On the distribution of the greatest common divisor

Persi Diaconis ${ }^{1}$ and Paul Erdös ${ }^{1}$
Stanford University

Abstract

For two integers chosen independently at random from $\{1,2, \ldots, x\}$, we give expansions for the distribution and the moments of their greatest common divisor and the least common multiple, with explicit error rates. The expansion involves Riemann's zeta function. Application to a statistical question is briefly discussed.

1. Introduction and statement of main results

Let M and N be random intergers chosen uniformly and independently from $\{1,2, \ldots, x\}$. Throughout (M, N) will denote the greatest common divisor and $[M, N]$ the least common multiple. Cesàro (1885) studied the moments of (M, N) and $[M, N]$. Theorems 1 and 2 extend his work by providing explicit error terms. The distribution of (M, N) and $[M, N]$ is given by:

Theorem 1.

$$
\begin{align*}
& P_{x}\left\{[M, N] \leq t x^{2} \quad \text { and } \quad(M, N)=k\right\} \\
& \quad=\frac{6}{\pi^{2}} \frac{1}{k^{2}}\{k t(1-\log k t)\}+O_{k, t}\left(\frac{\log x}{x}\right) \tag{1.1}\\
& P_{x}\{(M, N)=k\}=\frac{6}{\pi^{2}} \frac{1}{k^{2}}+O\left(\frac{\log \left(\frac{x}{k}\right)}{x k}\right) \tag{1.2}\\
& P_{x}\left\{[M, N] \leq t x^{2}\right\}=1+\frac{6}{\pi^{2}} \cdot \sum_{j=1}^{[1 / t]}\{j t(1-\log j t)-1\}+O_{t}\left(\frac{\log x}{x}\right) . \tag{1.3}
\end{align*}
$$

Where $[x]$ denotes the greatest integer less than or equal to x. Christopher (1956) gave a weaker form of (1.2).
(1.2) easily yields an estimate for the expected value of (M, N) :

$$
E_{x}\{(M, N)\}=\frac{1}{x^{2}} \sum_{i, j \leq x}(i, j)=\sum_{k \leq x} k P_{x}\{(M, N)=k\}=\frac{6}{\pi^{2}} \log x+O(1)
$$

(1.2) does not lead to an estimate for higher moments of (M, N). Similarly the form of (1.3) makes direct computation of moments of $[M, N]$ unwieldy. Using elementary arguments we will show:

Theorem 2.

$$
\begin{equation*}
E_{x}\{(M, N)\}=\frac{6}{\pi^{2}} \log x+C+O\left(\frac{\log x}{\sqrt{x}}\right) \tag{1.4}
\end{equation*}
$$

[^0]where C is an explicitly calculated constant.
\[

$$
\begin{equation*}
\text { for } \quad k \geq 2, E_{x}\left\{(M, N)^{k}\right\}=\frac{x^{k-1}}{k+1}\left\{\frac{2 \zeta(k)}{\zeta(k+1)}-1\right\}+O\left(x^{k-2} \log x\right) \tag{1.5}
\end{equation*}
$$

\]

where $\zeta(z)$ is Riemann's zeta function,

$$
\begin{equation*}
\text { for } \quad k \geq 1, E_{x}\left\{[M, N]^{k}\right\}=\frac{\zeta(k+2)}{\zeta(2)(k+1)^{2}} x^{2 k}+O\left(x^{2 k-1} \log x\right) \tag{1.6}
\end{equation*}
$$

Section two of this paper contains proofs while section three contains remarks, further references and an application to the statistical problem of reconstructing the sample size given a table of rounded percentages.

2. Proofs of main theorems

Throughout we use the elementary estimate

$$
\begin{equation*}
\Phi(x)=\sum_{1 \leq k \leq x} \varphi(k)=\frac{3}{\pi^{2}} x^{2}+R(x) \tag{2.1}
\end{equation*}
$$

where $R(x)=O(x \log x)$.
See, for example, Hardy and Wright (1960) Theorem 330. Since \# $\{m, n \leq x$: $(m, n)=1\}=2 \Phi(x)+O(1)$ and $(m, n)=k$ if and only if $k|m, \quad k| n$ and $\left(\frac{m}{k}, \frac{n}{k}\right)=1$, we see that $\#\{m, n \leq x:(m, n)=k\}=2 \Phi\left(\frac{x}{k}\right)+O(1)$. This proves (1.2). To prove (1.1) and (1.3) we need a preparatory lemma.

