification of Vs{μ : μ G K}([x, 00)) = V{μ[x, 00) : μ G K}.
Similarly, if K is any nonempty subset of V(M) which is bounded from
below, then the infimum of K, Λs{μ : μ G K} is Λs{μ : μ G K}([x,oo)) =
Λ{μ[x, 00) : μ G K}. q.e.d.

The space (P(iR),-<s) has no smallest or largest element. However, if
we extend M to M by adding plus and minus infinity with the one point
compactification, then (V(M), -<s) has the point measures on minus infinity
and plus infinity as smallest and largest elements.

We could find no reference that (P+, -<c) is
 a complete lattice, and shall

therefore prove that result. An earlier version of the first part of this re-
sult was given in [13]; to provide a simpler argument, and for the reader's
convenience, we supply the entire argument.

Let C be the space of all functions ψ : M —> M satisfying (i) φ is convex
and increasing; (ii) lim(^(t) — t) = 0; and (iii) lim (ψ(t + h) — ψ(t)) = 0 for

t^oo t|—00
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all h G M. The usual pointwise order on functions is taken to be the partial
order on C, denoted by -< . We first identify the lattice structure on (C, -<),
and then exhibit a lattice isomorphism between (C, -<) and (7*+, -<c). Recall
(e.g. Choquet [2]) that the lower convex envelope of a set S of real valued
functions, denoted conv(S), is the lower convex envelope of the pointwise
infimum of the functions in S. It is the greatest convex function pointwise
smaller than or equal to any function in S. Define the supremum U and the
infimum Π on C by

(V>i U φ2){t) = φλ(t) V ψ2(t) and {ψι Π ψ2){t) = {conv({ψuψ2}))(t).

for all t G M.

L e m m a 3.2 The space (C, -<) is a complete lattice. The supremum and
infimum are given by the operations U, Π : CxC —> C.

Proof: The relation -< is reflexive, anti-symmetric and transitive, and
therefore is a partial order. The functions U and Π are well defined. For
the supremum use the pointwise maximum of two convex functions is again
convex, and then check the conditions for functions to be in C. We show that
if -01, ψ2 E C, then φ\ Π ψ2 £ C. Recall any function has a unique greatest
lower convex envelope. Therefore the function φ\ Π ψ2 is well defined and
convex, increasing. Prom the defining properties (i) and (ii) of C, we obtain
t < ψ{t) for all t G iR, φ G C. An immediate consequence is limt_,oo(('0i Π

— t) = 0. For the last defining property (iii) of C, observe that

0 < ( ψ i Π ^ ) ( t + /ι)-(ψiΠψ2)(t)

-^t_-oo 0.

By construction U and Π are in fact the least upper bound and greatest lower
bound as required. This proves the lattice structure.

Let K be any nonempty subset of C which is bounded from above by
some #1 G C. Then the pointwise supremum / of all functions in if is a well
defined, convex and increasing function. Further

0 < limsup(/(ί) - ί) < limsup(5i(ί) - t) = 0.
t—>OO t—KX)

The function f(t + h) — f(t) is increasing in t G JR, for each h G M+ fixed.

The limit as t —> —oo exists and is some positive value, called v. It is easy to

show that v > 0 would imply that each k in K is not real valued (this uses

that limtj,-oo(fc(£ + h) ~ fcW) = ° for a 1 1 ^ G ^ ) ; s o w e m u s t h a v e υ = ° l t

follows easily that limt—«>(/(* + h) - f(t)) = 0 for all h G M. Thus / G C;
it is immediate that / is the supremum (least upper bound) of K in C.
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Now let K be any nonempty subset of C that is bounded from below by
some g2 £ C. The pointwise infimum of all functions in K is well defined.
Call the lower convex envelope /. Then / is convex and increasing. Further

0 < limsup(/(t) - t) < limsup(fc(t) - t) = 0
t—>oo t—»oo

for any k e K. The function f(t + h) - f(t) is increasing in t G M, for
each h E M+ fixed. The limit as t tends to minus infinity exists and is some
positive value, called υ. As before, one may show that if v > 0, then g2

would not be real valued; so we must have v = 0. It again follows easily
that ]imt-+-oo(f(t + h) - f(t)) = 0 for all h € M. Therefore / is the greatest
lower bound of K in C. q.e.d.

Let Ψ be in C. Denote its right-sided derivative by φ' (or one may work
with its Radon-Nikodym derivative). Then ψf is (or can be chosen to be) an
increasing right continuous function. We may think of ψ as a distribution
function. Indeed, by ψ G C and the representation ψ(t) — ψ(0) — $Qψ'(s)ds,
conclude that

poo

lim ψ'(8) = 0, lim φ\s) = 1, 0 < / (1 - <ψ'(s))ds <
-+-OO S—>OO JQ

0 0 ;

and we also obtain the representation ψ(t) — t = /t°°(l — ψ'(s))ds. Denote
by Γ the map from φ1 to φ. If we identify ^/ and its associated p.m., it is
clear that Γ is a map from V+ onto C.

Theorem 3.3 The map Γ is a lattice isomorphism from (P + , -<c) to (C, -<).

Proof: The map Γ : V+ —> C is well defined. It is easy to show Γ
is a one-to-one mapping. By use of the equivalences in Lemma 2.2, it is
also straightforward to show that Γ is order-preserving, i.e., μ\ -<c μ2 <=>

. q.e.d.

