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4. Stein’s method and non-reversible

Markov chains

Jason Fulman

University of Pittsburgh

Abstract: Let W (π) be either the number of descents or inversions of a per-
mutation π ∈ Sn. Stein’s method is applied to show that W satisfies a central
limit theorem with error rate n−1/2. The construction of an exchangeable pair
(W, W ′) used in Stein’s method is non-trivial and uses a non-reversible Markov
chain.

4.1. Introduction

We begin by recalling two permutation statistics on the symmetric group Sn which
are of interest to combinatorialists and statisticians. A good introduction to the
combinatorial aspects of permutation statistics is Chapter 1 of Stanley [14], and a
superb account of their applications to statistical problems is Chapter 6 of Diaco-
nis [5].

The first statistic on Sn is Des(π), the number of descents of π. This is defined as
the number of pairs (i, i + 1) with 1 ≤ i ≤ n− 1 such that π(i) > π(i + 1). Writing
π in two-line form, this is the number of times the value of the permutation π
decreases. (A more general definition of descents exists for Coxeter groups: the
number of height one positive roots sent to negative roots by π). The number of
permutations π in Sn with k+1 descents is also called the Eulerian number A(n, k)
and has been studied extensively [6], [8], [11]. Several proofs are known for the
asymptotic (n → ∞) normality of A(n, k). See for instance Diaconis and Pitman
[6], Pitman [12], Bender [2], and Tanny [16]. A proof using the method of moments
is also possible.

A second well-studied statistic on Sn is Inv(π), the number of inversions of π. In
the statistics community this is called Kendall’s tau. Inv is defined as the number
of pairs (i, j) with 1 ≤ i < j ≤ n such that π(i) > π(j). Writing π in two-line
form, this is the number of pairs (i, j) whose values are out of order. I(π) is also
the length of π in terms of the standard generators {(i, i + 1) : 1 ≤ i ≤ n − 1}
for Sn. (For an arbitrary Coxeter group, Inv(π) is the number of positive roots sent
to negative roots by π). Proofs of the asymptotic normality of Inv(π) for Sn can be
found in Bender [2] and Chapter 6 of Diaconis [5].

The following definition generalizes both of these statistics. Let M = (Mi,j) be
a real, anti-symmetric, n ∗ n matrix. Let X be the random variable on Sn defined
by X(π) =

∑
i<j Mπ(i),π(j). Setting Mi,j = −1 if j = i + 1, Mi,j = 1 if j = i − 1,

and Mi,j = 0 otherwise leads to X(π) = 2Des(π−1)− (n− 1). Setting Mi,j = −1 if
i < j, Mi,j = +1 if i > j, and Mi,i = 0 leads to X(π) = 2Inv(π−1) −

(
n
2

)
. Define

W = X√
Var(X)

, so that W has mean 0 and variance 1.

Charles Stein developed a method for bounding the sup norm between the dis-
tribution of a random variable and the standard normal distribution. His technique
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Stein’s method and non-reversible Markov chains 67

has come to be known as Stein’s method. Stein’s book [15] and the papers in this
volume are good references.

Let us recall some notation from probability theory. If Y, Z are random variables
on a probability space (Ω,B ,P), we let E(Y ) denote the expected value of Y and
EZ(Y ) the expected value of Y given Z, where both expectations are taken under
P . In the case at hand, Ω is Sn, B is all subsets of Sn, and P is the uniform
distribution. Call W, W ′ an exchangeable pair of random variables on Sn if P (W =
w1, W

′ = w2) = P (W = w2, W
′ = w1).

Theorem 4.1.1 is due to Rinott and Rotar [13].

Theorem 4.1.1 ([13]). Let W, W ′ be an exchangeable pair of real random variables
such that EW W ′ = (1−λ)W with 0 < λ < 1. Suppose moreover that |W ′−W | ≤ A
for some constant A. Then for all real x,

∣∣P{W ≤ x} − Φ(x)
∣∣ ≤ 12

λ

√
Var(EW (W ′ − W )2) + 48

A3

λ
+ 8

A2

√
λ

where Φ is the standard normal distribution.

Theorem 4.1.1 will be used to prove Theorem 4.1.2.

Theorem 4.1.2. Let Des(π) and Inv(π) be the number of descents and inversions
of π ∈ Sn. Then for all real x,

∣∣∣∣∣P
{

Des − n−1
2√

n+1
12

≤ x

}
− Φ(x)

∣∣∣∣∣ ≤ C

n
1
2

∣∣∣∣∣P
{

Inv − (n
2)
2√

n(n−1)(2n+5)
72

≤ x

}
− Φ(x)

∣∣∣∣∣ ≤ C

n
1
2

where C is a constant independent of n.

