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2. Stein’s method for Markov chains:

first examples

Persi Diaconis1

Stanford University

Abstract: Charles Stein has introduced a general approach to proving approx-
imation theorems in probability theory. The method is being actively used for
normal and Poisson approximation. This paper uses the method to derive rates
of convergence of some simple Markov chains to their stationary distribution.
The main purpose is to present Stein’s general approach in a simple setting
where the many choices can be examined and compared.

2.1. Introduction

Charles Stein has introduced a general approach to proving approximation theo-
rems in probability theory. The method has been developed and applied for normal
and Poisson approximation by Louis Chen, Andrew Barbour, and others. As the
applications become more complex and refined, the overall approach fades into the
background.

This paper applies Stein’s method to get rates of convergence to uniformity
for random walk on the discrete circle. The intent is largely expository, offering
an example where the many choices made can be examined and compared. The
example is developed in simplest from in Section 2. Section 3 extends the results
to a general step size distribution. It gives new results that seem inaccessible with
other tools such as Fourier analysis and coupling. Section 4 applies the approach
to the Ehrenfest Urn. Section 5 gives a connection between Stein’s method and
Fourier analysis.

Stein’s method proves approximation theorems like the central limit theorem
by means of characterizing operators. For example, a real random variable W is
standard normal if and only if E{Wf(W ) − f ′(W )} = 0 for every smooth f with
compact support. The operator T f(W ) = Wf((W ) − f ′(W ) is characterizing.
One shows that a random variable Wn is approximately normal if EnTf is close
to zero. To implement this, one introduces an exchangeable pair (Wn, W ′

n). These
basic ingredients, a characterizing operator and an exchangeable pair are often not
hard to find for problems of interest. The clearest development of this approach is
Stein (1992) which is my recommendation for a place to start reading. This may
be followed by Stein (1986).

Stein’s method has been cleaned up and smoothed over for routine use for Pois-
son approximation. Building on work of Chen (1975), Barbour, Holst, and Janson
(1992) have a book length treatment with a remarkable collection of examples. This
is based on a coupling approach to Stein’s method which has a life of its own as
developed by Goldstein, Rinnott, and Reinert, among others. Reinert (1998) is an
excellent recent survey.

Bolthausen (1984) has introduced new ways of using characterizing operators
and couplings. These result in a three page completely self contained proof of the
Berry–Esseen theorem (without Fourier analysis) and the solution of a long open
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problem, the right Berry–Esseen rate for Hoeffding’s combinatorial central limit
theorem. These ideas have been developed by Götze (1991) who used them to
prove the best available multivariate Berry–Esseen type theorems.

One further important theme is the development of the generator method by
Andrew Barbour and others. This allows process approximation and a wide variety
of special cases. See Barbour (1997) for an overview.

For a beginner, Stein (1986), (1992) followed by perusal of the surveys of Bar-
bour (1997) and Reinert (1998) may be the best way to start. There is much further
to do in applying and developing Stein’s method.

2.2. Convergence to the uniform distribution for simple random walk

Consider simple random walk on the discrete circle Zp – the integers mod p. The
walk is generated by independent random variables X1, · · · , Xn where Xi = ±1 with
probability 1

2 . If Sn = X1 + · · ·+Xn (mod p), it is well known that P{Sn = j} → 1
p

for large n provided p is odd. Rates of convergence for this limit theorem in total
variation will be derived by Stein’s method.

Theorem 2.2.1. Let Q�n be the law of simple random walk on Zp for p odd. Let
U be the uniform distribution. For all n and p∥∥Q�n − U

∥∥ ≤ p − 1√
n

. (2.1)

Here ‖Q�n − U‖ = max
A

|Q�n(A) − U(A)|.
The proof will be given as a series of steps with discussion. These steps appear

quite generally. The characterizing operator is introduced in the first Lemma. The
exchangeable pair is introduced above (9). Let Zn