The result that the mapping Γ defines a one-to-one mapping from Vf to
a subset of C was proved by Gilat [7]. As a consequence of Lemma 3.2 and
Theorem 3.3, we have the following.

Theorem 3.4 (V+,^c) i>s a complete lattice. The supremum and infimum
operations Vc and Λc are given for μ\,μ2 G V+ by

The lattices (C, •<) and (V+, -<c) have no smallest or largest element. If
we compactify M as before, the point measures at minus infinity and at plus
infinity are respectively the smallest and greatest elements.
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The space (Pf, -<&) is not a lattice. The space (Vr, -<&) — Ĉ V, ~<c) is a
lattice. Notice this lattice is complete and has a smallest element, the point
measure at r, but no greatest element.

The next theorems are interesting consequences of the completeness prop-
erty of these lattices. These results have connections to martingale theory
which are given in Section 5.

For these theorems, we introduce the notation

Mab := {μ e V{M) : μλ <a μ ^b μ2}

where -<a denotes either -<β, the stochastic order, with μ\ G V(M)] -<c, the

c-convex order, with μ\ G P + ; <d, the d-convex order, with μ\ G V-\ or

-<fc, the fe-convex order, with μ\ G Vr> Similarly -<& denotes either -<s, -<c,

^d o r ~̂ fc? with μ2 in ^(M)^ V+,V- or 7 r̂ respectively.

Theorem 3.5 Assume μ\ and μ2 are p.m. 's in V+ which satisfy μ\ -<c μ2.

Then Msc contains a maximal element in the stochastic order. Assume, in

addition, that μ2 G Vr Then the following hold.

(i) Msc and Ms^ contain the same maximal elements in the stochastic
order.

(ii) Msk and Mc& have the same infimum in the k-convex order. This in-

fimum η, contained in both sets, has associated left continuous inverse

function F~ι{w) = xo VF~^(w) for w G (0,1), where xo is the number

in [—oo, oo) chosen so that /Q XQ V F~^{w)dw = JQ F~^(w)dw.

(Hi) The infimum of Ms^ in the k-conυex order is a maximal element of

in the stochastic order.

Proof: For the first conclusion, observe that the set Msc is non empty.
Let K be a stochastic-order chain in Msc. The set K is bounded from
above in the stochastic order. Indeed, for any μ G AT, and all w G (0,1),
F - » < (1 - w)^SlF-\u)du < (1 - w)-1 S*F£{u)du =: g(w); and
the p.m. associated with this r.v. g is a stochastic-order upper bound for
K. Let // be the stochastic-order supremum of K. Then μ\ -<s μ', and
μ1 ~<c μ2 since / fdμl = I i m χ 3 μ | / fdμ < oo for any increasing, convex and
positive function /. We can now apply Zorn's lemma to obtain that Msc has
a maximal element in the stochastic order.

Now, assume in addition that μ2 G Vr For conclusion (i) it is straight-
forward to obtain that, in the stochastic order, maximal elements for M5&
are also maximal elements for Msc. To obtain that, in the stochastic order,
maximal elements for Msc are also maximal elements for M s^, it suffices to
show that any maximal element for Msc in the stochastic order is also in

. Let μ be such a maximal element for Msc.
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Suppose that /xdμ(x) < Jxdμ2(x) = r. Let T be chosen so that
Jxdμ(x) < /(xVT)dμ(x) < Jxdμ2(x). Define p.m. μ τ ( ) = μ(-oo,T)e τ( )+
μ( Π [Γ, oo)). Then μ -<s μx and μ φ μτ We show that μr -<c μ2 by show-
ing that /(x V t)dμτ{x) < f(x V t)dμ2(x) for all t G M. Since μ -<c μ2, we
have /(x V t)dμτ(x) = J(x V t)dμ(x) < J(x V t)dμ2(x) for all ί > Γ. For
ί < Γ, it follows that

/(x V t)dμτ(x) = [ xdμ(x) + Γμ(-oo, Γ] = f(χ V T)dμ(x)
J Jχ>T J

< / xdμ2(x) < / (x V t)dμ2(x).

But this gives a contradiction to the maximality of μ. Thus, we must have
that the maximal element μ satisfies μi -<8 μ <k μ2, and so μ is in Ms^.

Next, conclusion (ii) is proved. The p.m. 7, identified in the statement
of the conclusion of this Theorem, is the infimum of Msk in the fc-convex
order. Indeed, 7 clearly satisfies μi -<s 7 and Jxd/y(x) — r = f xdμ2{x)]
and one shows in a straightforward way (e.g., through Lemma 2.2 (iii)) that
7 ~<c 1^2, and that 7 <c μ for all μ G Ms^. This gives that 7 G Ms^, and that
7 = inf f̂c Msk.

Since Mc^ is bounded below in the fc-convex order by the point measure
at r, and (Vr^k) is complete, it follows that Mck has an infimum in the
fc-convex order; call this infimum ηc. Now, Msk C Mc& and ηc -<k 7 We
show that 7c = 7. ^Prom the c-convex order requirements and Lemma 2.2,
we know that for all w G (0,1)

f F-?{u)du < f1 F-\u)du < ί1 F-\u)du. (3.1)

Let to satisfy F~^(to) < x0 < F~1

1(to+). ^From the definition of F~ι and
from (3.1), we obtain that F~^{w) = F~^(w) for w G (to? 1) But then from
(3.1) we must also have that for all w G (O,ίo)

° F-c

ι(u)du < ί °

and it follows that i^ 1(to) < xo However, ηc and 7 have the same mean;
and this implies that /o

ίo F^{u)du = /O

ίo F-λ(u)du = xoto. Thus, F~}{w) =
xo for w G (0, to); and ηc = 7.