Lemma 1. If $F_{x}(t)=\#\left\{m, n \leq x: m n \leq t x^{2}\right.$ and $\left.(m, n)=1\right\}$, then

$$
F_{x}(t)=\frac{6}{\pi^{2}} t(1-\log t) x^{2}+O_{t}(x \log x)
$$

Proof. Consider the number of lattice points in the region $R_{x}(t)=\{m, n \leq x$: $\left.m n \leq t x^{2}\right\}$. It is easy to see that there are $t(1-\log t) x^{2}+O_{t}(x)=N_{x}(t)$ such points. Also, the pair $\langle m, n\rangle \in R_{x}(t)$ and $(m, n)=k$ if and only if $\left\langle\frac{m}{k}, \frac{n}{k}\right\rangle \in R_{x / k}(t)$ and $\left(\frac{m}{k}, \frac{n}{k}\right)=1$. Thus $N_{x}(t)=\sum_{1 \leq d \leq x} F_{x / d}(t)$. The standard inversion formula says

$$
F_{x}(t)=\sum_{1 \leq d \leq x} \mu(d) N_{x / d}(t)=\frac{6}{\pi^{2}} t(1-\log t) x^{2}+O_{t}(x \log x)
$$

Lemma 1 immediately implies that the product of 2 random integers is independent of their greatest common divisor:

Corollary 1.

$$
P_{x}\left\{M N \leq t x^{2} \mid(M, N)=k\right\}=t(1-\log t)+O_{t, k}\left(\frac{\log x}{x}\right)
$$

To prove (1) note that

$$
\begin{aligned}
P_{x}\{[M, N] & \left.\leq t x^{2} \quad \text { and } \quad(M, N)=k\right\} \\
& =P_{x}\left\{[M, N] \leq t x^{2} \mid(M, N)=k\right\} \cdot P_{x}\{(M, N)=k\} \\
& =P_{x}\left\{\left.M N \leq \frac{t}{k} x^{2} \right\rvert\,(M, N)=k\right\} \cdot P_{x}\{(M, N)=k\}
\end{aligned}
$$

Use of (1.2) and Corollary 1 completes the proof of (1.1). To prove (1.3) note that

$$
\begin{aligned}
P_{x}\left\{[M, N] \leq t x^{2}\right\}= & P_{x}\left\{(M, N)>\left[\frac{1}{t}\right]\right\} \\
& +\sum_{k=1}^{[1 / t]} P_{x}\left\{[M, N] \leq t x^{2} \mid(M, N)=k\right\} \cdot P_{x}\{(M, N)=k\}
\end{aligned}
$$

Using (1.2) and Corollary 1 as before completes the proof of Theorem 1.
To prove Theorem 2 , write, for $k \geq 1$,

$$
\begin{align*}
\sum_{m, n \leq x}(m, n)^{k} & =2 \sum_{1 \leq m \leq x} \sum_{1 \leq n \leq m}(m, n)^{k}-\sum_{1 \leq i \leq x} i^{k} \\
& =2 \sum_{1 \leq m \leq x} f_{k}(m)-\frac{x^{k+1}}{k+1}+O\left(x^{k}\right) \tag{2.2}
\end{align*}
$$

where $f_{k}(m)=\sum_{d \mid m} d^{k} \varphi\left(\frac{n}{d}\right)$. Dirichlet's Hyperbole argument (see, e.g., Saffari (1970)) yields for any t,

$$
\begin{equation*}
\sum_{1 \leq m \leq x} f_{k}(m)=\sum_{1 \leq i \leq t} i^{k} \Phi\left(\frac{x}{i}\right)+\sum_{1 \leq i \leq x / t} \varphi(i) I_{k}\left(\frac{x}{i}\right)-I_{k}(t) \Phi\left(\frac{x}{t}\right) \tag{2.3}
\end{equation*}
$$

where

$$
I_{k}(t)=\sum_{1 \leq i \leq t} i^{k}=\frac{t^{k+1}}{k+t}+O\left(t^{k}\right)
$$

