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Chebyshev polynomials and G-distributed

functions of F -distributed variables
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Purdue University and Rutgers University

Abstract: We address a more general version of a classic question in prob-
ability theory. Suppose X ∼ Np(µ, Σ). What functions of X also have the
Np(µ, Σ) distribution? For p = 1, we give a general result on functions that
cannot have this special property. On the other hand, for the p = 2, 3 cases,
we give a family of new nonlinear and non-analytic functions with this prop-
erty by using the Chebyshev polynomials of the first, second and the third
kind. As a consequence, a family of rational functions of a Cauchy-distributed
variable are seen to be also Cauchy distributed. Also, with three i.i.d. N(0, 1)
variables, we provide a family of functions of them each of which is distributed
as the symmetric stable law with exponent 1

2
. The article starts with a re-

sult with astronomical origin on the reciprocal of the square root of an infinite
sum of nonlinear functions of normal variables being also normally distributed;
this result, aside from its astronomical interest, illustrates the complexity of
functions of normal variables that can also be normally distributed.

1. Introduction

It is a pleasure for both of us to be writing to honor Herman. We have known and
admired Herman for as long as we can remember. This particular topic is close to
Herman’s heart; he has given us many cute facts over the years. Here are some to
him in reciprocation.

Suppose a real random variable X ∼ N(µ, σ2). What functions of X are also
normally distributed? In the one dimensional case, an analytic map other than the
linear ones cannot also be normally distributed; in higher dimensions, this is not
true. Also, it is not possible for any one-to-one map other than the linear ones to
be normally distributed. Textbook examples show that in the one dimensional case
nonlinear functions U(X), not analytic or one-to-one, can be normally distributed
if X is normally distributed; for example, if Z ∼ N(0, 1) and Φ denotes the N(0, 1)
CDF, then, trivially, U(Z) = Φ−1(2Φ(|Z|) − 1) is also distributed as N(0, 1). Note
that this function U(.) is not one-to-one; neither is it analytic.

One of the present authors pointed out the interesting fact that if X, Y are i.i.d.
N(0, 1), then the nonlinear functions U(X, Y ) = 2XY√

X2+Y 2 and V (X, Y ) = X2−Y 2
√

X2+Y 2

are also i.i.d. N(0, 1)-distributed (see Shepp (1962), Feller (1966)). These are ob-
viously nonlinear and not one-to-one functions of X, Y . We present a collection
of new pairs of functions U(X, Y ), V (X, Y ) that are i.i.d. N(0, 1)-distributed. The
functions U(X, Y ), V (X, Y ) are constructed by using the sequence of Chebyshev
polynomials of the first, second and the third kind and the terrain corresponding
to the plots of U(X, Y ), V (X, Y ) gets increasingly more rugged, and yet with a
visual regularity, as one progresses up the hierarchy. Certain other results about
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Cauchy-distributed functions of a Cauchy-distributed variable and solutions of cer-
tain Fredholm integral equations follow as corollaries to these functions U, V being
i.i.d. N(0, 1) distributed, which we point out briefly as a matter of fact of some ad-
ditional potential interest. Using the family of functions U(X, Y ), V (X, Y ), we also
provide a family of functions f(X, Y, Z), g(X, Y, Z), h(X, Y, Z) such that f, g, h are
i.i.d. N(0, 1) if X, Y, Z are i.i.d. N(0, 1). The article ends with a family of functions
of three i.i.d. N(0, 1) variables, each distributed as a symmetric stable law with
exponent 1

2 ; the construction uses the Chebyshev polynomials once again.
We start with an interesting example with astronomical origin of the reciprocal

of the square root of an infinite sum of dependent nonlinear functions of normally
distributed variables being distributed as a normal again. The result also is relevant
in the study of total signal received at a telephone base station when a fraction of the
signal emitted by each wireless telephone gets lost due to various interferences. See
Heath and Shepp (2003) for description of both the astronomical and the telephone
signal problem. Besides the quite curious fact that it should be normally distributed
at all, this result illustrates the complexity of functions of normal variables that
can also be normally distributed.