To prove (iii), let 7 = inf f̂c Msk, given in part (ii), and suppose there
is a p.m. μ in Msk for which η <s μ and 7 7̂  μ. Then KjΓ1(tί;) < F^x(it;)
for all w G (0,1); and F~ι(w) < Fβλ(w) on some set of positive Lebesgue
measure. Since both μ and 7 are in Ms^, this implies that

r — \ xdη = / F~1(w)dw < / F^1(w)dw = / xdμ = r,



164 Kertz & Rosier

a contradiction. It follows that 7 is a maximal element of Msk in the stochas-
tic order. q.e.d.

Remark 3.6 Under the assumptions that μ\ G V(M), μ>2 € Vr and μ\ -<c

μ2, the sets Msk and Mck satisfy

Msk C Mck = {μe V(M) '.η^kμ^k A*2> (3.2)

where 7 is the p.m. of Theorem 3.5(ii), the common infimum of sets

and Mck in the fc-convex order. The containment of (3.2) is clear; and

the equality follows from Theorem 3.5. The containment of the two sets

of p.m.'s in (3.2) may be strict, as we see in the following example. Let

μi and μi be uniformly distributed on the intervals (0,1) and (1/4,5/4)

respectively, so that F~^(w) = w and F~2

λ(w) = w + (1/4) for w G (0,1).

Then F~ι(w) = x o V ^ ' / H = (\/2/2) Wwΐorw e (0,1). Now, let μ be the

p.m. with left continuous inverse function F~ι(w) = (1/4) + w if c < w < 1,

and = Λ/2/2 if 0 < w < c, where c = (2\/2 - l ) /2. Then μ G Mcfc; but

μ $• Msfc, since it is not true that μ\ <s μ>

^Prom Lemma 2.5 and Theorems 3.4 and 3.5, and from the fact that

μχι ~<s μx2 if a n d only if μ~χ2 -<s μ-Xn the following results are clear.

Theorem 3.7 (a) (V-, <d) is a complete lattice. The supremum and infi-
mum operations V^ and Ad are given for μχλ, μχ2 in V- by μχλ V^ μχ2 =
μ_ X l Vc μ-χ2 and μXl Ad μχ2 = μ_ X l Λc μ_χ2.

(b) Assume μ\ and μ<ι be p.m. 's in V- which satisfy μ\ -<d β2 Then Msd
contains a minimal element in the stochastic order. Assume, in addition,
μ2 G Vr. Then the following hold.

(i) Msd and Msk contain the same minimal elements in the stochastic
order.

(ii) Msk and Mdk have the same infimum in the k-convex order. This

infimum p, contained in both these sets, has associated left continu-

ous inverse function F~ι{w) = (—yo) Λ F~^{w) for w G (0,1), where

is the number in [—00,00) chosen so that jQ(-yo) Λ F~^(w)dw —

2{w)dw These sets satisfyQ F~2

ι{w)dw. These sets satisfy

Msk C Mdk = { μ e V(M) : ρ-<kμ<

where the inclusion may be strict.

(Hi) The infimum of Msk in the k-conex order is a minimal element of Msk
in the stochastic order.
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4 The Hardy-Littlewood maximal function

For any p.m. in V+ with corresponding distribution function F define the
Hardy-Littlewood maximal function H~λ : (0,1) —> M by

Notice the conditions μ G ? + and /^ F μ

 ι{u)du < oo for one (and then for all)
w G (0,1) are equivalent. We use the continuous extension H~ι : [0,1] —» M
if necessary.

Denote the right continuous inverse of H~ι by H : JR —> [0,1]. The
function iJ = Hμ is a distribution function, continuous except possibly for
one jump at the point ί), for which H(b—) < 1, H(b+) = 1. if is called the
Hardy-Littlewood maximal distribution function. We denote the correspond-
ing probability measure by μ*, and refer to this p.m. as the Hardy-Littlewood
maximal p.m. associated with μ.

Here we also use * to denote the map from P+ to the set of probability
measures defined by *(μ) = μ*. The image of * is the set of all Hardy-
Littlewood p.m.'s, denoted by H*. In this Section we give several isomor-
phism characterizations of the set Tί*. A basic fact is that p.m.'s are related
through the c-convex order if and only if their respective Hardy-Littlewood
maximal p.m.'s are related through the stochastic order, as stated in the
following Lemma.

Lemma 4.1 For p.m. 's μ\ andμi inV+, μ\ -<c M2 is equivalent to μ\ -<s μ̂

Proof: The proof uses equivalences for the stochastic order and for the

c-convex order given in Lemmas 2.1 and 2.2. Let F\,F2 be the distribution

functions of μi,μ2 For simplicity we assume that F\ and F<ι are strictly

increasing and have no jumps; the modifications for general F\ and F2 are

straightforward. Then for alH 6 M

J(x-t)+F1(x)<J(x-t)+dF2(x)

FΓι(u)du - ί(l - Fi(ί)) < / Fς\u)du - ί(l - F2(t))
JF2(t)

/ FΓι{u)du< Fo1(u)du+ {Fol{u)-t)du
JFχ(t) JFxit) JF2(t)

/ FΓι(u)du + / (Fr\u) - t)du < /
JF2(t) M(t) JF2(
/ ) / ( \ ) ) /
F2(t) M(t) JF2(t)

The main point is now to notice ίζ^{F2l{u)-t)du and

are both always positive. Thus μ\ -<c μ2 <=>

<* H{1(F2(t))+ positive <Hϊ\F2(t))
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< Hϊ1(Fι(t))+positive.

