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An asymptotic minimax determination of

the initial sample size in a two-stage

sequential procedure

Michael Woodroofe1

University of Michigan

Abstract: When estimating the mean of a normal distribution with squared
error loss and a cost for each observation, the optimal (fixed) sample size
depends on the variance σ2. A two-stage sequential procedure is to first conduct
a pilot study from which σ2 can be estimated, and then estimate the desired
sample size. Here an asymptotic formula for the initial sample size in a two-
stage sequential estimation procedure is derived–asymptotic as the cost of a
single observation becomes small compared to the loss from estimation error.
The experimenter must specify only the sample size, n0 say, that would be
used in a fixed sample size experiment; the initial sample size of the two-

stage procedure is then the least integer greater than or equal to
√

n0/2. The
resulting procedure is shown to minimize the maximum Bayes regret, where
the maximum is taken over prior distributions that are consistent with the
initial guess n0; and the minimax solution is shown to provide an asymptotic
lower bound for optimal Bayesian choices for a wide class of prior distributions.

1. Introduction

It is indeed a pleasure to offer this tribute to Herman Rubin and to ponder his
influence on my own work. I still remember the interest with which I read the
papers on Bayes’ risk efficiency [7] and [8] early in my career. From reading these
papers, I gained an appreciation for the power of statistical decision theory and its
interplay with asymptotic calculations that go beyond limiting distributions. These
involved moderate deviations in the case of [7]. A central idea in [8] is the study of a
risk functional, the integrated risk of a procedure with respect to a prior distribution
that can vary over a large class. I have used this idea in a modified form in work
on sequential point estimation and very weak expansions for sequential confidence
intervals—[12, 13, 14], and the references given there. This idea is also present in
Theorem 2 below. The connection between [12] and Bayes risk efficiency is notable
here. The following is proved in [12], though not isolated: Suppose that it is required
to estimate the mean of an exponential family with squared error loss and a cost for
each observation and that the population mean is to be estimated by the sample
mean. Then there is a stopping time which is Bayes risk non-deficient in the sense
of [4]; that is, it minimizes a Bayesian regret asymptotically, simultaneously for all
sufficiently smooth prior distributions.

The present effort combines tools from decision theory and asymptotic analysis
to obtain a rule for prescribing the initial sample size in a two-stage sequential
procedure for estimating the mean of a normal distribution. Unlike the fully se-
quential, or even three-stage, versions of the problem, Bayes risk non-deficiency is
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not possible with two-stage procedures, and the rule is obtained from minimaxity.
The problem is stated in Section 2, and the minimax solution is defined. The rule
requires the statistician to specify only the fixed sample size, n0 say, that would
have been used in a fixed sample size design, or to elicit such from a client. The
minimax initial sample size is then the least integer that is greater than or equal to√

n0/2. The proof of asymptotic minimaxity is provided in Section 3. As explained
in Section 4, the minimax solution is very conservative but, at least, provides an
asymptotic lower bound for optimal Bayesian solutions for a wide class of prior
distributions.

2. The problem

Let X1, X2, . . .
ind∼ Normal[µ, σ2], where −∞ < µ < ∞ and σ > 0 are unknown, and

consider the problem of estimating µ with loss of the form

La(n) = a2
(
X̄n − µ

)2 + n, (1)

where X̄n = (X1 + · · · + Xn)/n. In (1), a2(X̄n − µ)2 represents the loss due to
estimation error, and n the cost of sampling. The units are so chosen that each
observation costs one unit, and a is determined by the importance of estimation
error relative to the cost of sampling. Also, the estimator has been specified as X̄n,
leaving only the sample size n to be determined. If σ were known, then the expected
loss plus sampling cost, Eµ,σ2 [La(n)] = a2σ2/n + n, would be minimized when n is
an integer adjacent to

N = aσ,

and in many ways the problem is one of estimating N . This will be done using the
sample variances

S2
n =

(
1

n − 1

) n∑
i=1

(
Xi − X̄n

)2

for n ≥ 2. Interest in two-stage sequential procedures for estimation originated with
Stein’s famous paper [9]. The problem has a long history, much of which is included
in Chapter 6 of [5], but there seems to be no general agreement on the choice of
the initial sample size m in two-stage procedures. Some additional references are
provided in the last section.