2 be the space of sequences of {±1}
of length n. Let X = L(Zn

2 ) be the space of real valued functions on Zn
2 . Let E be

the expectation operator E : X → R via Ef = E(f(X1, . . . , Xn)).
Let X0 = L(Zp) be the real valued functions of Zp. Define E0 as the expectation

operator under the uniform distribution. Thus E0 : X0 → R given by

E0f =
1
p

p−1∑
j=0

f(j). (2.2)

Functions in X0 can be carried into functions in X by summation. Define β :
X0 → X via βf(x1, . . . , xn) = f(x1 + · · · + xn), where the sum is taken mod p.
These definitions can be summarized by a diagram

X0

�

X

R

�����

�����

E0

E

β (2.3)

To say that Sn has an approximate uniform distribution is the same thing as saying
that the diagram approximately commutes:

Eβ =̇ E0.
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28 Persi Diaconis

Stein’s method introduces a second stage to the diagram.

X0

�

X

R

�����

�����

E0

E

β
�

F0

F

α

�

�
T0

T

(2.4)

This will be defined precisely below. One feature of the construction is that if the
left square approximately commutes, so Tα =̇βT0, then the right triangle approxi-
mately commutes.

The first step of rigorous argument involves constructing the diagram. This is
done in three stages: bottom row, top row, and the map α. Following this, Stein’s
lemma makes the approximate commutation precise. Theorem 2.2.1 follows easily
from these considerations and the weak law of large numbers.

The Bottom Row. Let F0 = X0 = L(Zp). Define T0 : F → X0 by

T0f(i) = f(i) − f(i − 2). (2.5)

The operator T0 characterizes the uniform distribution in the following sense.

Lemma 2.2.1. Let p be an odd integer. A probability Q on Zp is uniform if and
only if for each f ∈ F0, QT0f = 0.

Proof. If Q(j) = 1
p for all j ∈ Zp, the QT0f = 0 for all f . Taking f(j) = δj0(j), the

Kronecker delta for fixed j0, shows Q(j0) = Q(j0+2) = Q(j0+4) = · · · = Q(j0+2�)
for any �. Since the numbers 2� run over all of Zp, Q(j) = 1

p .

Remark. Lemma 1 shows that the bottom row of the diagram (2.3) is exact:

Im T0 = Ker E0.

Indeed, the lemma clearly implies Im T0 ⊂ Ker E0. The linear map E0 is onto R

and so Ker E0 has co-dimension 1 and X0 = Ker E0 ⊕ {constants}. If Im T0

is properly contained in Ker E0, then X0 = Im T0 ⊕ R ⊕ {constants}, with R a
nontrivial subspace. Define a linear map L : X0 → R to preserve constants, be zero
on Im T0, and nonzero on R. Then LT0 = 0. But L can be chosen arbitrarily on R
and so need not be uniform. Now, using L for Q in Lemma 1 gives a contradiction.
The next lemma shows Im T0 ⊃ Ker E0 more explicitly by producing an inverse
to T0 on Ker E0. This is a map U0 : X0 → F0 defined by

U0f(i) =
∑

0≤j≤i/2

(
f(2j) − E0f

)
. (2.6)

Here the sum is over 0, 1, 2, 3, . . . , i/2 and 2 has an inverse because p is odd.

Lemma 2.2.2. For E0, U0, and T0 defined at (2.2), (2.5), and (2.6)

T0U0(j) = f(j) − E0f. (2.7)
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Proof. If T0U0f(j) = U0f(j) − U0f(j − 2) = f(j) − E0f . The argument works at
j = 0 because U0f(−2) = 0.

Remarks. 1) Lemma 2 shows Im T0 ⊃ KerE0: if f ∈ KerE0, T0U0f = f .
2) Clearly the operator T0f(j) = f(j) − f(j − a) characterizes the uniform distri-
bution whenever a is relatively prime to p. An investigation of the various choices
appears in Section 4.
3) If F0 is taken as {f : Zp → R : f(p − 2) = 0}, the bottom row can be extended

to the short exact sequence 0 → F0
T0→ X0

E0→ 0. Indeed, T0 only kills constant
functions and this choice of F0 forces such to be zero.