This implies the desired equivalence.
For p.m.'s μi and μi with the same finite mean, it is immediate that μ\ -<c

μ 2 <=> μι -<k H2 <=^ MΪ -<s μ>2- Under the finite mean assumption, van der
Vecht ([22], page 69) gave a result equivalent to the second equivalence and
attributed it to Gilat.

Theorem 4.2 The map * : (P+,-< c) —» (W*,-<s) is an order-preserving

isomorphism.

Proof: The map * is well defined and one-to-one. Indeed, the one-to-

one property follows since μ\ = μ\ implies F^1 = F^1 a.e. with respect

to the Lebesgue measure, which in turn implies equality of the distribution

functions F\ and F2. By the previous lemma * is order preserving. q.e.d.

It is an immediate consequence of Theorems 3.4 and 4.2 that (Ή*, -<s) is
a complete lattice. For the lattice on ?ί*, the supremum V* and infimum Λ*
in Ή* are given by

μ* V* μ*2 = (μi Vc μ2)* and μ* Λ* μ*2 = (μi Λc μ2)*.

The next example shows that Vs can be different from V* on Ή*.

Example 4.3 For any point measure, the Hardy-Littlewood maximal p.m.
is the same point measure. For two-point measures, if a < b and 0 <
μ({b}) =p=l- μ({α}) = 1 - q < 1, then

q<u<l

ifθ<u<q
iϊq<u<l

Now consider a one-point p.m. μ\ concentrated at c and a two-point p.m.
μ2 concentrated at a and b as above, with aq + bp < c < b. Then iί-j"1 Vs

Ή-2 has associated p.m. μ* Vs μ\ with two points c and b of discontinuity.
Therefore μ\ Vs μ\ cannot be a Hardy-Littlewood maximal function.

Next we give another isomorphic characterization of H* and show that
the stochastic infimum in H* is the *-infimum. These results are based on
the following Lemma.

Lemma 4.4 A function G : (0,1) —• IR is a Hardy-Littlewood maximal
function if and only if (1 — u)G(u) is a concave function in u G (0,1) and
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Proof: We first prove implication '=£•'. Observe that (1 — u)G(u) has a
derivative which exists a.e. and which is a.e. increasing. This implies that
the function (1 — u)G{u) is concave. For the other conclusion, observe that
limw_i(l - u)G(u) = limu_i /J F~ι{v)dv = 0.

Next, we prove the other implication. Let F~ι{u) be a left continuous
modification of the a.e. derivative of (1—u)G(u). This derivative is increasing
and it is easy to show that (1 — u)G{u) = /J F~ι(u)du. q.e.d.

Motivated by this Lemma, we introduce the collection J of functions
/ : (0,1) —> JR which are concave and satisfy limu_>i f(u) = 0. The usual
pointwise order on functions is taken to be the partial order on J, denoted
as in Section 3 by -<. To describe the lattice structure on J, let concαve(S)
denote the upper concave envelope of the pointwise supremum of the func-
tions in a collection of real-valued functions S. Define the supremum Uo and
the infimum ΓΊQ on J by

(/i Uo /2)(f) = (cσncαυe({fu /2}))(t) and (/i Πo /2)(t) = /i(t) Λ /2(t).

for all t G (0,1).

Theorem 4.5 The spaces (7ί*, -<s) ^nd (J, -<) are lattice isomorphic.

Proof: The proof is straightforward using Lemma 4.4. q.e.d.

Corollary 4.6 The stochastic infimum and the *-infimum of a set of Hardy-
Littlewood maximal p.m. 's are the same, provided one exists.

Proof: Let K be a set in W*, and let φ map μ* to the function (1 —
u)H~ι{u) 'mue (0,1). Then

l\κ = f\ψ-\<ψ(κ)) = ψ-\r^ψ{κ)) = ψ-\M>{κ)) = l\κ.
* * s

q.e.d.
Although V* is in general different from Vs on 7Y*, there is one useful

instance in which these operations coincide.

Proposition 4.7 For any chain K in 7ί* bounded from above, \/sK =

Proof: In the last corollary we used that the infimum of concave func-
tions is concave. Here we use that the supremum of increasing concave
functions is again concave. The bound on K implies the limit condition.
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Let K be the chain in H* and φ map μ* to the function (1 — u)iί~1(^) in

ue (0,1). Then

\JK = \Jφ-\φ{K)) = φ~\Uoφ{K)) = φ-\\Jφ(K)) = \/K.
* * s

q.e.d.

We give two consequences of these results. The first brings together

results which connect the stochastic and the c-convex orders.