A two-stage procedure consists of a pair δ = (m, Ñ) where m ≥ 2 is an integer
and Ñ = Ñ(S2

m) is an integer valued random variable for which Ñ ≥ m. The
estimator of µ is then X̄Ñ . For example, letting �x� denote the least integer that is
at least x,

N̂a = max
{
m, �aSm�

}
(2)

satisfies the conditions for any m ≥ 2. The choice of m has to be subjective at
some level, because there is no data available when it is chosen. Here it is required
only that the experimenter specify a prior guess, u say for σ, or even just the guess
n0 = au for N . This seems a very modest requirement, since a fixed sample size
experiment would have to include a prior guess for N . Given the prior guess, it is
shown that

ma = max
{

2,

⌈√
1
2
n0

⌉}
(3)

leads to a procedure that minimizes the maximum Bayes’ regret in the class of prior
distributions for which σ has prior mean u.



230 M. Woodroofe

3. The theorem

The risk of a two stage procedure δ = (m, Ñ) is Ra(δ; σ2) = Eµ,σ2 [La(Ñ )]. Using
the Helmut transformation (for example, [11, p. 106]), it is easily seen that

Ra

(
δ; σ2

)
= Eσ2

[
a2σ2

Ñ
+ Ñ

]
, (4)

which depends on σ2, but not on µ. The difference

ra

(
δ, σ2

)
= Eσ2

[
a2σ2

Ñ
+ Ñ

]
− 2N,

is called the regret.
If ξ is a prior distribution over [0,∞), write Pξ and Eξ for probability and expec-

tation in the Bayesian model, where σ2 ∼ ξ and S2
2 , S2

3 , . . . are jointly distributed
random variables; and write Pm

ξ and Em
ξ for conditional probability and expecta-

tion given S2
m. Then the integrated risk of a two-stage procedure δ with respect to

a ξ is

R̄a(δ, ξ) =
∫ ∞

0

Ra

(
δ; σ2

)
ξ
{
dσ2

}
= Eξ

[
a2σ2

Ñ
+ Ñ

]

possibly infinite; and if
∫ ∞
0 σξ{dσ2} < ∞, then the integrated regret of δ with

respect to ξ is

r̄(δ, ξ) =
∫ ∞

0

ra

(
δ; σ2

)
ξ
{
dσ2

}
= Eξ

[
a2σ2

Ñ
+ Ñ − 2N

]

again possibly infinite. As noted above, the experimenter must specify Eξ(N), or
equivalently, Eξ(σ). In fact, it is sufficient for the experimenter to specify an upper
bound. For a fixed u ∈ (0,∞), let Ξ = Ξu be the class of prior distributions for
which ∫ ∞

0

σξ
{
dσ2

}
≤ u; (5)

and let Ξo = Ξo
u be the class of ξ for which there is equality in (5). Also, let δa be

the procedure (ma, N̂a) defined by (2) and (3) with n0 = au.

Theorem 1. For any u ∈ (0,∞).

inf
δ

sup
ξ∈Ξ

r̄(δ; ξ) ∼
√

2n0 ∼ sup
ξ∈Ξ

r̄
(
δa; ξ

)
as a → ∞.