The following bound on U0 is important. Again, in great generality, one needs
an L∞ → L∞ bound on the inverse of the characterizing operator.

Lemma 2.2.3. For U0 defined by (2.6), and S ⊂ Zp with indicator δS,

∣∣U0δS(j)
∣∣ ≤ p − 1

2
. (2.8)

Proof. Define f(j) = δS(j) − E0δS . Then
∑p−1

j=0 f(j) = 0 so for any set A ⊂ Zp∑
j∈A

f(j) = −
∑
j∈Ac

f(j).

Clearly ∣∣∣∣ ∑
j∈A

f(j)
∣∣∣∣ ≤ |A| so sup

A

∣∣∣∣ ∑
j∈A

f(j)
∣∣∣∣ ≤ p − 1

2
.

The Top Row. Let F be the space of antisymmetric functions f : Zn
2 × Zn

2 → R.
Thus f ∈ F satisfies f(x, y) = −f(y, x). The object is to construct a map T
from F to X such that Im T = Ker E. The construction uses an exchangeable
pair (X, Y ) with X uniformly distributed on Zn

2 . While many choices for the joint
distribution work (see Section 3), one simple choice picks I ∈ {1, 2, . . . , n} uniformly
independent of X and forms Y = (X1, . . . , 1− 2XI , . . . , Xn). Thus Yi = Xi if i 	= I
and YI is the opposite of XI mod 2. Clearly P{X = x, Y = y} = P{X = y, Y = x}.
Define T : F → X by

Tf(x) = E
(
f(X, Y )|X = x

)
. (2.9)

Since ETf = E{f(X, Y )} = −E{f(Y, X)} = −E{f(X, Y )}, Im T ⊂ Ker E. This
is all that is needed for Stein’s lemma proved below. Stein (1990) investigates when
Im E = Ker T . This does not hold in the present case, but would hold if the
exchangeable pair was defined by choosing X ′

I as ±1 at random.

The Map α. To complete the description of the basic diagram a map α from F0

to F must be chosen. This takes a function on Zp into an anti-symmetric function
on Zn

2 × Zn
2 . After some experimentation, discussed below, the following choice

emerged. Let S(x) = x1 + · · · + xn. Define α : F0 → F by

αf(x, y) = cf
(
S(x)

)
δS(x)

(
S(y) − 2

)
− cf

(
S(y)

)
δS(y)

(
S(x) − 2)

)
. (2.10)

On the right S(x) is take mod p inside f but in Z inside δ and c > 0 is a constant
to be chosen presently.
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30 Persi Diaconis

Stein’s Lemma. The following simple computation gives an exact expression for
the error term in saying if the left square commutes then the right square commutes.
Consider the diagram

X0

�

X

R

�����

�����

E0

E

β
�

F0

F

α

�

�
T0

T

�
U0

(2.11)

with

Im T ⊂ Ker E, Im T0 ⊂ Ker E0 and T0U0 = id − E0. (2.12)

Lemma 2.2.4 (Stein). Let (2.11) be a diagram of linear spaces and maps satis-
fying (2.12). Then

βE = E0 + E{βT0 − Tα}U0. (2.13)

Proof. 0 = ETα = ETα − EβT0 + EβT0. Multiplying on the right by U0 and use
T0U0 = id − E0 gives

0 = E(Tα − EβT0)U0 + Eβ − E0.

Rearranging terms gives the result.

Remark. If the left square commutes, the term { } in (2.13) is zero, so the right
triangle commutes. The lemma gives an explicit expression for the error which can
be usefully bounded.

Proof of Theorem 2.2.1. To begin, a careful expression for the map βT0 −Tα must
be derived. Let f be an arbitrary function. Clearly

βT0f(x) = f
(
S(x)

)
− f

(
S(x) − 2

)
.