Proposition 4 8 (i) For μi,μ2 € V+, it follows that

(μιAcμ2y = μ\/\*μl = μl^μl -<s μl^sμl -<s μ\v*μl = (μι v

(ii) For any bounded set K in H*, it follows that

Proof: All statements follow by previous results, together with the fact

that Vs K -<s V* K. This fact follows by the defining properties for \JS and

V. q e d.

For use in the next Theorem, we record analogous results for p.m.'s in
V-. For any p.m. μ in V- with corresponding d.f. F, define the function
L~ι = L~ι : (0,1) -> JR by L~ι(w) := w'1 $ F-ι{u)du. Associated with
this function L~ι are its right continuous inverse, a distribution function
denoted by L, and the p.m. μ°. We use C° to denote the collection of such
p.m.'s μ°, for μ G V-. From Lemma 4.1 and Theorems 4.2 and 4.4 (or use
Lemma 2.5 and Theorem 3.6(a)), it is clear that

(4.1)

(i) For p.m.'s μ\ and μ2 in V-, μi -<d μ2 is equivalent to μ® -<s μ?

(ii) The map D : (7>_, -<d) -> (£°, -<β), defined by Π(μ) = μ°, is an order-

reversing isomorphism.

(iii) The space (£°, -<s) is a complete lattice, with supremum Vo and infi-

mum Λo in £° given by

μ°ι Vo μ°2 = (μi Λd μ 2 ) 0 and μ? Λo μ°2 = (μι Vd μ 2) 0 .

(iv) A function ΛΓ : (0,1) —• iR has representation K = L~ι for some

μ in P_ if and only if uK(u) is a convex function in u G (0,1) and

o^^(^) = 0.
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(v) Let / denote the space of functions / : (0,1) —• M which are convex
and satisfy limw_,o f(v>) = 0, with the pointwise order on functions -<
and lattice operations Π and U, as described in Section 3. The spaces

°, -<s) and (/, -<) are lattice isomorphic.

(vi) The stochastic supremum and the Vo-supremum of a set in C° coincide,
provided one exists; and the stochastic infimum and the Λo-infimum
of a set in C° which is bounded from below coincide.

Theorem 4.9 Let μα^μp and μ\ be p.m.'s with μa in V-, μβ in V+, and
μι in Vr such that μ\ -<d μa and μ\ -<c μβ. Then the set {μ G V(M) : μ\ -<k
μ, μ <fi μa and μ -<c μβ} contains its supremum in the k-convex order. This
supremum coincides with the supremum of this set in the c-conυex order and
in the d-convex order.

Proof: Let M := {μ G V(M) : μ\ -<k μ^l1 ~^d μa and μ -<c μβ}. The
set M is nonempty and is bounded from above in the c-convex order. Since
(*P+, -<c) is complete, M has a supremum in the c-convex order, which we
denote by 7. It is immediate that μ\ -<c 7 -<c μβ. We will show that μ\ <^ 7
and that 7 is also the supremum of M in the fc-convex order.

Let D be any dense subset of M. Use diagonalization to obtain a sequence
{λn : n = 1,2,...} in M satisfying supn>! λ*[a:,oo) = sup{μ*[x,oo) : μ G
M} for every x G D. Prom the lattice structure on P+, we may assume
that {λn : n = 1,2,...} is increasing in the c-convex order or equivalently
{λ* : n = 1,2,...} is increasing in the stochastic order. Denote λ := Vc{λn :
n = 1,2,...}. It is immediate that λ -<c 7; we show that 7 -<c λ. Prom
Proposition 4.7, we have that

λ* = (Vc{λn : n = 1,2,.. .})* = V*{λ; : n = 1,2,...} = V5{λ; : n = 1,2,...}.

Thus, for each x G D, sup{μ*[x, 00) : μ G M} = λ*[x, 00); and hence λ is
an upper bound for M in the c-convex order, and 7 -<c λ. Thus 7 = λ =
V c {λ n :π = l,2,...}.

^From the observation that μ°a <s μ -<s μ£ for each μ G M, it follows
that M is tight. Thus {λn} has a subsequence {\i} which converges weakly
to some p.m. v. Also, M is uniformly integrable. Indeed, the set of p.m.'s
M is uniformly integrable from below since

0 < lim sup / -xdμ < lim sup / {-2x - A)+dμ
Ά—•oo μξ-M Jχ<—A A—*oθμζ:MJ

< lim ί(-2x - A)+dμa = 0,
A—>oo J

where we have used the pointwise inequality —xI^^-Afa) ^ (—2x — A)+,
Lemma 2.5 μ -<d μa for all μ e M, and μa G P_; and M is uniformly
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integrable from above from an analogous argument, since μ -<c μβ for all
μ G M, and μβ G V+.

We show that 7 = z/. But first we prove that v G V+. This result
uses the fact that lim* /£ F^(u)du = /£ F~ι{u)du for 0 < t 0 < ti < 1;
which follows from (i) {F^1(t6)} is uniformly bounded over % = 1,2,... and
tx € [tojti], (ii) \imiFχ^(u) — F~ι{u) at every continuity point u of F~ι in
(0,1), and (iii) the bounded convergence theorem. Now, if v £ *p+, then it
must be the case that lim^/i /^ i?