2. Normal function of an infinite i.i.d. N(0, 1) sequence: An astronomy
example

Proposition 1. Suppose η0, η1, η2, . . . is a sequence of i.i.d. N(0, 1) variables. We
show the following remarkable fact: let Sn =

∑2n
k=1 η2

k.Then

N =
sgn(η0)√∑∞

n=1
1

S2
n

∼ N

(
0,

8
π

)
.

The problem has an astronomical origin. Consider a fixed plane and suppose
stars are distributed in the plane according to a homogeneous Poisson process with
intensity λ; assume λ to be 1 for convenience. Suppose now that each star emits
a constant amount of radiation, say a unit amount, and that an amount inversely
proportional to some power k of the star’s distance from a fixed point (say the
origin) reaches the point.If k = 4, then the total amount of light reaching the origin
would equal L = π2

∑∞
n=1

1
(γ1+γ2+···+γn)2 , where the γi are i.i.d. standard expo-

nentials, because if the ordered distances of the stars from the origin are denoted
by R1 < R2 < R3 < . . ., then R2

n ∼ 1
π (γ1 + γ2 + · · · + γn), where the γi are i.i.d.

standard exponentials. Since the sum of squares of two i.i.d. standard normals is
an exponential with mean 2, it follows that L has the same distribution as 4π2

N2 ,
where N is as in Proposition 1 above. In particular, L does not have a finite mean.
Earlier contributions to this problem are due to Chandrasekhar, Cox, and others;
for detailed references, see Heath and Shepp (2003).

To prove the Proposition, we will show the following two facts:

(a) The Laplace transform of
∑∞

n=1
1

R4
n

equals Ee
−λ

∑∞
n=1

1
R4

n = e−π
3
2
√

λ.

(b) If η ∼ N(0, 1), then the Laplace transform of 1
η2 equals e−

√
2λ.

To prove (a), consider the more general Laplace transform of the sum of the
fourth powers of the reciprocals of R ∈ S only for 0 < a < R < b, where a, b are

fixed, φ(λ, a, b) = Ee
−λ

∑
{a<R<b}

1
R4 . We want φ(λ, 0,∞), but we can write the
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“recurrence” relation:

φ(λ, a, b) = e−π(b2−a2) +
∫ b

a

e−π(r2−a2)φ(λ, r, b)e−λr−4
2πr dr

where the first term considers the possibility that there are no points of S in the
annulus a < r < b and the integral is written by summing over the location of
the point in the annulus with the smallest value of R = r and then using the
independence properties of the Poisson random set.
Now multiply both sides by e−πa2

and differentiate on a, regarding both b and λ
as fixed constants, to get

(
−2πaφ(λ, a, b) + φ′(λ, a, b)

)
e−πa2

= −2πae−πa2
φ(λ, a, b)e−λa−4

.

Dividing by e−πa2
and solving the simple differential equation for φ(λ, a, b), we get,

φ(λ, a, b) = φ(λ, 0, b)e2π
∫

a

0
(1−e−λu−4

)udu
.

Since φ(λ, b, b) = 1, we find that

φ(λ, 0, b) = e
−2π

∫
b

0
(1−e−λu−4

)u du
.

Finally let b → ∞ to obtain φ(λ, 0,∞) as was desired. Evaluating the integral by
changing u = t−

1
4 and integration by parts, gives the answer stated in (a).

(b) can be proved by direct calculation, but a better way to see this is to use
the fact that the hitting time, τ1, of level one by a standard Brownian motion,
W (t), t ≥ 0, has the same distribution as η−2 using the reflection principle,

P (τ1 < t) = P
(
maxW (u), u ∈ [0, t] > 1

)
= 2P

(
W (t) > 1

)
= P

(√
t|η| > 1

)
= P

(
η−2 < t

)
.

Finally, Wald’s identity
EeλW (τ1)−λ2

2 τ1 = 1, λ > 0,

and the fact that W (τ1) = 1 gives the Laplace transform of τ1 and hence also of η−2,
as

Ee−λη−2
= Ee−λτ1 = e−

√
2λ.

This completes the proof of Proposition 1 and illustrates the complexity of functions
of normal variables that can also be normally distributed.

3. Chebyshev polynomials and normal functions

3.1. A general result

First we give a general result on large classes of functions of a random variable
Z that cannot have the same distribution as that of Z. The result is much more
general than the special case of Z being normal.