When $k=1$, we proceed as follows: Choose $t=\sqrt{x}$. The first sum on the right side of (2.3) is

$$
\begin{align*}
& \sum_{1 \leq k \leq \sqrt{x}}\left\{\frac{3}{\pi^{2}}\left(\frac{x}{k}\right)^{2}+O\left(\frac{x}{k} \log \frac{x}{k}\right)\right\} \\
& \quad=\frac{3}{\pi^{2}} x^{2}\left\{\log \sqrt{x}+\gamma+O\left(\frac{1}{\sqrt{x}}\right)\right\}+O\left(x^{3 / 2} \log x\right) \tag{2.4}
\end{align*}
$$

The second sum in (2.3) is

$$
\begin{equation*}
\sum_{1 \leq k \leq \sqrt{x}} \varphi(k)\left\{\frac{1}{2}\left(\frac{x}{k}\right)^{2}+O\left(\frac{x}{k}\right)\right\}=\frac{x^{2}}{2} \sum_{1 \leq k \leq \sqrt{x}} \frac{\varphi(k)}{k^{2}}+O\left(x^{3 / 2}\right) \tag{2.5}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \sum_{1 \leq k \leq \sqrt{x}} \frac{\varphi(k)}{k^{2}}=\sum_{1 \leq k \leq \sqrt{x}} \frac{2 k+1}{(k(k+1))^{2}} \Phi(k)+\frac{\Phi(\sqrt{x})}{[x]} \\
& \quad=2 \sum_{1 \leq k \leq \sqrt{x}} \frac{1}{k(k+1)^{2}}\left\{\frac{3}{\pi^{2}} k^{2}+R(k)\right\}+\sum_{1 \leq k \leq \sqrt{x}} \frac{\Phi(k)}{k^{2}(k+1)^{2}}+\frac{3}{\pi^{2}}+O\left(\frac{\log x}{\sqrt{x}}\right) \\
& \quad=\frac{6}{\pi^{2}} \sum_{1 \leq k \leq \sqrt{x}} \frac{k}{(k+1)^{2}}+2 \sum_{k=1}^{\infty} \frac{R(k)}{k(k+1)^{2}}+\sum_{k=1}^{\infty} \frac{\Phi(k)}{k^{2}(k+1)^{2}}+\frac{3}{\pi^{2}}+O\left(\frac{\log x}{\sqrt{x}}\right) \\
& \quad=\frac{3}{\pi^{2}} \log x+d+O\left(\frac{\log x}{\sqrt{x}}\right)
\end{aligned}
$$

where

$$
\begin{equation*}
d=\sum_{k=1}^{\infty}\left\{\Phi(k)+2 k R(k)-\frac{6}{\pi^{2}} k(2 k+1)\right\} /(k(k+1))^{2}+\frac{6}{\pi^{2}}\left(\gamma+\frac{1}{2}\right) \tag{2.6}
\end{equation*}
$$

and γ is Euler's constant. Using this in equation (2.5) yields that the second sum in (2.3) is

$$
\begin{equation*}
\frac{3 x^{2}}{2 \pi^{2}} \log x+\frac{d}{2} x^{2}+O\left(x^{3 / 2} \log x\right) \tag{2.7}
\end{equation*}
$$

The third term in (2.3) is

$$
\begin{equation*}
\frac{1}{2} \frac{3}{\pi^{2}} x^{2}+O\left(x^{3 / 2} \log x\right) \tag{2.8}
\end{equation*}
$$

Combining (2.8), (2.7) and (2.4) in (2.3) and using this in (2.2) yields:

$$
\sum_{m, n \leq x}(m, n)=\frac{6}{\pi^{2}} x^{2} \log x+\left(d+\frac{6}{\pi^{2}}\left(\gamma+\frac{1}{2}\right)-\frac{1}{2}\right) x^{2}+O\left(x^{3 / 2} \log x\right)
$$

where d is defined in (2.6).
When $k \geq 2$, the best choice of t in (2.3) is $t=1$. A calculation very similar to the case of $k=1$ leads to (1.3).