I7
1(u)du = 00; and thus for any e > 0, for

each to close to 1, there is t\ in (to, 1) for which

e< F-ι{u)du = lim / FΓι{u)du
Jto i Jto x

< lim/ FΓι(ύ)du= /
~ i Jto Xi Jto

where the last equality follows from 7* = Vs{λ* : i = 1,2,...}. This contra-
dicts limto/i fl0 F~ι{u)du = 0, i.e., 7 € V+. Thus, it follows that v € V+.
From this result and the uniform integrability M, it follows (e.g., by use of
the version of Fatou's Lemma given by Chow and Teicher ([3]: page 94))
that

ί F~l{u)du = [ lim F^(u)du

= lim / Fχ.^iήdu = [ F~ι{u)du
* Jw x Jw

for every w G (0,1). Thus v* = 7*, and so v = 7; the weak convergence
limit of {Xi} is 7. We now have that /xdη = J xd\ = /xdμ\, since

/
xdη > lim / xdλi = lim / FΓι(u)du

i J i Jo

> / \imF^(u)du= F~ι{u)du = I xdη.

Thus, μ -<k 7 for all μ G M; this says that 7 is an upper bound for M
in the fc-convex order. By the completeness of (Pr,^<k) it follows that M
has a supremum in the fc-convex order; and a straightforward check of the
defining properties of suprema shows that 7 is also the supremum of M in
the fc-convex order.

Now, since M is bounded from above in the d-convex order, and
(V-,~<d) is complete, it follows that M has a supremum in the cί-convex
order, which we call r. It is immediate that μ\ -<d τ -<d Mα Using the re-
sults developed in Lemma 2.5, Theorem 3.6, and (4.1), one shows analogous
to the above argument that r = 7, the supremum of M in the fc-convex
order. It follows also that 7 G M, and thus the Theorem is proved. q.e.d.
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Corollary 4.10 Let μ\ and μ2 be p.m. 's in V+ with supports in [0, oo), and
assume that μ\ -<c μ<ι. Then the set M^c = {μ G V(M) : μ\ -<k M ~<c M2}
contains its supremum in the k-convex order, and this supremum equals the
supremum of this set in both the c-conυex and d-convex orders.

Proof: This result follows immediately from Theorem 4.9, observing that
(i) p.m. μ has support in [0,00) if and only if μ -<d eo, and (ii) if p.m. μ
satisfies μ\ -<c μ -<c μ2, then μ has support in [0,00). q.e.d.

Example 4.11 In the spirit of Theorem 4.9, one might consider whether
the following analogue of a conclusion from Theorem 3.6 holds: if μ\ G V(M)
and μ2 G Vr with μi -<c μ2, then {μ G V(M) : μi -<k μ ~<c ^2} has an upper
bound in Vr and contains its supremum in the fc-convex order. But this
statement is false, and additional assumptions are required as in Theorem
4.9, as the following example illustrates. For n = 1,2,..., denote p.m.'s
un = n~1β-n + (1 — n~1)eo Prom the equivalences of Lemmas 2.2 and 2.3,
one obtains that {yn : n = 1,2,...} C {μ G V(M) : e_i -<k μ -<c €0} =: B.
However, the set \yn : n = 1,2,...} has no upper bound within V-ι in the
fc-convex order; and thus the set B has no upper bound within V-\ in the
fc-convex order. We also have that B has no upper bound in V- within the d-
convex order. (Similarly, by considering the p.m.'s {ξn — n~ 1 e n +(l—n~ 1 )eo :
n = 1,2,...}, one sees that the set of p.m.'s {μ G V(M) : ei -<k μ ~<d ^0}
might have no upper bound within V\ in the fc-convex order and no upper
bound within V+ in the c-convex order.)

5 Connections to Martingale Theory

In this Section we give some connections of the orders -<c, -<k-> and -<d to
martingale theory.

We say that r.v. X is smaller than r.v. Y in the stochastic order, in
the c-convex order or in the fc-convex order, if the corresponding p.m.'s μi
and μ2 satisfy respectively μi ^ s μ2, μi -<c μi or μi -<k M2 We shall use
the same notation for distribution functions with the obvious meaning. A
martingale (resp., submartingale or supermartingale) is a collection of r.v.'s
Xt, t G T C M and an increasing family of σ-fields T% C T, t G T, on
the same probability space (Ω, T, P) satisfying the following: (i) the r.v. Xt

is Tt measurable, for each t G Γ, and the map Xm (ω). : T —> M is right
continuous α.e. P; (ii) E(Xt) is well-defined (but allowed to be finite,—00,
or +00; and (iii) E{Xt\Fs) = (resp. >, or <)XS α.e. P for s < t in Γ.
We call (μi, μ2) a martingale pair (resp., submartingale pair or supermartin-
gale pair), if there is a martingale (resp., submartingale or supermartingale)
X\, X2 for which X\ and X2 have distributions μ\ and μ2 respectively. Mar-
tingale, submartingale, and supermartingale triples (μi,μ2,μs), quadruples
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(μi,μ2,μ35/^4)5 e^c. are defined analogously. A probability kernel is a map
k : Ωx.F —• [0,1] with (i) k(ω,.) : T —• [0,1] is a probability measure α.e. P,
and (ii) fc(., F) : Ω —• [0,1] is measurable for all F G f . A dilation is a prob-
ability kernel fc for which x = Jyk(x,dy) for all x ^ JR. The next theorem
is partly due to Strassen and others, as indicated in [21].

Theorem 5.1 Let μ\ and μ<ι be p.m. 's in Vr. Then the following are equiv-

alent:

(i) μi -<k μ2.

(ii) (μi,μ2) is a martingale pair.

(Hi) There exists a dilation k : JRxB —• [0,1] with f k(x, B)dμ\{x) — μ2(B)
for all Borel sets B G B.

We give here a slightly stronger result adapted to P+, which generalizes
a finite moment submartingale characterization given in [21].