For Tα,

Tαf(x) = cE
(
f(S(X)δS(X)

(
S(Y ) − 2

)
− f

(
S(Y )

)
δS(Y )

(
S(X) − 2

)
|X = x

)
= cf

(
S(x)

)
P

{
S(Y ) = S(x) + 2|X = x

}
− cf

(
S(x) − 2

)
P

{
S(Y ) = S(x) − 2|X = x

}
= cf

(
S(x)

)N−(x)
n

− cf
(
S(x) − 2

)N+(x)
n

where N+(x) is the number of plus signs in x and N++N− = n. This last expression
can be centered to give

Tαf(x) =
c

2
{
f
(
S(x)

)
− f

(
S(x) − 2

)}
+ cf

(
S(x)

)(N−(x) − n
2

n

)
− cf

(
S(x) − 2

)(N+(x) − n
2

n

)
=

c

2
{
f
(
S(x)

)
− f

(
S(x) − 2

)}
+

c(N−(x) − n
2 )

n

{
f
(
S(x)

)
+ f

(
S(x) − 2

)}
.
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The lead term here is c
2 · βT0. To make things cancel, take c = 2. Then

(βT0 − Tα)f(x) = −
2(N− − n

2 )
n

{
f
(
S(x)

)
+ f

(
S(x) − 2

)}
.

From lemma 3, for f = U0δS , |f(j)| ≤ p−1
2 for all j. From this and Stein’s

lemma, for S ⊂ Zp,∣∣∣∣P{Sn ∈ S} − |S|
p

∣∣∣∣ ≤ 2(p − 1)E
∣∣∣∣N−(X) − n

2
n

∣∣∣∣ ≤ p − 1√
n

.

The last inequality used

E

∣∣∣∣N−(X) − n

2

∣∣∣∣ ≤
√

E

(
N−(X) − n

2

)2

=
1
2
√

n.

Remarks. 1) The result gives a clean bound which gives the right rate in the sense
that it shows that n must be of order p2 to make the variation distance small. Note,
however, that if, e.g., n = p3, the bound gives O( 1√

n
) as an error while the Fourier

analysis arguments of Diaconis (1988) give O(e−c
√

n) for c > 0. A refinement would
have to use a less crude bound on f(S(x)) + f(S(x)− 2) in the critical range. Note
that an exponential rate follows from Theorem 2.2.1 and the elementary fact that
total variation is submultiplicative.
2) The probability content amounts to the law of large numbers. A related way to
prove this theorem uses the central limit theorem coupled with the result that a
normal (µ, σ) variable mod 1 tends to uniform as σ tends to ∞. The only known
way to get rates requires the Berry–Essen theorem. Thus here the formalism seems
to be useful.
3) Instead of using the Cauchy-Schwarz inequality at the end of the proof, De
Moivre’s formula gives the exact expression. Fix n and let ν be the unique integer
with n

2 < ν ≤ n
2 + 1. Then

E

∣∣∣∣N−(X) − n

2

∣∣∣∣ =
ν

4

(
n
ν

)
2n

.

Using this, the right side of (2.1) can be slightly improved to a quantity asymptotic
to p−1

4
√

2πn
which gives a slight improvement. Diaconis and Zabell (1991) discuss De

Moivre’s formula and a different connection to Stein’s method.

2.3. An extension to general measures

This section develops bounds when the basic step distribution is a general proba-
bility Q on Zp. The following examples may help motivate the general result.

Example 1. Fix an integer k and let

Q(j) =


1

2k + 1
for − k ≤ j ≤ k

0 else

Then, for any k ≥ 1, all integers p > 2k, and all n ≥ 1 on Zp∥∥Q�n − U
∥∥ ≤ p − 1√

2kn
. (2.14)
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32 Persi Diaconis

Example 2. Fix θ ∈ (0, 1) and let Q(1) = θ, Q(−1) = 1 − θ on Zp. Then, for all
odd integers p and all n ≥ 1, on Zp∥∥Q�n − U

∥∥ ≤ p − 1
2
√

nθ(1 − θ)
. (2.15)

These results follow from making the appropriate choices in the basic diagram

X0

�

X

R

�����

�����

E0

E

β
�

F0

F

α

�

�
T0

T

�
U0

(2.16)

For the righthand triangle, choose X = L(Zn
p ) and E as expectation under the

product measure Qn. Choose X0 = L(Zp) and E as expectation under the uniform
distribution. The map β is defined as before βf(x) = f(x1 + · · · + xn).