We remark that Theorem 4.1.2 is known by other proof techniques (see [6]
for the case of descents and [3] for inversions). We recently learned that there is
some overlap with results in [1], which gives bounds for permutation statistics using
reversible Markov chains together with Bolthausen’s variation of Stein’s method.

Section 4.2 shows how, for W = Des or W = Inv, to construct an exchangeable
pair (W, W ′) such that EW W ′ = (1− 2

n )W . This step, which is usually the easy part
of applying Stein’s method, is non-trivial and uses a non-reversible Markov chain
equivalent to the “move to front” chain. The only other example in the literature
in which exchangeability was not obvious is the paper of Rinott and Rotar [13].
A connection with this work will be mentioned in Section 4.2. Section 4.3 develops
bounds for the terms on the right-hand side of Theorem 4.1.1, and indicates why a
somewhat weaker version of Theorem 4.1.1 due to Stein can only give n−1/4 rates.

We remark that the move to front rule on the symmetric group is a very special
case of a theory of random walk on the chambers of real hyperplane arrangements
[4]. The corresponding Markov chains are non-reversible and have real eigenvalues.
These nonreversible chains have recently been related to a reversible Markov chain
on the set of irreducible representations of the symmetric group [9],[10].
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4.2. Construction of an exchangeable pair (W, W ′)

This section constructs W ′ so that (W, W ′) is an exchangeable pair with nice prop-
erties. In most applications of Stein’s method (e.g. the examples in Stein [15]), it
is clear how to define W ′ and exchangeability comes for free. The situation here is
more subtle.

This being said, define W ′ = W ′(π) as follows. Pick I uniformly at random
between 1 and n and define π′ as (I, I +1, . . . , n)π, where (I, I +1, . . . , n) cycles by
mapping I → I + 1 → · · · → n → I, and where permutation multiplication is from
left to right. For example, suppose that n = 7 and I = 3. Then the permutation π
which in 2-line form is:

i : 1 2 3 4 5 6 7
π(i) : 6 4 1 5 3 2 7

is transformed to:
i : 1 2 3 4 5 6 7

π′(i) : 6 4 5 3 2 7 1

In other words, one moves the number in position I in the second row of π to
the end of this second row. Now define W ′(π) = W (π′). Before discussing exchange-
ability, we prove Lemma 4.2.1, which was the motivation for the definition of W ′

and shows that one can take λ = 2
n in Theorem 4.1.1.

Lemma 4.2.1. EW W ′ = (1 − 2
n )W .

Proof. Letting i be the value of the random variable I, ones sees from the definition
of W ′ that:

Eπ(W ′ − W ) =
1√

Var(X)
1
n

n∑
i=1

∑
j:j>i

−2Mπ(i),π(j)

=
1√

Var(X)
1
n

∑
1≤i<j≤n

−2Mπ(i),π(j)

= − 2
n

W.

Since Eπ(W ′ − W ) depends on π only through W , the lemma follows.

Lemma 4.2.2 establishes a condition on (Mi,j) under which the pair (W, W ′)
is exchangeable. This condition admittedly has limited scope, but as will be seen,
holds for the cases of descents and inversions.

Lemma 4.2.2. Given a subset S of {1, . . . , n}, for each i ∈ S define ai,S =∑
j∈S:j>i Mi,j and bi,S =

∑
j∈S:j<i Mj,i. Suppose that for all subsets S of {1, . . . , n},

there is a bijection Θ : S �→ S satisfing the following conditions:

1. For each i ∈ S, ai,S − bi,S = bΘ(i),S − aΘ(i),S .

2. For each i ∈ S, there is a bijection Φi : S − {i} �→ S − {Θ(i)} such that
Mj,k = MΦi(j),Φi(k) for all j, k ∈ S − {i}.

Then (W, W ′) is an exchangeable pair of random variables.
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Proof. It will be shown that P{W = a, W ′ = b} = P{W = b, W ′ = a}. For this we
prove the stronger claim that if T = {π ∈ Sn : π(j) = zj for 1 ≤ j ≤ I − 1}, then

P{W = a, W ′ = b|I, π ∈ T } = P{W = b, W ′ = a, |I, π ∈ T }

In other words, assume that the value of I and the images of {1, . . . , I − 1}
under π are given. Let S = {π(I), · · · , π(n)} be as in the hypotheses of the lemma.
Now define a bijection Λ : T �→ T as follows:

1. Λ(π)(j) = π(j) for 1 ≤ j ≤ I − 1

2. Λ(π)(I) = Θ(π(I))

3. Λ(π)(j) = Φπ(I)(π(j)) for I + 1 ≤ j ≤ N

We only show that W (π) = W (Λ(π)′), the argument that W (π′) = W (Λ(π))
being similar. Since π and Λ(π)′ agree on 1, . . . , I − 1, it is enough to show that∑

I<j≤n

Mπ(I),π(j) +
∑

I<i<j≤n

Mπ(i),π(j)

=
∑

I≤i<j<n

MΛ(π)′(i),Λ(π)′(j) +
∑

I≤i<n

MΛ(π)′(i),Λ(π)′(n).