Theorem 5.2 Let μ\ and μ<ι be p.m. }s in V+. Then the following are equiv-
alent:

(ii) (μi,/Z2) is a submartingale pair.

(in) There exists a probability kernel k : MxB —• [0,1] with x < J yk{x, dy)

for all x G M and //c(x, B)dμ\{x) = μ2(B) for all Borel sets B G B.

Proof: The equivalence of (ii) and (iii) is straightforward. In particular,
for (ii) => (iii), if X\ and X2 are r.v.'s with associated p.m.'s μ\ and μ2, and
{X\,X<ι\ is a submartingale, then a regular conditional distribution of X2
given X\ can be taken as the kernel in (iii). For (iii) => (ii), on (ϋR2, B(M2)),
define p.m. λ by X(AxB) = fA fe(x, B)dμι(x), for A, B in B(M)] define r.v.'s
X\ and X2 as the coordinate r.v.'s (Xι(x,y),X2{x,y)) = (x^y)] and define
σ-fields T\ = ^"(-XΊ), the σ-field generated by -XΊ, and T2 = JΓ(Xι,X2)- It
is immediate that { X L , X 2 } is a submartingale with marginals μ\ and μ2,
and hence that (μi,μ2) is a submartingale pair.

The implication that (ii) => (i) follows from the generalized Jensen's
inequality (e.g., see Chow and Teicher [3]: Theorem 7.1.4). We prove that
(i) => (ii) and (iii). The additional difficulty of the proof of the implication
that (i) => (ii) over that of Theorem 5.1 is the one-sided integrability of the
measures. We obtain this result by a reduction to the setting of Theorem
5.1. For simplicity in exposition, we give the proof in the case of a strictly
increasing and continuous d.f. F. For the general d.f. F , one uses the basic
outline of this proof together with the 'splitting atom' technique, as used
e.g., in Proposition 2.3 of [12].
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We saw in Lemma 2.2 that μ\ -<c μ<χ is equivalent to jwF{l(u)du <
SwF^ίiήdu for all w G (0,1). The function g : (0,1) -+ M defined by
g(u) := (F^1 — F1~

1)(w) is left continuous. If g is always positive then
μi ~<s β2 and we are done. Otherwise let u$ be a value with g(uo) < 0.
Define u\ \— sup{iA < uo : g(u) > 0} and u<ι := inί{u > UQ : g(u) > 0}. Note
that u\ might be zero and that f™2 g(u)du is finite. Then for all u G (ΪXI, U2)
it follows that g(u) < 0. Further choose some U4 with u\ < u<χ < u± and

PU4 ru2

/ g+(u)du = — g(u)du.
JU2 JU\

This is possible by j^g(u)du > 0 for all w € (0,1).
Consider g(u)du as a signed measure μ on (0,1). (Note that \μ(A)\ =

\JΛg(u)du\ is finite for any Borel set A C (w, 1), for some w G (0,1), and
0 < μ(0,1) < 00.) Take the Hahn-Jordan decomposition μ — μ + — μ~ into
positive and negative part μ + ,μ~. Define / := ([^25^4] Π support(μ+)) U
([1x1,̂ 2] Π support(μ~)) = ([^2^4] Π support(μ+)) U [^1,^2]- For any p.m. v
on the Borel sets of (0,1), let vι denote the restriction to set /, i.e., uj(-) =
v(')/v(I) on the Borel subsets of /. Let G?i, G2 be the distribution functions
for μi/r-i(n?μ2F~1(/) respectively. Then we claim

2) Fi ίGΓ 1 ^)) = F2(Gϊ1(w)) for all ^ G (0,1).

3 )

4 )

For 1), observe μ1F-i{I)(M) = Jjdu = μι(F{1 (I) Π iR).

For 2), one shows that G ^ F f 1 ^ ) ) = μi((-oo,F 1 " 1 (i;))nF 1 - 1 (/))// / ^ =

f(o,v)nidu/ fidu A l s o ^ ( - R f 1 ^ ) ) = f(o,v)nidu/ fidu- τ h i s i m P l i e s t h e

statement 2).
For 3), observe that

Jw Jw
roo roo

/ xdGι(x) < / xdG2(x) for all it;
JCjr , \VJ) «/CJΓQ V ^ /
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/ xdFχ(x) < [ xdF2(x) for all w
J(G-1(w),oo)ΠF-1(I) J(G-1(w)}oo)ΠF-1(I)

[ FΓι(u)du < f

<̂ > / FΓι(u)du< ί
J(w,i)ni J(w,i

/ χ() [
(G-1(w),oo)ΠF-1(I) J(G-1(w)}oo)ΠF-1(I)

F2l(u)du for all w
(F2(G-1(w)),l)Πl

2 { )
,i)ni

Now consider f,w 1NΓ1/ g(u)du. Notice /7 g(u)du = 0. The integral f(w^nj g{u)du
equals 0 for w > tx4; increases from 0 to /[U2)U4]nSupp(μ+) 9(v)du = J[u2U4] g+(u)du
as w decreases from 1x4 to u2\ decreases from ftu u i g+(u)du to 0 as w de-
creases from U2 to i/i and equals 0 for w < u\. This proves the statement
3).

Statement 4) follows since by construction both measures μi, μ% restricted
to F1~

1(/),F^"1(/) respectively have the same finite first moment equal to
fj F{\u)du/ Jj du = Jj Fς\u)du/ Jj du.