Proposition 2. Let Z have a density that is symmetric, bounded, continuous,
and everywhere strictly positive. If f(Z) �= ±Z is either one-to-one, or has a zero
derivative at some point and has a uniformly bounded derivative of some order
r ≥ 2, then f(Z) cannot have the same distribution as Z.

Proof. It is obvious that if f(z) is one-to-one then Z and f(Z) cannot have the same
distribution under the stated conditions on the density of Z, unless f(z) = ±z.
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Consider now the case that f(z) has a zero derivative at some point; let us take
this point to be 0 for notational convenience. Let us also suppose that |f (r)(z)| ≤ K
for all z, for some K < ∞. Suppose such a function f(Z) has the same distribution
as Z.

Denote f(0) = α; then P (|f(Z) − α| ≤ ε) = P (|Z − α| ≤ ε) ≤ c1ε for some
c1 < ∞, because of the boundedness assumption on the density of Z.

On the other hand, by a Taylor expansion around 0, f(z) = α + z2

2 f ′′(0)+ · · ·+
zr

r! f
(r)(z∗), at some point between 0 and z. By the uniform boundedness condition

on f (r)(z), from here, one has P (|f(Z)−α| ≤ ε) ≥ P (a2|Z|2 +a3|Z|3 + · · ·ar|Z|r ≤
ε), for some fixed positive constants a2, a3, . . . , ar. For sufficiently small ε > 0, this
implies that P (|f(Z) − α| ≤ ε) ≥ P (M |Z|2 ≤ ε), for a suitable positive constant
M .

However, P (M |Z|2 ≤ ε) ≥ c2
√

ε for some 0 < c2 < ∞, due to the strict
positivity and continuity of the density of Z. This will contradict the first bound
P (|f(Z) − α| ≤ ε) ≤ c1ε for small ε, hence completing the proof.

3.2. Normal functions of two i.i.d. N(0, 1) variables

Following standard notation, let Tn(x), Un(x) and Vn(x) denote the nth Chebyshev
polynomial of the first, second and third kind. Then for all n ≥ 1, the pairs of
functions (Zn, Wn) in the following result are i.i.d. N(0, 1) distributed.

Proposition 3. Let X, Y
i.i.d.∼ N(0, 1). For n ≥ 1, let

Zn = Y Un−1

(
X√

X2 + Y 2

)
, and

Wn =
√

X2 + Y 2 Tn

(
X√

X2 + Y 2

)
.

Then, Zn, Wn
i.i.d.∼ N(0, 1).

There is nothing special about X, Y being i.i.d. By taking a bivariate normal
vector, orthogonalizing it to a pair of i.i.d. normals, applying Proposition 3 to
the i.i.d. pair, and then finally retransforming to the bivariate normal again, one
similarly finds nonlinear functions of a bivariate normal that have exactly the same
bivariate normal distribution as well. Here is a formal statement.
Corollary 1. Suppose (X1, X2) ∼ N(0, 0, 1, 1, ρ). Then, for all n ≥ 1, the pairs of
functions (Y1n, Y2n) defined as

Y1n = X2Un−1

(
X1 − ρX2√

X2
1 + (1 + ρ2)X2

2 − 2ρX1X2

)
,

Y2n = ρY1n +
√

1 − ρ2

√
X2

1 + (1 + ρ2)X2
2 − 2ρX1X2Tn

×
(

X1 − ρX2√
X2

1 + (1 + ρ2)X2
2 − 2ρX1X2

)
,

are also distributed as N(0, 0, 1, 1, ρ).

The first few members of the polynomials Tn(x), Un(x) are T1(x) = x, T2(x) =
2x2−1, T3(x) = 4x3−3x, T4(x) = 8x4−8x2 +1, T5(x) = 16x5−20x3 +5x, T6(x) =
32x6 − 48x4 + 18x2 − 1, and U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, U3(x) =
8x3 − 4x, U4(x) = 16x4 − 12x2 + 1, U5(x) = 32x5 − 32x3 + 6x; see, e.g, Mason
and Handscomb (2003). Plugging these into the formulae for Zn and Wn in Propo-
sition 3, the following illustrative pairs of i.i.d. N(0, 1) functions of i.i.d. N(0, 1)
variables X, Y are obtained.
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Example 1. Pairs of i.i.d. N(0, 1) Distributed Functions when X, Y
i.i.d.∼ N(0, 1).