We now prove (1.6). Consider the sum

$$
\begin{align*}
\sum_{i, j \leq x}[i, j]^{k} & =2 \sum_{i \leq x} \sum_{j \leq i}[i, j]^{k}+O\left(x^{k+1}\right) \\
& =2 \sum_{i \leq x} \sum_{d \mid i} \sum_{j \leq i}\left(\frac{i j}{d}\right)^{k}+O\left(x^{k+1}\right) \\
& =2 \sum_{i \leq x} i^{k} \sum_{d \mid i} f_{k}\left(\frac{i}{d}\right)+O\left(x^{k+1}\right) \\
& =2 \sum_{d=1}^{x} d^{k} \sum_{j \leq x / d} j^{k} f_{k}(j)+O\left(x^{k+1}\right) . \tag{2.9}
\end{align*}
$$

Where

$$
f_{k}(n)=\sum_{\substack{j \leq n \\(j, n)=1}} j^{k}
$$

We may derive another expression for $f_{k}(n)$ by considering the sum

$$
\begin{equation*}
\sum_{i=1}^{n} i^{k}=\frac{n^{k+1}}{k+1}+R_{k}(n)=n^{k} \sum_{d \mid n} \frac{f_{k}(d)}{d^{k}} . \tag{2.10}
\end{equation*}
$$

Dividing (2.10) by n^{k} and inverting yields

$$
\frac{f_{k}(n)}{n^{k}}=\frac{1}{k+1} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) d+\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \frac{R_{k}(d)}{d^{k}}
$$

or

$$
f_{k}(n)=\frac{n^{k}}{k+1} \varphi(n)+\sum_{d \mid n} \mu\left(\frac{n}{d}\right)\left(\frac{n}{d}\right)^{k} R_{k}(d)=\frac{n^{k} \varphi(n)}{k+1}+E(n)
$$

When we substitute this expression for $f_{k}(j)$ in (2.9) we must evaluate:

$$
\begin{aligned}
S_{1}(y) & =\sum_{j \leq y} j^{k} E(j)=\sum_{j \leq y} j^{k} \sum_{d \mid j} \mu\left(\frac{j}{d}\right)\left(\frac{j}{d}\right)^{k} R_{k}(d) \\
& =\sum_{i \leq y} \mu(i) i^{2 k} \sum_{d \leq y / i} R_{k}(d) d^{k} .
\end{aligned}
$$

Now $R_{k}(d)$ is a polynomial in d of degree k. Thus,

$$
\left|S_{1}(y)\right| \leq \sum_{i \leq y} i^{2 k}\left(\frac{y}{i}\right)^{2 k+1}=O\left(y^{2 k+1} \log y\right)
$$

We must also evaluate

$$
\begin{aligned}
S_{2}(y)= & \frac{1}{k+1} \sum_{j \leq y} j^{k} \varphi(j) \\
= & \frac{1}{k+1}\left\{2 k \sum_{j \leq y}-j^{2 k-1} \Phi(j)+O\left(\sum_{j \leq y} j^{2 k-2} \Phi(j)\right)+\Phi(y) y^{2 k}\right\} \\
& -\frac{6}{\pi^{2}} \frac{k}{(k+1)} \frac{y^{2 k+2}}{(2 k+2)}+\frac{3}{\pi^{2}} \frac{1}{(k+1)} y^{2 k+2}+O\left(y^{2 k+1} \log y\right) \\
= & \frac{6}{\pi^{2}(k+1)}\left(\frac{1}{2}-\frac{k}{2 k+2}\right) y^{2 k+2}+O\left(y^{2 k+1} \log y\right) \\
= & \frac{3}{\pi^{2}} \frac{1}{(k+1)^{2}} y^{2 k+2}+O\left(y^{2 k+1} \log y\right)
\end{aligned}
$$

Substituting in the right side of (2.9) we have

$$
\begin{aligned}
\sum_{i, j \leq x}[i, j]^{k} & =2 \sum_{d=1}^{x} d^{k}\left\{S_{1}\left(\frac{x}{d}\right)+S_{2}\left(\frac{x}{d}\right)\right\}+O\left(x^{k+1}\right) \\
& =\frac{6}{\pi^{2}} \frac{1}{(k+1)^{2}} x^{2 k+2} \sum_{d=1}^{x} \frac{1}{d^{k+2}}+O\left(x^{2 k+1} \log x\right) \\
& =\frac{\zeta(k+2)}{\zeta(2)} \frac{x^{2 k+2}}{(k+1)^{2}}+O\left(x^{2 k+1} \log x\right)
\end{aligned}
$$

3. Miscellaneous remarks

1. If $M_{1}, M_{2}, \ldots, M_{k}$ are random integers chosen uniformly at random then the results stated in Christopher (1956) (see also Cohen (1960), Herzog and Stewart (1971), and Neymann (1972)) imply that

$$
\begin{equation*}
P_{x}\left\{\left(M_{1}, M_{2}, \ldots, M_{k}\right)=j\right\}=\frac{1}{\zeta(k)} \frac{1}{j^{k}}+O\left(\frac{1}{x j^{k-1}}\right) k \geq 3 \tag{3.1}
\end{equation*}
$$