By reasoning analogous to that used in claims l)-3), one reduces verifi-
cation of claim 5) to showing JV ι\nIc g(u)du > 0 for all w. For w > u^ this
expression is positive. For u\ < w < u^ establish first // 1xnjc g(u)du <
S(w,i)ni° 9{v)du. Then argue

0 < / g(u)du = / g(u)du + / g{u)du = / g(u)du.
J(ui,ΐ) J{uι,i)nic J(uι,i)ni J{uι,i)nic

For w < uι argue 0 < fi,g(u)du = J{wΛ)nIc g(u)du.

By Theorem 5.1 there is a martingale pair for μi, μ2 restricted to F1~
1(/),

-F2~
1(^) respectively.
Now continue the procedure for μi -<c μ2 restricted to F1~

1(/c), F^"1(7C).
We find a new set /2, disjoint from / = I\ other than for possibly countably
many points, by the above procedure. Again there is a martingale pair for
μi,μ2 restricted to F^1(I2), KΓ1(I2) respectively. We are left with μi -<c

μ2 restricted to the inverse of (Iχ U I2)
c under JF\,F2. We finally have to

show that this algorithm will work to show that (μ\,μ2) is a submartingale
pair. Let D be a countable dense set in {u (Ξ (0,1) : g(u) < 0}. Take
an enumeration of D and work through this construction taking the nth

element as starting point in the nth step if necessary. In at most countably
many steps, one obtains a sequence of measurable sets {/n}i<n<oo disjoint
except possibly for at most countably many points, with {u G (0,1) : g(u) <
°} C Ui^rKooAi, and (μ 1 F - i ( / n ) , μ2F-

ι(in)) i s a martingale pair for each

1 < n < 00. On (U n / n ) c , we have that μ1 F i-i((U n / n )c ) <s M2FJr
1((un/n)c);

and so μi,μ2 restricted to F 1" 1((Un/n) c),F 2~ 1((Un/n) c) is a submartingale
pair. For 1 < j < 00, let kj be a dilation for Mi/r-1(/.))M2F"1(/ )' a n ( ^ ̂  °̂°
be a probability kernel associated with submartingale pair μi,μ2 restricted
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to F^ϋUnl^η.F^iiUnln)0). For i = 1,2, denote sets Ωα = ^ ( / i ) ;
Ωy = ̂ ( / j ) n ^ ί ί U j l ί W for K J < oo; and Ωioo = ^ ( ( U J ^ ) .
Define k on MxB by k(x, B) = Σi<j<oo kj(x> B)IΩIJ(X)-

 τ h e n H', B) i f a

Borel measurable function, for each Borel set B in JR; and for each x G (0,1),

there is some j G {1,..., oc} for each fc(a;, •) = kj(x, •), and so fc(x, •) is a

p.m. on the Borel sets of JR. So fc is a probability kernel. Finally, observe

that

/ yk(x, dy) = / ykj(x, dy) = x if x G Ωy, for 1 < j < oc; and

= / ykoo{x, dy)>x if x G Ωioo;

and for each Borel set B in JR,

/ k{x,B)dμι(x) = Σ / kj(x,B)dμι= ^ kj(x,B)dμιςιlj
J l R i<j<oo 7 Ω I J i<j<cχ) ^

Thus, the kernel fc satisfies (iii) for p.m.'s μ\ and μ25 and the implication
(i) => (ii) and (iii) is proved. (An alternative proof can be given based on
Zorn's Lemma; however, the proof we have given here has the advantage of
a countable construction.) q.e.d.

In the martingale theory terminology of this Section, part of Theorem
3.5 can be restated as the following result.

Theorem 5.3 Let μ and v be p.m. }s in V+ and Vr respectively for which
(μ, v) is a submartingale pair. Then there is a p.m. μ\ G Vr for which (i)
(μi, v) is a martingale pair; (ii) (μ, μi, v) is a submartingale triple; and (iii)
there is no p.m. μo in Vr with μo φ μi satisfying (μo,μi, v) is a martingale
triple and (μ, μo,μi,^) is a submartingale quadruple.

Here is an analogue of Theorem 5.2 for supermartingales which we use
in Theorem 5.5.

Theorem 5.4 Let μi and μ2 be p.m. 's in V-. Then the following are equiv-
alent:

(i) μi -<d μ2.

(ii) (μi,μ2) is a supermartingale pair.

(iii) There exists a probability kernel k : M x B —> [0,1] with x > f yk(x, dy)

for allx EM and f k(x, B)dμ1(x) = μ2(B) for all Borel sets B eB.
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In the martingale theory terminology of this Section, Theorem 4.9 can

be restated to give this variation of Theorem 5.3.

Theorem 5.5 Let μ, ua and Vβ be p.m. 's in Vr, V~ and V+ respectively for

which (μ, ι/a) is a submartingale pair and (μ, Vβ) is a supermartingale pair.

Then there is a p.m. μ\ G Vr for which

(i) (μ, μi) is a martingale pair;

(ii) (μ, μi, va) is a submartingale triple and (μ, μi, Vβ) is a supermartingale

triple;

(Hi) there is no p.m. μ2 in Vr with μ<ι φ μ\ satisfying (μ, μi,μ2) is a mar-

tingale triple and either (μ, μi,μ2,μα) is a submartingale quadruple or

(μ, μi,μ2,μ/3) is a supermartingale quadruple.
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