Proof. The proof will consist of showing first that

lim sup
a→∞

sup
ξ∈Ξ

1√
a
r̄
(
δa; ξ

)
≤

√
2u (6)

and then that
lim inf
a→∞

sup
ξ∈Ξo

inf
δ

1√
a
r̄(δ; ξ) ≥

√
2u (7)

This is sufficient, since infδ supξ∈Ξ ≥ supξ∈Ξo infδ. In the proofs of (6) and (7),
there is no loss of generality in supposing that u = 1.
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The Upper Bound. From (4) and (2),

Ra

(
δa; σ2

)
≤ aσ2Eσ2

[
1

Sma

]
+ aEσ2(Sma) + ma + 1. (8)

Here
Eσ2 (Sm) = C(m)σ, (9)

where

C(m) =
Γ(m

2 )√
m−1

2 Γ(m−1
2 )

and Γ is the Gamma-function; and, similarly,

E

(
1

Sm

)
=

√
m − 1
m − 2

1
C(m − 1)σ

. (10)

A version of Stirling’s Formula asserts that

log Γ(z) =
(

z − 1
2

)
log(z) − z +

1
2

log(2π) +
1

12z
+ O

(
1
z3

)

as z → ∞. See, for example, [1, p. 257]. It then follows from simple algebra that

C(m) = 1 − 1
4m

+ O

(
1

m2

)
. (11)

Let a be so large that ma ≥ 3. Then, combining (8) and (11),

Ra

(
δa; σ2

)
≤ aσ

[√
ma − 1
ma − 2

1
C(ma − 1)

+ C(ma)

]
+ ma + 1

= 2aσ +
aσ

2ma
+ ma + 1 + aσ × O

(
1

m2
a

)
,

where O(1/m) is a function only of m. So, for every ξ ∈ Ξ = Ξ1,

r̄a(δa; ξ) ≤ a

2ma
+ ma + 1 + a × O

(
1

m2
a

)
≤

√
2a + O(1),

establishing (6), since n0 = 2a when u = 1.
The Lower Bound. The lower bound (7) will be established by finding the Bayes

procedure and a lower bound for the Bayes regret

r̄a(ξ) = inf
δ

r̄a(δ; ξ)

for a general prior distribution ξ and then finding priors ξa ∈ Ξo for which
lim infa→∞ r̄a(ξa)/

√
a ≥

√
2.

Finding the Bayes procedure is not difficult. If the initial sample size is m ≥ 2,
then Ñ should be chosen to minimize the posterior expected loss Em

ξ [a2σ2/n + n]
with respect to n. Clearly,

Em
ξ

[
a2σ2

n
+ n

]
=

a2Vm

n
+ n = 2a

√
Vm +

1
n

(
n − a

√
Vm

)2 (12)
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where
Vm = Em

ξ

(
σ2

)
So, (12) is minimized when n is the larger of m and an integer adjacent to a

√
Vm,

leaving

r̄a(ξ) = inf
m≥2

Eξ

{
2a

√
Vm +

1
m

(
m − a

√
Vm

)2

+
+ η(a, m)

}
− 2a,

where (x)2+ denotes the square of the positive part of x and 0 ≤ η(a, m) ≤ 1/m.
An alternative expression is

r̄a(ξ) = inf
m≥2

Eξ

{
2a

[√
Vm − Um

]
+

1
m

(
m − a

√
Vm

)2

+
+ η(a, m)

}
, (13)

where
Um = Em

ξ (σ)

and Eξ(Um) = Eξ(σ) = 1.
Suppose now that ξ is an inverted Gamma prior with density

1
Γ(1

2α)

(
β

2σ2

) 1
2α

exp
[
− β

2σ2

]
1
σ2

, (14)

where α > 1 and β > 0. Equivalently 1/σ2 has a Gamma distribution with para-
meters α/2 and β/2. Then

E(σ) =
Γ(α−1

2 )
Γ(1

2α)

√
β

2
. (15)

Letting
Wm = (m − 1)S2

m

and applying (15) to the posterior distributions then leads to

Um =
Γ(α+m−2

2 )
Γ(α+m−1

2 )

√
β + Wm

2

and
Vm = Em

ξ

(
σ2

)
=

β + Wm

α + m − 3
= B(α + m − 1)2 × U2

m, (16)

where

B(m) =

√
m − 1
m − 2

C(m) = 1 +
1

4m
+ O

(
1

m2

)
. (17)