2XY√
X2 + Y 2

and
X2 − Y 2

√
X2 + Y 2

(Shepp’s example)

(
3X2 − Y 2

) Y

X2 + Y 2
and

(
X2 − 3Y 2

) X

X2 + Y 2

X4 − 6X2Y 2 + Y 4

(X2 + Y 2)
3
2

and
4XY (X2 − Y 2)

(X2 + Y 2)
3
2(

5X4 − 10X2Y 2 + Y 4
) Y

(X2 + Y 2)2
and

(
5Y 4 − 10X2Y 2 +X4

) X

(X2 + Y 2)2
6X5Y − 20X3Y 3 + 6XY 5

(X2 + Y 2)
5
2

and
X6 − 15X4Y 2 + 15X2Y 4 − Y 6

(X2 + Y 2)
5
2

.

Remark 1. Since Zn(X, Y ) and Wn(X, Y ) are i.i.d. N(0, 1) whenever X, Y are
i.i.d. N(0, 1), one would get an i.i.d. pair of standard normals by considering the
functions Zm(Zn(X, Y ), Wn(X, Y )) and Wm(Zn(X, Y ), Wn(X, Y )). It is interest-
ing that Zm(Zn(X, Y ), Wn(X, Y )) = Zmn(X, Y ) and Wm(Zn(X, Y ), Wn(X, Y )) =
Wmn(X, Y ). Thus, iterations of the functions in Proposition 3 produce members of
the same sequence.

Remark 2. Consider the second pair of functions in Example 1. One notices that
but for a sign, the second function is obtained by plugging Y for X and X for Y
in the first function. It is of course obvious that because X, Y are i.i.d., by writing
Y for X and X for Y , we cannot change the distribution of the function. What
is interesting is that this operation produces a function independent of the first
function. This in fact occurs for all the even numbered pairs, as is formally stated
in the following proposition.

Proposition 4. For every n ≥ 0, W2n+1(X, Y ) = (−1)nZ2n+1(Y, X), and hence,
for every n ≥ 0, Z2n+1(X, Y ) and Z2n+1(Y, X) are independently distributed.

Progressively more rugged plots are obtained by plotting the functions Zn(x, y)
and Wn(x, y) as n increases; despite the greater ruggedness, the plots also get
visually more appealing. A few of the plots are presented next. The plots labeled
as V correspond to the functions W of Proposition 3.

Analogous to the Chebyshev polynomials of the first and second kind, those of
the third kind also produce standard normal variables. However, this time there is
no independent mate.

Proposition 5. Let X, Y
i.i.d.∼ N(0, 1). For n ≥ 1, let

Qn =
sgn(Y )√

2

√
X2 + Y 2 + X

√
X2 + Y 2Vn

(
X√

X2 + Y 2

)
.

Then Qn ∼ N(0, 1).

The first few polynomials Vn(x) are V1(x) = 2x−1, V2(x) = 4x2−2x−1, V3(x) =
8x3 − 4x2 − 4x + 1, V4(x) = 16x4 − 8x3 − 12x2 + 4x + 1. Plugging these into the
formula for Qn, a sequence of increasingly complex standard normal functions of
X, Y are obtained.

For example, using n = 1, if X, Y are i.i.d. N(0, 1), then sgn(Y )√
2

(2X −
√

X2 + Y 2)
√

1 + X√
X2+Y 2 is distributed as N(0, 1). In comparison to the N(0, 1)

functions Z2, W2 in Section 3.2, this is a more complex function with a N(0, 1)
distribution.
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3.3. The case of three

It is interesting to construct explicitly three i.i.d. N(0, 1) functions f(X, Y, Z),
g(X, Y, Z), h(X, Y, Z) of three i.i.d. N(0, 1) variables X, Y, Z. In this section, we
present a method to explicitly construct such triplets of functions f(X, Y, Z),
g(X, Y, Z), h(X, Y, Z) by using Chebyshev polynomials, as in the case with two
of them. The functions f, g, h we construct are described below.

