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ABSTRACT. The best linear unbiased predictor for a stochastic process is the best

unbiased predictor (i.e., the linearity constraint is removed) if the process is Gauss-

ian. This provides a stronger justification for the universal kriging predictor than is

generally offered. For log-Gaussian processes, we show that the standard predictor is

optimal among all unbiased predictors with respect to a weighted mean squared error

prediction criterion.

1. INTRODUCTION

Consider an L2 stochastic process (Z(t) : t e D) (or Z for short) with mean function

of the form

E[Z(t)] = Σβ&it),
3=1

and covariance function

Cσv[Z(s),Z(t)] = σ2K(s,t).

We assume the basis functions Bj(t), 1 < j< p, are known but the coefficients β^ 1 <

j < p are unknown. The covariance σ2K(s, t) is assumed known except for possibly the

scale parameter σ2. This is essentially the setup of universal kriging (or ordinary kriging

if p = 1 and Bχ(t) = 1). See Cressie (1991). Here we consider prediction of a value Z(s)

given values (Z(tι),..., Z(tn)), which is the usual geostatistical prediction problem.

The universal kriging predictor is what is typically used in such prediction problems.

Besides the geostatistical applications, it has been used elsewhere for prediction (or

approximation, interpolation, or smoothing) of general functions (Sacks, et. al., 1989)
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based on a "random function" model (or function space prior, if one is willing to admit

to the Bayesian nature of such models).

The universal kriging predictor is typically justified on the grounds that it is

"best" among linear predictors which are "unbiased," i.e. it is the "best linear unbiased

predictor" or BLUP, where, "best" is in the sense of minimizing the expected value of

the squared prediction error. Definitions are given below. Here, we show that if the

process is Gaussian, then it is in fact best among all unbiased predictors, i.e. the "best

unbiased predictor" or BUP. While the Gaussian assumption is rather restrictive, it

is in fact the assumption of choice when actual distributions are needed rather than

just first and second moments (e.g. for computation of prediction intervals, likelihoods,

etc.), and it is comforting to know that the widely used predictor has the additional

optimality property (just as one is perhaps comforted to know that ordinary least

squares estimator in regression is UMVUE under a Gaussian errors model as well as

BLUE for the Gauss-Markov setup; see Lehmann, 1983). Furthermore, the result here

provides an alternate proof to the fact that the BUP for the Gaussian process is BLUP

in general (see Corollary 3.3 below).

When the process is clearly not Gaussian, it is often assumed that some transfor-

mation makes it Gaussian, and the most commonly used Gaussianizing transformation

is probably the logarithm. A process Z whose logarithm is Gaussian is called log-

Gaussian. Now for such log-Gaussian processes, there is a well developed prediction

theory, the so-called log-normal kriging. See section 3.2.2 of Cressie (1991). Assuming

σ2 is known, one constructs an unbiased predictor of a log-Gaussian process by expo-

nentiating the BLUP (now known to be BUP) of the underlying Gaussian process and

multiplying by a suitable constant to correct for bias. As in the case of a Gaussian

process, we show here that this predictor is optimal among all unbiased predictors

(not just those obtained by exponentiating a linear predictor based on the underlying

Gaussian process), but the optimality is in terms of a weighted mean squared prediction

error.

The results concerning the optimality of the BLUP for Gaussian processes are

certainly not surprising. As mentioned in Handcock and Stein (1993), the BLUP is the

posterior mean predictor under a uniform prior on β (assuming K is known). The result

for the log-Gaussian process is perhaps of greater interest (although we have adjusted
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the loss function, but not in an unreasonable way). We find the method of proof to be

most intriguing. As in the theory of classical unbiased estimation, an important role

is played by the completeness and sufficiency of the statistic /3, the generalized least

squares estimator of the regression coefficient vector. It would be of interest to know

if other prediction problems are amenable to these techniques.

The next section sets up the mathematical framework for the main results, which

is in fact more general and simpler than a stochastic process. In the third section are

given the theorem and proof for the Gaussian case, and in the fourth the result for the

log-Gaussian case.

2. MATHEMATICAL FRAMEWORK

While we have expressed the problem above in terms of stochastic processes, it

of course can be reduced to one involving (n + 1) dimensional normal random vectors.