In order for the ξ of (14) to be in Ξo = Ξo
1, α and β must be so constrained that

the right side of (15) equals one. Then Eξ(Um) = 1, Eξ(
√

Vm) = B(α + m − 1),
and

r̄a(ξ) = inf
m≥2

Eξ

{
2a

[
B(α + m − 1) − 1

]
Um +

1
m

(
m − a

√
Vm

)2

+
+ η(a, m)

}

≥ inf
m≥2

{
2a

[
B(α + m − 1) − 1

]
+ (1 − ε)2mPξ

[
a
√

Vm ≤ εm
]}

for any ε > 0.
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Observe that B(α + m− 1) is positive and bounded away from 0 for 0 < α ≤ 1
for each fixed m ≥ 2. It follows that the term in braces on the right side of (13) is
of order a for each fixed m ≥ 2 when ξ is an inverted gamma prior with 0 < α ≤ 2
and, therefore, that the minimizing m = ma approaches ∞ as a → ∞. So, infm≥2

in (13) can be replaced by infm≥m0 for any m0 for all sufficiently large a.
The marginal distribution of Wm is of the form

Pξ[Wm ≤ w] =
∫ w

0

1
β

g

(
z

β

)
dz,

where

g(z) =
Γ(α+m−1

2 )
Γ(α

2 )Γ(m−1
2 )

z
m−3

2

(1 + z)
α+m−1

2

.

Clearly,

∫ ∞

c

g(z)dz ≤
Γ(α+m−1

2 )
Γ(α

2 )Γ(m−1
2 )

∫ ∞

c

(
1

1 + z

)1+ 1
2α

dz

=
2Γ(α+m−1

2 )
αΓ(α

2 )Γ(m−1
2 )

(
1

1 + c

) 1
2α

for all c > 0. So, there is a constant K for which∫ ∞

c

g(z)dz ≤ Km√
1 + c

for all 1 < α ≤ 2, m ≥ 2 and c > 0. Let ξa be an inverted gamma prior with
βa = o(a−2) and αa determined by the condition that Eξa(σ) = 1. Then αa → 1 as
a → ∞. If ε > 0 is given, then

Pξa

[
a
√

V m ≥ εm] = Pξa

[
Wm ≥ ε2

m2(m − 2)
a2

− βa

]

≤ 2Ka

ε

√
βa ≤ ε

for all m ≥ 3 and sufficiently large a. It follows that for any m0 ≥ 3,

r̄(ξa) ≥ inf
m≥2

{
2a

[
B(αa + m − 1) − 1

]
+ (1 − ε)3m

}
. (18)

for all sufficiently large a. From (11) and (17) there is an m0 for which B(m) ≥
l + (1 − ε)/4m for all m ≥ m0 − 1. Then

r̄(ξa) ≥ (1 − ε) inf
m≥m0

[
a

2m
+ (1 − ε)2m

]
≥ (1 − ε)2

√
2a

for all sufficiently large a. Relation (7) follows since ε > 0 was arbitrary.

4. The minimax solution as a lower bound

The minimax solution is very conservative in that it specifies a very small initial
sample size. For example, if the prior guess for the best fixed sample size is 100,
then the asymptotic minimax solution calls for an initial sample size of only 8; and
if the prior guess is increased to 1000, then the initial sample size increases only
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to 23. The asymptotic minimax solution approximates the Bayes procedure when
the σ is small with high probability, but still has a fixed mean, as is clear from
the nature of the inverted gamma prior that was used to obtain the lower bound.
A statistician who can specify more about the prior distribution will take a larger
initial sample size for large a and incur a smaller regret. For example, if σ ≥ σ0 > 0
with prior probability one, then the optimal initial sample size is at least aσ0, and
the Bayes regret is of order one as a → ∞, assuming that σ has a finite prior mean.
A more detailed study of the asymptotic properties of Bayes procedures suggests
that optimal m is closely related to the behavior of the prior density near σ2 = 0,
a relationship that might be difficult to specify or elicit from a client. The inverted
gamma priors (14) are an extreme case since the prior density approaches zero very
rapidly as σ2 → 0 in this case. An advantage of the asymptotic minimax solution, of
course, is that it does not require the statistician to elicit detailed prior information
from a client.