Proposition 6. Let X, Y, Z
i.i.d.∼ N(0, 1). If U(X, Y ), V (X, Y ) are i.i.d. N(0, 1),

then f(X, Y, Z), g(X, Y, Z), h(X, Y, Z) defined as

f(X, Y, Z) = U
(
V (X, Y ), V

(
U(X, Y ), Z

))
,

g(X, Y, Z) = V
(
V (X, Y ), V

(
U(X, Y ), Z

))
,

h(X, Y, Z) = U
(
U(X, Y ), Z

)
are also distributed as i.i.d. N(0, 1).

Example 2. For U(X, Y ), V (X, Y ), we can use the pair of i.i.d. N(0, 1) functions
of Proposition 3. This will give a family of i.i.d. N(0, 1) functions f, g, h of X, Y, Z.
The first two functions f, g of Proposition 6 are too complicated even when we
use U = Z2 and V = W2 of Proposition 3. But the third function h is reasonably
tidy. For example, using U = Zn, and V = Wn with n = 2, one gets the following
distributed as N(0, 1):

h(X, Y, Z) =
4XY Z√

4X2Y 2 + Z2(X2 + Y 2)
.

4. Cauchy distributed functions, Fredholm integral equations and the
stable law of exponent 1

2

4.1. Cauchy distributed functions of Cauchy distributed variables

It follows from the result in Proposition 3 that if C has a Cauchy(0, 1) distribution,
then appropriate sequences of rational functions Cλn(C) also have a Cauchy(0, 1)
distribution. These results generalize the observations in Pitman and Williams
(1967). This results, by consideration of characteristic functions, in the Cauchy(0, 1)
density being solutions to a certain Fredholm integral equation of the first kind. This
connection seems to be worth pointing out. First the functions fn(C) attributed to
above are explicitly identified in the next result.

Proposition 7. Let C ∼ Cauchy(0, 1). Let R = 1√
1+C2 and for k ≥ 1,

fk(C) =
1 + 2T2(R) + 2T4(R) + · · · + T2k(R)

T2k(R)
, and

gk(C) =
2T1(R) + 2T3(R) + · · · + T2k+1(R)

T2k+1(R)
.

Then Cfk(C) and Cgk(C) are also ∼ Cauchy(0, 1).

Example 3. The functions fk, gk for small values of k are as follows:

f1(C) =
2

1 − C2
; g1(C) =

C2 − 3
3C2 − 1

;

f2(C) =
4 − 4C2

C4 − 6C2 + 1
; g2(C) =

C4 − 10C2 + 5
5C4 − 10C2 + 1

;

f3(C) =
6C4 − 20C2 + 6

C6 − 15C4 + 15C2 − 1
; g3(C) =

C6 − 21C4 + 35C2 − 7
7C6 − 35C4 + 21C2 − 1

.
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Note that fk, gk are rational functions of C. Proposition 7 thus gives an infinite
collection of rational functions, say λn(C), such that Cλn(C) ∼ C∀n. This implies
the following result on Fredholm integral equations.

Proposition 8. Consider the Fredholm integral equation
∫ ∞
−∞ K(t, y)p(y)dy = g(t),

where K(t, y) = cos(tyλ(y)) and g(t) = e−|t|. Then for any of the rational functions
λ(y) = fk(y), gk(y) in Proposition 7, the Cauchy(0, 1) density p(y) = 1

π(1+y2) is a
solution of the above Fredholm equation.

4.2. The stable law with exponent 1
2

Starting with three i.i.d. standard normal variables, one can construct an infinite
collection of functions of them, each having a symmetric stable distribution with
exponent 1

2 . The construction uses, as in the previous sections, the Chebyshev
polynomials. It is described in the final result.

Proposition 9. Let X, Y, N be i.i.d. N(0, 1). Then, for each n ≥ 1, S1,n =
N

Zn(X,Y )W 2
n(X,Y ) , as well as S2,n = N

Wn(X,Y )Z2
n(X,Y ) have a symmetric stable dis-

tribution with exponent 1
2 .

Example 4. Using n = 2, 3, the following are distributed as a symmetric stable
law of exponent 1

2 :

N
(X2 + Y 2)

3
2

4X2Y 2(X2 − Y 2)
and N

(X2 + Y 2)
3
2

2XY (X2 − Y 2)2
;

N
(X2 + Y 2)3

XY 2(X2 − 3Y 2)(3X2 − Y 2)2
and N

(X2 + Y 2)3

X2Y (3X2 − Y 2)(X2 − 3Y 2)2
.