Now observe that∑
I≤i<j<n

MΛ(π)′(i),Λ(π)′(j) =
∑

I<i<j≤n

MΛ(π)(i),Λ(π)(j)

=
∑

I<i<j≤n

MΦπ(I)(π(i)),Φπ(I)(π(j))

=
∑

I<i<j≤n

Mπ(i),π(j).

The second equality is from the definition of Λ(π) and the third equality is from
condition 2 in the lemma. Also observe that∑

I≤i<n

MΛ(π)′(i),Λ(π)′(n) =
∑

I<j≤n

MΛ(π)(j),Λ(π)(I)

=
∑

I<j≤n

MΛ(π)(j),Θ(π(I))

= bΘ(π(I)),S − aΘ(π(I)),S

= aπ(I),S − bπ(I),S

=
∑

I<j≤n

Mπ(I),π(j).

The third equality holds because {Λ(π)(j) : I < j ≤ n} = S −Θ(π(I)). The fourth
equality is from condition 1 in the lemma.

Remarks.

1. Let us illustrate the proof of Lemma 4.2.2 by example for X(π) = 2Des(π−1)−
(n − 1). Recall that here Mi,j = −1 if j = i + 1, Mi,j = 1 if j = i − 1, and
Mi,j = 0 otherwise. Suppose that I = 3 and π(1) = 6, π(2) = 4. Thus
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T = {π ∈ Sn : π(1) = 6, π(2) = 4}. Note that S = {1, 2, 3, 5, 7}, because
these are the images of π(j) for j ≥ I = 3. One observes that the bijection
Θ : S �→ S defined by Θ(1) = 3, Θ(2) = 2, Θ(3) = 1, Θ(5) = 5, Θ(7) = 7
satisfies condition 1 of Lemma 4.2.2 (in general, one defines Θ by reversing
within each group of consecutive numbers in S). For each i ∈ S it is also
necessary to define bijections Φi such that condition 2 of Lemma 4.2.2 holds.
This can be done by pairing the elements of S − {i} and S − {Θ(i)} so as
to preserve their relative order. For instance, Φ1 : {2, 3, 5, 7} �→ {1, 2, 5, 7} is
defined by Φ1(2) = 1, Φ1(3) = 2, Φ1(5) = 5, Φ1(7) = 7.

These choices determine the bijection Λ : T → T constructed in Lemma 4.2.2.
For example,

i : 1 2 3 4 5 6 7 i 1 2 3 4 5 6 7
π(i) : 6 4 1 5 3 2 7 Λ(π)(i) 6 4 3 5 2 1 7

i : 1 2 3 4 5 6 7 i 1 2 3 4 5 6 7
π′(i) : 6 4 5 3 2 7 1 Λ(π′)(i) 6 4 5 2 1 7 3

One checks that X(π) = X(Λ(π′)) = 0 and X(π′) = X(Λ(π)) = 2.

2. Let us illustrate the proof of Lemma 4.2.2 by example for X(π) = 2Inv(π−1)−(
n
2

)
. Here Mi,j = −1 if i < j, Mi,j = +1 if i > j, and Mi,i = 0. As for

the case of descents, suppose that I = 3 and π(1) = 6, π(2) = 4. Then
T = {π ∈ Sn : π(1) = 6, π(2) = 4} and S = {1, 2, 3, 5, 7}. The bijection
Θ : S �→ S must be defined differently from the descent case so that condition
1 of Lemma 4.2.2 holds. It is easy to see that reversing the elements of S
works. Thus Θ(1) = 7, Θ(2) = 5, Θ(3) = 3, Θ(5) = 2, and Θ(7) = 1. Defining
the maps Φi as in the descent case, condition 2 of Lemma 4.2.2 holds.