The following result shows that the asymptotic minimax solution (3) provides
an asymptotic lower bound for optimal Bayesian solutions for a very large class of
prior distributions.

Theorem 2. Suppose that ξ{0} = 0, that ξ has a continuously differentiable density
on (0,∞), and that

∫ ∞
0 σ2ξ{dσ2} < ∞. Let m∗

a = m∗
a(ξ) be an optimal initial

sample size for ξ. Then

lim
a→∞

m∗
a√
a

= ∞. (19)

Proof. As above, there is no loss of generality in supposing that
∫ ∞
0 σξ{dσ2} = 1.

By (13),
r̄a(ξ) = inf

m≥2

[
2abm + cm(a) + η(a, m)

]
,

where bm = Eξ[
√

Vm−Um], cm(a) = Eξ[(m−a
√

Vm)2+]/m, and 0 ≤ η(a, m) ≤ 1/m.
Then

2a[bm∗
a
− b2m∗

a
] ≤ c2m∗

a
(a) +

1
2m∗

a

,

since 2abm + cm(a) + η(a, m) is minimized when m = m∗
a and 0 < η(a, m) ≤ 1/m.

By Lemmas 1 and 2 below,

cm(a) ≤ mPξ

[
σ ≤ m

a

]
(20)

and
bm − b2m ≥ ε

m
(21)

for some ε > 0 that does not depend on m. Combining the last three equations,

2aε

m∗
a

≤ 2m∗
aPξ

[
σ ≤ 2m∗

a

a

]
+

1
2m∗

a

and, therefore,
m∗

a√
a
≥

√
ε

2Pξ[σ ≤ 2m∗
a/a]

,

for all sufficiently large a. Relation (19) follows directly, completing the proof, except
for the proofs of the lemmas.

Lemma 1. Relation (20) holds.
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Proof. Using Jensen’s Inequality twice, (m−a
√

Vm)2+ ≤ [Em
ξ (m−aσ)]2+ ≤ Em

ξ [(m−
aσ)2+]. So,

cm(a) ≤ 1
m

Eξ

[
(m − aσ)2+

]
≤ mPξ

[
σ ≤ m

a

]
,

as asserted.

Lemma 2. There is an ε > 0 for which relation (21) holds.

Proof. Since Eξ(Um) = Eξ(σ) for all m, bm − b2m = Eξ[
√

Vm −
√

V2m]. Next, since
Vm − V2m = 2

√
Vm(

√
Vm −

√
V2m) − (

√
V2m −

√
Vm)2 and Em

ξ (V2m − Vm) = 0,

bm − b2m = Eξ

[
(
√

V2m −
√

Vm)2

2
√

Vm

]
.

From Laplace’s method, for example, [6],

Vm = S2
m + O

(
1
m

)

w.p.1 (Pσ2 ) for each σ2 > 0 and, therefore, w.p.1 (Pξ). That
√

m(
√

V2m −
√

Vm)
has a non-degenerated limiting distribution follows directly, and then

lim inf
m→∞

mEξ

[
(
√

V2m −
√

Vm)2

2
√

Vm

]
> 0

by Fatou’s Lemma. Relation (21) follows.

5. Remarks and acknowledgments

The smoothness condition on the prior in Theorem 2 can probably be relaxed. In
the proof, it was used to derive the relation Vm − S2

m = O(1/m) w.p.1, and this is
a smaller order of magnitude that is needed.

If ξ is an inverted gamma prior with a fixed α > 1 and β > 0, then

ra(ξ) +
a

m∗
a(ξ)

= O
[√

log(a)
]
.