Let X be a random n dimensional vector and Y a random variable so that (X, Y)

has a multivariate normal distribution on lRn+1. For the Gaussian process case, X =

(Z(tι),..., Z(tn)) and Y = Z{s). Vectors are represented as column matrices or ordered

n-tuples. Assume that the mean is given by

E
X

Y
β (2.1)

where ξ is a known n x p matrix, η is a known 1 x p matrix, and β is an unknown p

vector. We assume ξ is of full column rank p. Denoting the (i,j) entry of a matrix B

by B[iJ], of course, ξ[ij] = Bj(U) and η[l,j] = Bj(s). The covariance of (X,Y) is

written in partitioned form as

Coυ — σ
KχY (2.2)

where Kxx is n x n, Kχγ = KγX is n x 1, and Kγγ is 1 x 1. Of course Kxx[iJ]

= Kfatj), Kχγ[i, 1] = K(tiΊs), and Kγγ[l, 1] = K(s,s), where K is the covariance

function given above. We assume Kxx is nonsingular.

In the Gaussian case, we consider predictors p(X) of Y which are a function of

X, i.e. a predictor of Y given X. Such a predictor is called unbiased if

E\p(X)\ = E[Y) - ηβ, (2.3)
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for all β e Mp. We will consider only unbiased predictors as defined here. This

restriction is not as easy to justify as unbiasedness in point estimation as considered

in Lehmann (1983), but it has been widely accepted. We note that in the stochastic

process setting, the sampling design t u £2, -, tn is treated as fixed, so if the design

is in fact random, then this notion of unbiasedness is the analogue of conditional

unbiasedness as discussed in Shaffer (2000) for estimation. It may be of interest to

consider unconditional unbiasedness in this setting to see if it leads to the discovery of

other predictors.

For any predictor p(X) the mean squared prediction error is given by

MSPE[p] = E[(p(X)-Y)2]. (2.4)

One unbiased predictor is

po(X) = ηβ + A(x-ξβ),' (2.5)

where

is the generalized least squares estimator of β and

A = KYXK-X\. (2.6)

One can obtain po(X) informally by starting with the formula for E[Y\X] and plugging

in β for the unknown β.

For the log-Gaussian case, X = (log Z(tι),..., log Z(tn)) and Y = log Z(s), and

we wish to predict W = Z(s) = expY. For this case, we assume σ2 is known. We

consider predictors q(X) of W which are a function of X, and such a predictor is called

unbiased if

E[q(X)] = E[W) = exp{E[Y] + (l/2)Var[y]}

exp[ηβ + {l/2)σ2KYYl (2.7)

for all β € Mp. For any predictor q(X) we consider the weighted mean squared predic-

tion error given by

WMSPE[p] = E [exp[-AY] (q(X) - Y)2} , (2.8)
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where A is given in (2.6). This is clearly equivalent to

WMSPE2\p] = E [(q(X) - Yf/E[W\X\] ,

as

E[W\X] = exp{E[Y\X] + (l/2)Var[r|X]}

= exp [ηβ + A(X - ξβ) + (1/2) (Kγγ - AKXY)\.

One such unbiased predictor is

qo(X) = Cexp[poPO], (2.9)

where po(X) is the BUP of Y given in (2.5) and C corrects for bias:

C = exp[(l/2){Var[y]-Vax[po(X)]}]

= exp [(l/2)σ2 {Kγγ - (Kγγ - AKXY - η(ξτK^xξ)-1ητ

+Aξ(ξτκxxξ)-YAT)}]

= exp [(l/2)σ2 {AKXY + η(ξτKxxξ)-ιητ - Aξ(ξτKxxξ)-1ξτAτ}} (2.10)

It follows from Theorem 4.1 below that this is the "best" unbiased predictor of W

given X in the sense of minimizing WMSPE.

3. BEST UNBIASED PREDICTION FOR GAUSSIAN PROCESSES

Here we present the theorem which justifies our claim that the BLUP is in fact

BUP for Gaussian processes.

Theorem 3.1. Among all unbiased predictors ofY given X, po(X) in (2.5) minimizes

MSPE.

Proof. First of all note that β is an unbiased estimator of β, from which it follows

that po(X) is an unbiased predictor of Y given X. Let p(X) be any other unbiased

predictor of Y given X. Then

MSPE\p] = E[(Y- Po(X))2} + E [(po(X) - p(X))2}

+ 2E[(Y-po(X))(po(X)-P(X))}.