These choices determine the bijection Λ : T → T constructed in Lemma 4.2.2.
For example,

i : 1 2 3 4 5 6 7 i 1 2 3 4 5 6 7
π(i) : 6 4 1 5 3 2 7 Λ(π)(i) 6 4 7 3 2 1 5

i : 1 2 3 4 5 6 7 i 1 2 3 4 5 6 7
π′(i) : 6 4 5 3 2 7 1 Λ(π′)(i) 6 4 3 2 1 5 7

One checks that X(π) = X(Λ(π′)) = 1 and X(π′) = X(Λ(π)) = 9.

3. The above examples show that the pair (W, W ′) is exchangeable for descents
and inversions. An interesting problem is to classify the matrices (Mi,j) such
that the pair (W, W ′) is exchangeable. It would also be useful to construct
exchangeable pairs (W, W ′) for other Coxeter groups.

4. Lemma 1.1 of [13] states the following. Suppose that {T t} is a stationary,
nonnegative, integer valued process satisfying T t+1 −T t = +1, 0 or −1. Then
(T t, T t+1) is an exchangeable pair.

For the case of descents, this gives an alternate proof that W, W ′ as we have
defined them are an exchangeable pair, even though the underlying chain on
permutations is not reversible. To see this, let R0 be a uniformly distributed
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Stein’s method and non-reversible Markov chains 71

element of Sn; then given Ri, move to Ri+1 according to the move random to
end rule defined in the beginning of this section. This process is stationary.
Defining T t to be the number of descents of Rt, one sees that the conditions
of the lemma hold.

It is interesting to note that Lemma 1.1 of [13] was applied there to study W
equal to the number of ones in a random pick from the stationary distribution
of the antivoter model. The antivoter chain is not reversible, but their lemma
implies that if W ′ is the number of ones after a step from the antivoter chain,
then (W, W ′) is an exchangeable pair.

4.3. Bounding the error terms

This section bounds the error terms on the right hand side of Theorem 4.1.1.
We start by computing the mean and variance of X and establishing a nice

property of the pair (W, W ′). For this it is helpful to define Ai =
∑

j>i Mi,j and
Bi =

∑
h<i Mh,i.

Lemma 4.3.1. E(X) = 0 and Var(X) =
∑

i<j
(Mi,j)2+

∑n

i=1
(Ai−Bi)

2

3 .

Proof. Observe that the random variable X on Sn can be written as a sum of
random variables Xi,j on Sn. Defining a random variable Xi,j on Sn by

Xi,j(π) =

{
Mi,j if π−1(i) < π−1(j)

Mj,i if π−1(j) < π−1(i)

one has that:

X(π) =
∑
i<j

Mπ(i),π(j) =
∑

π−1(i)<π−1(j)

Mi,j =
∑
i<j

Xi,j(π).

The mean of X is 0 since each Xi,j has mean 0 and expectation is linear.
The variance of X is equal to E[(

∑
i<j Xi,j(π))2]. The terms E(X2

i,j) contribute
(Mi,j)2 each and thus

∑
i<j(Mi,j)2 in total. The terms E(2Xi,jXk,l) vanish if

i, j, k, l are distinct, by independence. Now consider what happens when two of
these four indices are equal. Terms of the form 2E(Xi,jXi,l) contribute 2

3Mi,jMi,l

each. The sum of all such terms can be rewritten as 1
3 [

∑
i A2

i −
∑

i<j(Mi,j)2]. Sim-
ilarly, terms of the form 2E(Xi,lXk,l) contribute 1

3 [
∑

i B2
i −

∑
i<j(Mi,j)2]. Finally,

terms of the form 2E(Xi,jXj,k) contribute − 2
3Mi,jMj,k each, and hence a total of

− 2
3

∑
i AiBi. The lemma follows.

As a consequence of Lemma 4.3.1, one recovers the known facts that for a ran-
dom permutation on n symbols, Var(Des(π)) = n+1

12 and Var(Inv(π)) = n(n−1)(2n+5)
72 .

Note that Lemma 4.3.1 has written Var(X) as a sum of positive quantities.

Lemma 4.3.2. E(W ′ − W )2 = 4
n

Proof.

E
(
W ′ − W

)2 = E
(
EW

(
W ′ − W

)2)
= E

(
EW

((
W ′)2 + W 2 − 2WW ′))

= E
((

W ′)2 + E
(
W 2

)
− 2WEW

(
W ′))
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= 2Var(W ) − E
(
2WEW

(
W ′))

=
4
n

Var(W )

=
4
n

.

The fourth equality used the fact that W and W ′ have the same distribution. The
fifth equality used Lemma 4.2.1.

Lemma 4.3.3 establishes a well known inequality. For completeness, we include
a proof.