This may be established by combining techniques from the proofs of Theorems 1
and 2.

Bayesian solutions to two-stage sequential estimation problems have been con-
sidered by several authors—notably [2, 3], and [10].

The normality assumption has been used heavily, to suggest the estimators for
µ and σ2 and also for special properties of these estimators in (4), (9) and (10).
It is expected that similar results may be obtained for multiparameter exponential
families and other loss structures, and such extensions are currently under investi-
gation in the doctoral work of Joon Lee. Extensions to a non-parametric context
are more speculative.

It is a pleasure to acknowledge helpful conversations with Bob Keener, Joon
Sang Lee, and Anand Vidyashankar and helpful comments from Anirban Dasgupta.
This research was supported by the National Science Foundation and the U.S. Army
Research Office.



236 M. Woodroofe

References

[1] Abromowitz, M. and Stegun, I. (1964). Handbook of Mathematical Functions.
National Bureau of Standards.

[2] Cohen, A. and Sackrowitz, H. (1985). Bayes double sampling procedures, Ann.
Statist. 12, 1035–1049. MR751290

[3] Cohen, A. and Sackrowitz, H. (1994). Double sampling estimation when cost
depends on the parameter, Statistical Decision Theory and Related Topics V,
253–266. MR1286306

[4] Hodges, J. L. Jr. and Lehmann, E. L. (1970). Deficiency, Ann. Math. Statist.
41, 783–801. MR272092

[5] Malay, G., Mukhopadhyay, N. and Sen, P. K. (1997). Sequential Estimation.
Wiley. MR1434065

[6] Johnson, R. (1970). Asymptotic expansions associated with posterior distrib-
utions, Ann. Math. Statist. 41, 851–864. MR263198

[7] Rubin, H. and Sethuraman, J. (1965). Probabilities of moderate deviations,
Sankhya, Ser. A 27, 325–346. MR203783

[8] Rubin, H. and Sethuraman, J. (1965). Bayes risk efficiency, Sankhya, Ser. A
347–356. MR207112

[9] Stein, C. (1945). A two-sample test for a linear hypothesis whose power is
independent of the variance, Ann. Math. Statist. 16, 243–258. MR13885

[10] Treder, R. P. and Sedransk, J. (1996). Bayesian double sampling plans with
normal distributions, J. Amer. Statist. Assn 91, 782–790. MR1395745

[11] Woodroofe, M. (1982). Non-linear Renewal Theory in Sequential Analysis.
S.I.A.M. MR660065

[12] Woodroofe, M. (1985). Asymptotic local minimaxity in sequential point esti-
mation, Ann. Statist. 13, 676–688. Correction: 17, p. 452. MR790565

[13] Woodroofe, M. (1986). Very weak expansions for sequential confidence inter-
vals, Ann. Math. Statist. 14, 1049–1067. MR856805

[14] Woodroofe, M. and Coad, D. S. (1997). Corrected confidence intervals for
sequentially designed experiments, Statistica Sinica 7, 53–74. MR1441144

http://www.ams.org/mathscinet-getitem?mr=751290
http://www.ams.org/mathscinet-getitem?mr=1286306
http://www.ams.org/mathscinet-getitem?mr=272092
http://www.ams.org/mathscinet-getitem?mr=1434065
http://www.ams.org/mathscinet-getitem?mr=263198
http://www.ams.org/mathscinet-getitem?mr=203783
http://www.ams.org/mathscinet-getitem?mr=207112
http://www.ams.org/mathscinet-getitem?mr=13885
http://www.ams.org/mathscinet-getitem?mr=1395745
http://www.ams.org/mathscinet-getitem?mr=660065
http://www.ams.org/mathscinet-getitem?mr=790565
http://www.ams.org/mathscinet-getitem?mr=856805
http://www.ams.org/mathscinet-getitem?mr=1441144

	Introduction
	The problem
	The theorem
	The minimax solution as a lower bound
	Remarks and acknowledgments