The theorem follows once we show

E \{Y - Po(X)) (po(X) - p(X))} = 0. (3.1)
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By elementary properties of conditional expectation,

E [(Y - po(X)) (poPO - P(X))} (3-2)

= E{(po(X)-p(X))E[(Y-Po(X))\X}}

= E [(po(X) - p(X)) (ηβ + A(X - ξβ) - Po(X))} (3.3)

= {η-Aξ)E[(Po(X)-p(X))(β-β)]. (3.4)

In the above, (3.3) follows from the well known formula for conditional expectations for

one component of a multivariate normal distribution given the rest, and (3.4) follows

from the definition of po(X) and a little algebra. Continuing to calculate with the last

expression,

E [(po(X) -p(X)) (β-β)] = E{[β-β)E [po(X) -p(X)\β] } . (3.5)

Now if σ2 is known, then β is a complete sufficient statistic for β by Lemma 3.2 below.

Hence, by sufficiency, h(β) = E \po(X) — p(X)\β\ does not depend on β, i.e. is a

statistic. Furthermore, for any value of /?, unbiasedness of p(X) and po(X) implies

E[hφ)] = 0, so by completeness, h(β) = 0 almost surely. Plugging this into (3.5) and

then into the previous calculations establishes (3.1).

Since po(X) does not depend on σ2, it follows that it is the unbiased predictor of

Y given X which minimizes MSPE both when σ2 is known and when it is not known.

This completes the proof.

Lemma 3.2. With σ2 known, β is a complete sufficient statistic for β.

Proof. The result is presumably well known, but we could not find a quick

reference to it. One may write the normal likelihood in exponential family form as

f(x\β) = g(β)exp[{l/σ2)βτ?Kχl

xx}h(x)

= g(β) exP [(l/σ2){(eK^xξ)β}Tβ] h{x),

where g(β) does not depend on x and h(x) does not depend on β. We need only verify

the full rank condition of Lehmann (1983), page 28 (see Theorem 5.6, page 46). To

this end, note that β satisfies no linear constraints (it ranges over all of ΉP as x ranges
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over JRn) and (ζτKχχξ)β ranges over all of Mp as β ranges over Mp. This completes

the proof.

A simple corollary is the usual result that p0 (X) is the BLUP for a general process.

Corollary 3.3. Suppose X is a random n dimensional vector and Y is a random

variable both having finite second moments with mean and covariance given by (2.1) and

(2.2), respectively. Thenpo(X) minimizes MSPE among all linear unbiased predictors

ofY given X.

Proof. Clearly po(X) is a linear unbiased predictor of Y given X. The MSPE of

a linear unbiased predictor depends only on its variance and covariance with Y, so is

the same whether the process is Gaussian or not. The proof follows from these simple

facts and the Theorem.

4. A RESULT FOR LOG GAUSSIAN PROCESSES

Here we state and prove the theorem which justifies the optimality claim for the

unbiased predictor of a log-Gaussian process. Recall that σ2 is assumed known for this

case.

Theorem 4.1. Among all unbiased predictors ofW = exp[Y] given X, qo(X) in (2.9)

minimizes WMSPE.

Proof. One can check the qo(X) is an unbiased predictor. Let q(X) be any other

unbiased predictor of W given X. First note that

E [W\X] = exp [E[Y\X] + (l/2)Var[Y|X]]

where Var[Y|X] is a constant not depending on X. Hence,

E[qo(X)-W\X] = Cexp[ηβ + A(X-ξβ)\ -

exp [ηβ + A(X - ξβ) + (l/2)Vax[Y\X}}

= eAX exp [(η - Aξ)β] (c - C exp [(η - Aξ)(β -
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with C = exp [(l/2)Var[y|X]]. Following the argument of Theorem 3.1, we jump in

at the analog of (3.2):

E [e-™ (W - qo(X)) (qo(X) - q(X))}

= -E [exp [(77 - Aζ)β] (C - C'exp [(η - Aξ)(β - £)]) (qo(X) - q(X))]

= -E [exp [(η - Aξ)β] (c - C'exp [(η - Aζ){β - β)]) E [qQ(X) - q(X)\β]]

As before, it follows from the completeness and sufficiency of β and the fact that qo(X)

and q(X) have the same expectations as a function of β that E[qo{X) — q(X)\β) = 0,

a.s. and the result follows.

Remark: While we adjusted the loss function to make the proof of the previous

theorem go through, it is clear that one could retain the unweighted squared error loss

and modify the definition of unbiasedness and obtain a result.

DENNIS D. COX

DEPARTMENT OF STATISTICS

P.O. Box 1892

R I C E UNIVERSITY

HOUSTON, TX, 77251

dcox@stat. rice, edu