Lemma 4.3.3. E[EW (W ′ − W )2]2 ≤ E[Eπ(W ′ − W )2]2.

Proof. Jensen’s inequality says that if g is a convex function, and Z a random
variable, then g(E(Z)) ≤ E(g(Z)). There is also a conditional version of Jensen’s
inequality (Section 4.1 of Durrett [7]) which says that if F is any σ subalgebra of B,
then

E
(
g
(
E(Z|F )

))
≤ E

(
g(Z)

)
.

The lemma follows by applying this inequality to the case g(t) = t2, Z = Eπ(W ′ −
W )2, B is all subsets of Sn, and F is the σ subalgebra of B generated by the level
sets of W .

Now we prove Theorem 4.1.2.

Proof of Theorem 4.1.2. We will apply Theorem 4.1.1. Note that the move random
to end rule changes the number of descents by at most one. Hence the corresponding
pair (W, W ′) satisfies |W ′−W | ≤ 2√

Var(X)
. Similarly the move random to end rule

changes the number of inversions by at most n − 1. Hence the corresponding pair
(W, W ′) satisfies |W ′ − W | ≤ 2(n−1)√

Var(X)
. Thus in both cases |W ′ − W | is at most

An−1/2 for an absolute constant A. Also note by Lemma 4.2.1 that EW (W ′) =
(1 − λ)W with λ = 2

n .
Thus by Theorem 4.1.1 the result will follow if it can be shown that Var(EW (W ′−

W )2) ≤ B
n3 . Lemma 4.3.3 implies that Var(EW (W ′ − W )2) ≤ Var(Eπ(W ′ − W )2).

Hence we show that Var(Eπ(W ′ − W )2) ≤ B
n3 .

Observe that

Eπ
(
W ′ − W

)2 =
1

Var(X)
4
n

n∑
i=1

( ∑
j>i

−Mπ(i),π(j)

)2

=
1

Var(X)
4
n

(
n∑

i=1

∑
j>i

(
Mπ(i),π(j)

)2 + 2
n∑

i=1

∑
i<j1<j2≤n

Mπ(i),π(j1)Mπ(i),π(j2)

)
.

Since
∑n

i=1

∑
j>i(Mπ(i),π(j))2 is independent of π, it follows that

Var
(
Eπ

(
W ′ − W

)2) =
64

Var(X)2n2

[ ∑
1≤i<j1<j2≤n

Var
(
Mπ(i),π(j1)Mπ(i),π(j2)

)

+
∑

i<j1<j2,k<l1<l2
(i,j1 ,j2)�=(k,l1,l2)

Cov(Mπ(i),π(j1)Mπ(i),π(j2), Mπ(k),π(l1)Mπ(k),π(l2))
]
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Let us analyze this bound for the case of descents (i.e. Mi,j = −1 if j = i + 1,
Mi,j = 1 if j = i − 1, and Mi,j = 0 otherwise). We first study the summands and
then divide by Var(X)2n2. The first summand has O(n3) terms, each contributing
O(n−2); hence it is O(n). The covariance terms are also O(n). To see this, first
note that the covariance vanishes if {i, j1, j2} ∩ {k, l1, l2} = ∅, so such terms can be
ignored. Suppose that i �= k. Then there are O(n5) terms each contributing O(n−4).
If i = k there are subcases to consider based on which (if any) of elements of {j1, j2}
are equal to elements of {l1, l2}. It is straightforward to see that in all cases the
contribution of the covariance term is O(n). Since Var(X) is n+1

12 , it follows as
desired that Var(Eπ(W ′ − W )2) ≤ B

n3 .
The case of inversions is similar. The variance terms contribute at most O(n3)

and the covariance terms at most order O(n5). Thus

Var
(
Eπ

(
W ′ − W

)2) ≤ B0n
5

Var(X)2n2
≤ B

n3

where B0, B are universal constants.

To conclude the paper, we comment on the following result of Stein [15].

Theorem 4.3.1 (Stein). Let W, W ′ be an exchangeable pair of real random vari-
ables such that EW W ′ = (1 − λ)W with 0 < λ < 1. Then for all real x,

∣∣P{W ≤ x} − Φ(x)
∣∣ ≤ 2

√
E

[
1 − 1

2λ
EW

(
W ′ − W

)2
]2

+ (2π)−
1
4

√
1
λ

E
∣∣W ′ − W

∣∣3
where Φ is the standard normal distribution.

Applied to our exchangeable pair this would only yield bounds of order n−1/4,
since by Jensen’s inequality E|W ′ − W |3 ≥ (E(W ′ − W )2)3/2 =

(
4
n

)3/2.
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