For the bottom row, choose F0 = L(Zp) and for an integer r chosen later

T0f(i) = f(i) − f(i − r) for r relatively prime to p. (2.17)

For the inverse of T0, take

U0f(i) =
∑

0≤j≤i/r

(
f(rj) − E0f

)
. (2.18)

As in Lemma 2 of Section 2,

T0U0 = id − E0 (2.19)

and for S ⊂ Zp

|U0δS(i)| ≤ p − 1
2

. (2.20)

This completes the specification of the bottom row of the diagram.
For the top row, F is taken as the anti-symmetric functions on Zn

p×Zn
p . To define

T , an exchangeable pair (X, Y ) must be created. Choose X ∈ Zn
p from the product

measure Qn. Choose I uniform and independent on {1, 2, . . . , n}, set Yi = Xi for
i 	= I and choose YI from the measure P (XI , ·) with P (i, j) a transition kernel.
Exchangeability of (X, Y ) requires

QP = Q and Q(i)P (i, j) = Q(j)P (j, i). (2.21)

Thus P generates a reversible Markov chain with stationary distribution Q. Note
that the rows of P can always be taken as copies of Q. This corresponds to taking
YI as an independent pick from Q. This will be called the independence coupling.
With this notation, a general bound can be stated.
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Theorem 2.3.1. Let p be an integer and Q a probability on Zp. Then, for any n∥∥Q�n − U
∥∥ ≤ p − 1

2
√

n
K

with

K =
{

ΣQ(j)P 2(j, j + r)
(ΣQ(j)P (j, j + r))2

− 1
} 1

2

+
{

ΣQ(j)P 2(j, j − r)
(ΣQ(j)P (j, j − r))2

− 1
} 1

2

. (2.22)

and P defined at (2.21) and any fixed r ∈ Zp relatively prime to p. If the term in
the denominator in (2.22) is zero, K is defined as ∞ and the bound is vacuous.

Examples 1 and 2. Before proving the result, let us see how it yields the bounds
announced in examples 1 and 2 above. For Example 1, take the independence
coupling P (i, j) = Q(j) and r = 1. Each displayed term in (2.22) is 1√

2k
which

gives (2.14). For Example 2, take the independence coupling for the measure Q and
r = 2. Then

K =
{

θ

1 − θ

} 1
2

+
{

1 − θ

θ

} 1
2

=
1√

θ(1 − θ)
.

This gives (2.15).

Proof of Theorem 2.3.1. The map α in the diagram (2.16) is taken as

αf(x, y) = cf
(
S(x)

)
δS(x)

(
S(y) − r

)
− cf

(
S(y)

)
δS(y)

(
S(x) − r

)
(2.23)

with c to be chosen and S(x) = x1 + · · · + xn. From Stein’s lemma

βE = E0 + E{βT0 − Tα}U0. (2.24)

Here

βT0f(x) = f
(
S(x)

)
− f

(
S(x) − r

)
,

Tαf(x) = cE
{
f
(
S(X)

)
δS(X)

(
S(Y ) − r

)
− f

(
S(Y )

)
δS(Y )

(
S(X) − r

)
|X = x

}
= cf

(
S(x)

)
P x

(
S(Y ) = S(x) + r

)
− cf

(
S(x) − r

)
P x

(
S(Y ) = S(x) − r

)
,

where P x(·) = P{·|X = x}. From the construction of (X, Y )

P x
{
S(Y ) = S(x) + r

}
=

1
n

∑
j

NjP (j, j + r)

=
∑

j

(Nj − nQ(j))
n

P (j, j + r) +
∑

j

Q(j)P (j, j + r)

while Nj = Nj(x) equals the number of coordinates in x equal to j. Similarly

P x
{
S(Y ) = S(x) − r

}
=

∑
j

(Nj − nQ(j))
n

P (j, j − r) +
∑

j

Q(j)P (j, r − r).