We have not tried to extend theorems 1 and 2 to the k-dimensional case.
(3.1) has an application to a problem in applied statistics. Suppose a population of n individuals is distributed into k categories with n individuals in category i. Often only the proportions $p_{i}=n_{i} / n$ are reported. A method for estimating n given $p_{i}, 1 \leq i \leq k$ is described in Wallis and Roberts (1956), pp. 184-189. Briefly,
let $m=\min \left|\sum_{i=1}^{k} p_{i} b_{i}\right|$ where the minimum is taken over all k tuples $\left(b_{1}, b_{2}, \ldots, b_{k}\right)$, with $b_{i} \in\{0, \pm 1, \pm 2, \ldots\}$ not all b_{i} equal zero. An estimate for n is $[1 / m]$. This method works if the p_{i} are reported with enough precision and the n_{i} are relatively prime for then the Euclidean algorithm implies there are integers $\left\{b_{i}\right\}_{i=1}^{k}$ such that $\sum b_{i} n_{i}=1$. These b_{i} give the minimum $m=\frac{1}{n}$. If it is reasonable to approximate the n_{i} as random integers then (3.1) implies that $\operatorname{Prob}\left(\left(n_{1}, n_{2}, \ldots, n_{k}\right)=1\right) \doteq \frac{1}{\zeta(k)}$ and, as expected, as k increases this probability goes to 1 . For example, $\frac{1}{\zeta(5)} \doteq .964$, $\frac{1}{\zeta(7)} \doteq .992, \frac{1}{\zeta(9)} \doteq .998$. This suggests the method has a good chance of working with a small number of categories. Wallace and Roberts (1956) give several examples and further details about practical implementation.
2. The best result we know for $R(x)$ defined in (2.1) is due to Saltykov (1960). He shows that

$$
R(x)=O\left(x(\log x)^{2 / 3}(\log \log x)^{1+\epsilon}\right)
$$

Use of this throughout leads to a slight improvement in the bounds of theorems 1 and 2.
3. The functions (M, N) and $[M, N]$ are both multiplicative in the sense of Delange (1969, 1970). It would be of interest to derive results similar to Theorems 1 and 2 for more general multiplicative functions.

References

[1] Cesàro, E. (1885). Etude Moyenne du plus grand Commun Diviseur de deux nombres, Ann. Nat. Pura. Appl. 13(2), 233-268.
[2] Christopher, J. (1956). The asymptotic density of some k dimensional sets, Amer. Math. Monthly 63, 399-401. MR97363
[3] Cohen, E. (1960). Arithmetical Functions of a Greatest Common Divisor I, Proc. Amer. Math. Soc. 11, 164-171. MR111713
[4] Delange, H. (1969). Sur Les Fonctions De Plusiurs Entiers Strictement Positifs, Enseignement Math. 15, 77-88. MR245538
[5] Delange, H. (1970). Sur Les Fonctions Multiplicative de Plusiurs Entiers, Enseignement Math. 16, 219-246. MR294275
[6] Hardy, G. H. and Wright, E. M. (1960). The Theory of Numbers, Oxford University Press.
[7] Herzog, F. and Stewart, B. (1971). Patterns of Visible and non Visible Lattices, Amer. Math. Monthly 78, 487-496. MR284403
[8] Neymann, J. E. (1972). On the Probability that k Positive Integers are Relatively Prime, Jour. Number Th. 4, 469-473. MR304343
[9] Saffari, B. (1968). Sur quelques Applications de la "Méthode de l'hyperbole" de Dirichlet à la Théorie des Numbres Premiers, Enseignement Math. 14, 205224. MR268138
[10] Saltykov, A. I. (1960), On Eulers Function, Vestnik Maskov Univ. Ser. I Mat. Meh. 6, 34-50. MR125088
[11] Wallis, W. A. and Roberts, H. V. (1956). Statistics a New Approach. New York, Free Press. MR88841

[^0]: ${ }^{1}$ Department of Statistics, Stanford University, Stanford, 94305-4065, CA USA. e-mail: diaconis@math.stanford.edu

 Keywords and phrases: Euler constant, gcd, inversion, lcm, moment, random, zeta function. AMS 2000 subject classifications: 11N37, 11A25, 60 E 05.