5. Appendix

Proof of Proposition 3. Proposition 3 is a restatement of the well known fact that
if X, Y are i.i.d. N(0, 1), and if r, θ denote their polar coordinates, then for all
n ≥ 1, r cosnθ and r sin nθ are i.i.d. N(0, 1), and that the Chebyshev polynomials
Tn(x), Un(x) are defined by Tn(x) = cosnθ, Un(x) = sin(n+1)θ

sin θ with x = cos θ.

Proof of Proposition 4. We need to prove that for all x, y,

xU2n

(
y√

x2 + y2

)
= (−1)n

√
x2 + y2T2n+1

(
x√

x2 + y2

)

⇔ ∀w,
√

1 − w2U2n(w)

= (−1)nT2n+1

(√
1 − w2

)
.

Note now that
d

dw
(−1)nT2n+1

(√
1 − w2

)
= (−1)n+1 w√

1 − w2
(2n + 1)U2n

(√
1 − w2

)
,

by using the identity
d

dw
Tk(w) = kUk−1(w).

On the other hand,

d

dw

√
1 − w2U2n(w)

= − w√
1 − w2

U2n(w) +
√

1 − w2
(n + 1)U2n−1(w) − nU2n+1(w)

1 − w2
,
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by using the identity

d

dw
Uk(w) =

(k + 2)Uk−1(w) − kUk+1(w)
2(1 − w2)

;

see Mason and Handscomb (2003) for these derivative identities.
It is enough to show that the derivatives coincide. On some algebra, it is seen

that the derivatives coincide iff U2n−1(w) − wU2n(w) = (−1)n+1wU2n(
√

1 − w2),
which follows by induction and the three term recursion for the sequence Un.

Proof of Proposition 5. Proposition 5, on some algebra, is a restatement of the
definition of the Chebyshev polynomials of the third kind as Vn(x) = cos(n+ 1

2 )θ

cos θ
2

. We
omit the algebra.

Proof of Proposition 6. If X, Y, Z are i.i.d. N(0, 1), and U(X, Y ), V (X, Y ) are
also i.i.d. N(0, 1), then, obviously, U(X, Y ), V (X, Y ), Z are i.i.d. N(0, 1). At the
next step, use this fact with X, Y, Z replaced respectively by U(X, Y ), Z, V (X, Y ).
This results in U(U(X, Y ), Z), V (U(X, Y ), Z), V (X, Y ) being i.i.d. N(0, 1). Then
as a final step, use this fact one more time with X, Y, Z replaced respectively by
V (X, Y ), V (U(X, Y ), Z), U(U(X, Y ), Z). This completes the proof.

Proof of Proposition 7. From Proposition 3, Zn(X,Y )
Wn(X,Y ) ∼ Cauchy(0, 1) for all n ≥ 1.

Thus, we need to reduce the ratio Zn(X,Y )
Wn(X,Y ) to Cfk(C) when n = 2k and to Cgk(C)

when n = 2k + 1, with C standing for the Cauchy-distributed variable Y
X .

The reduction for the two cases n = 2k and n = 2k + 1 follow, again on some
algebra, on using the following three identities:

(i) wUn−1(w) = Un(w) − Tn(w);

(ii) U2k(w) = T0(w) + 2T2(w) + · · · + 2T2k(w);

(iii) U2k+1(w) = 2T1(w) + 2T3(w) + · · · + 2T2k+1(w);

see Mason and Handscomb (2003) for the identities (i)–(iii). Again, we omit the
algebra.

Proof of Proposition 8. Proposition 8 follows from Proposition 7 on using the facts
that each fk, gk are even functions of C, and hence the characteristic function of
Cfk(C) and Cgk(C) is the same as its Fourier cosine transform, and on using also
the fact that the characteristic function of a Cauchy(0, 1) distributed variable is
e−|t|.

Proof of Proposition 9. Proposition 9 follows from Proposition 3 and the well known
fact that for three i.i.d. standard normal variables X, Y, N, N

XY 2 is symmetric stable
with exponent 1

2 ; see, e.g., Kendall, Stuart and Ord (1987).
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