Further, reversibility implies∑
j

Q(j)P (j, j − r) =
∑

j

Q(j − r)P (j − r, j) =
∑

k

Q(k)P (k, k + r) = C.
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34 Persi Diaconis

Here C is the term appearing in the denominators of K at (2.22). It is the chance
a Markov chain started with distribution Q and having transitions given by P goes
up by r in two steps. If C is zero, the bound of Theorem 2.3.1 is satisfied. Thus
assume that P and r have been chosen so C is positive. Then take the constant
c = C−1 in (2.23). This allows the lead terms to cancel and yields

(βT0 − Tα)f(x)

=
c

n

{
f(S(x)

∑
j

(Nj − nQ(j))P (j, j + r)

− f(S(x) − r)
∑

j

(Nj − nQ(j))P (j, j − r)
}

. (2.25)

For f = U0δS, (2.20) yields |f(j)| ≤ p−1
2 . Thus (2.24) gives∣∣(βE − E0)f

∣∣
≤ c

n

p − 1
2

E
{∣∣(Nj − nQ(j)

)∣∣P (j, j + r) +
∣∣Nj − nQ(j)

∣∣P (j, j − r)
}
.(2.26)

The random variables Nj have the law of n balls dropped into p boxes with
chance Q(j) of being dropped into box j. This has p × p covariance matrix n(∆ −
QQt) with ∆ a diagonal matrix having Q(j) as diagonal entries and Q treated as a
column vector. It follows that

∑
j(Nj−nQ(j))P (j, j+r) has mean zero and variance

n{
∑

j Q(j)P 2(j, j+r)−C2}. Similarly
∑

j(Nj−nQ(j))P (j, j−r) has mean zero and
variance n{

∑
j Q(j)P 2(j, j − r) − C2}. Using these results and E|X | ≤ {E|X |2} 1

2

in (2.26) completes the proof of Theorem 2.3.1.

Remarks. 1) The bound for Example 2 is sharp. A matching lower bound follows
from the arguments of Chapter 3 of Diaconis (1986). The bound for Example 1 is
not sharp when k is permitted to grow with p. Fourier analysis shows that if p

k
√

n

is small, the variation distance is small. Since Stein’s method remains an identity
up to the final bound it is instructive to see where the precision is lost.

Begin with (2.25). Using the independence coupling for example 2, C−1 =
2k

(2k+1)2 and (2.25) simplifies to

(βT0 − Tα)f(x)

=
2k + 1
2kn

{
f(S(x))

{
n

2k + 1
− Nk

}
− f(S(x) − 1)

{
n

2k + 1
− N−k

}
.(2.27)

Here f = U0δS satisfies ‖f‖∞ ≤ p−1
2 and f(S(x)) − f(S) − 1) = δS(S(x)) − E0δS .

If f is bounded by p−1
2 , no substantial improvement over (2.14) seems possible. Of

course, roughly, f(S(x)) and Nk − n

2k + 1
, are independent and this last term has

mean 0, so the expected value of the left side should be small. To make this precise
requires rather precise knowledge about the random walk.

As an indication of the information available, consider example 1 with k only
slightly smaller than p/2. Then, elementary considerations show that n = 1 is
sufficient to make the variation distance small. To see this from Stein’s method,
write (2.26) as equal to

−(2k + 1)
2k

{
f
(
S(x)

)
Nk − f

(
S(x) − 1

)
N−k

}
+

1
2k

{
f(S(x)

)
− f

(
S(x) − 1

)}
.
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The second term in brackets is bounded by 1/2k. Taking expectations of the first,

E
{
f
(
S(x)

)
Nk − f

(
S(x) − 1

)
N−k

}
=

f(k) − f(−k − 1)
2k + 1

.

This last term is bounded above in absolute value by 2(p
2 −k)/(2k+1). Combining

bounds gives ∣∣Q(S) − U(S)
∣∣ ≤ (

2
(

p

2
− k

)
− 1

)/
2k.

It follows that one step is enough if (p/2 − k)/k is small. Extending this argument
to a wider range of k values seems tricky.
2) The two denominators in (2.22) are equal because of (2.25).
3) In example 2, all possible transition matrices P lead to the bound (2.15). Sim-
ilarly, in example 1, the exchangeable pair from P (i, i + 1) = P (i, i − 1) = 1

2 for
−k < i < k with P (k,−k) = P (−k, k) = P (k, k − 1) = P (−k,−k + 1) = 1

2 and
P (i, j) = 0 else leads again to the bound (2.14). This indicates that the indepen-
dence coupling may be a reasonable first choice.

Example 3. To conclude this section, consider a set A ⊂ Zp of size |A| = α, and
let

Q(j) =


1
α

if j ∈ A

0 otherwise .

(2.28)

Let β(r) be the number of a ∈ A such that a + r ∈ A, let β� = maxr β(r) and
assume there is an r� relatively prime to p such that the maximum is achieved.
Then, Stein’s method, with the independence coupling and r = r� gives

∥∥Q�n − U
∥∥ ≤ p − 1√

n

(
1 − β�

α

)1/2

.

Remarks. This bound reduces to (2.14) for A an interval [−k, k]. It is not even
sharp for certain small sets A. For large primes p, most sets A with |A| = 3 have
‖Q�n − U‖ ≤ θ p

n for θ universal.

Examples 1 and 3 show that there is room for improvement in the bounds
suggested above. Hopefully this will deepen our understanding of Stein’s method.
The bounds aimed for have the delicacy of Berry–Essen bounds so it is not surprising
they are elusive.

2.4. The Ehrenfest Urn

The Ehrenfest Urn is a well studied Markov chain on the state space S = {0, 1, . . . , d}
with transition probabilities

P (i, i) =
1

d + 1

P (i, i + 1) = 1 − i

d + 1
(2.29)

P (i, i − 1) =
i

d + 1
.

and stationary distribution

π(i) =

(
d
i

)
2d

1
n

(2.30)
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Here a fixed holding probability has been introduced to get rid of parity problems.
Stein’s method will be used to derive the following result:

Theorem 2.4.1. For the Markov chain (2.29) all d and n, there is a universal
constant b such that

∥∥Pn(0, ·) − π(·)
∥∥ ≤

√
d + 1

n
+ b

√
d(d + 1)

n
. (2.31)

This shows that n � d2 steps suffice to achieve uniformity. As shown in Diaconis-
Graham- Morrison (1990) n � d log d suffice.

Proof. As is well known, the Ehrenfest chain is the distance from zero process for
nearest neighbor random walk on a d-dimensional hypercube Zd

2 with Z2 = {0, 1}.
This motivates the following choices in the basic diagram

X0

�

X

R

�����

�����

E0

E

β
�

F0

F

α

�

�
T0

T

�
U0

(2.32)

Take F0 = X0 = L(S) where S = {0, 1, . . . , d}. Take E0(f) =
∑d

i=0 f(i)π(i). The
characterizing operator T0 can be chosen as

T0f(j) = (d − j)f(j) − jf(j − 1).

Stein (1986) shows E0T0 = 0. For the inverse, define, for 0 ≤ j ≤ d − 1,

U0f(j) =
1(

d
j

)
(d − j)

j∑
k=0

(
d

k

)(
f(k) − E0(f)

)
.

This satisfies
T0U0f(j) = f(j) − E0(f) for 0 ≤ j ≤ d.

Standard bounds on binomial probabilities show that

for ‖f‖∞ ≤ 1, ‖U0f‖∞ ≤ b√
d

for universal b.

This completes the specification of the bottom row. For the top row, let X =
L((Zd

2)n), let Q be defined on Zd
2 by Q(0) = Q(e1) = · · · = Q(ed) = 1

d+1 , where
ei are the standard Euclidean basic vectors. Define E as expectation under Qn :
Ef = E(f(X1 · · ·Xn)) with Xi being independent and identically distributed with
respect to Q. Define β : X0 → X via βf(x) = f(S(x)) where S(x) = |x1 + · · ·+ xn|
and |v| is the number of ones in the binary vector v.

Let F be the antisymmetric functions on (Zd
2)

n × (Zd
2)

n. To construct T , con-
struct an exchangeable pair of random variables (X, Y ) by choosing X from Qn
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on (Zd
2)

n, choosing a coordinate I uniformly in {1, 2, . . . , n}, and setting Yi = Xi,
i 	= I with YI and independent pick from Q. Define

Tf(x) = E
(
f(X, Y )|X = x

)
.

Finally, define α : F0 → F by

αf(x, y) = cf
(
S(x) − 1

)
δS(x)

(
S(y) + 1

)
− cf

(
S(y) − 1

)
δS(y)

(
S(x) + 1

)
with c to be chosen later. Note f(−1) may be defined arbitrarily as zero. This choice
will not enter the final computations.

For use in Stein’s lemma, βT0 − Tα must be computed.

βT0f(x) =
(
d − S(x)

)
f
(
S(x)

)
− S(x)f

(
S(x) − 1

)
.

Tαf(x) = cf
(
S(x) − 1

)
P x

(
S(Y ) = S(x) − 1

)
− cf

(
S(x)

)
P x

(
S(Y ) = S(x) + 1

)
.

To calculate the conditional probabilities, let Ni(x) be the number of coordinates
in x equal to ei and let N0(x) be the number of coordinates in x equal to 0. Let
δ1(Ni) be one or zero as Ni is odd or even. Then

P x
(
S(Y ) = S(x) − 1

)
=

N0

n

S(x)
d + 1

+
d∑

i=1

Ni

n

δ1(Ni)
d + 1

P x
(
S(Y ) = S(x) + 1

)
=

N0

n

d − S(x)
d + 1

+
d∑

i=1

Ni

n

1 − δ1(Ni)
d + 1

.

For example, the first expression follows from the following considerations. The
chance that S(Y ) = S(x) − 1 given x is the chance that the random coordinate I
hits a zero and is replaced by one of the coordinates where the final sum is 1 plus
the chance of hitting an odd coordinate and replacing it by zero. These expressions
centered are:

P x
(
S(Y ) = S(x) − 1

)
=

2S(x)
(d + 1)2

+
S(x)(N0 − n

d+1 )
n(d + 1)

+
d∑

i=1

(Ni − n
d+1 )δ1(Ni)

n(d + 1)

P x
(
S(Y ) = S(x) + 1

)
=

2(d − S(x))
(d + 1)2

+
(d − S(x))(N0 − n

d+1)
n(d + 1)

+
d∑

i=1

(Ni − n
d+1 )(1 − d1(Ni))
n(d + 1)

.

To cancel lead terms, c must be chosen as (d + 1)2/2. Then

(βT0 − Tα)f(x)

=
d + 1
2n

{
f
(
S(x) − 1

)[
S(x)

(
N0 −

n

d + 1

)
+

d∑
i=1

(
Ni −

n

d + 1

)
δi(Ni)

]

− f
(
S(x)

)[(
d − S(x)

)(
N0 −

n

d + 1

)
+

d∑
i=1

(
Ni −

n

d + 1

)(
1 − δi(Ni)

)]}
.
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To bound the expected absolute value of this error term take f = U0δA for
A ⊂ Zd

2. The terms involving N0 are

d + 1
2n

{[
S(x)f

(
S(x) − 1

)
−

(
d − S(x)

)
f
(
S(x)

)](
N0 −

n

d + 1

)}
=

d + 1
2n

{
T0U0δA(x)

(
N0 −

n

d + 1

)}
.

Using ‖T0U0δA‖∞ ≤ 2 and E|N0 − n
d+1 | ≤

√
n/(d + 1) shows that this part of the

error is bounded by
√

d+1
n .

For the sums, use ‖f‖∞ ≤ b√
d

and E|Ni − n
d+1 ≤

√
n/(d + 1) to give

d + 1
2n

b√
d
d

√
n

d + 1
=

b

2

√
d(d + 1

n
.

Combining bounds completes the proof of Theorem 2.4.1.

Remark. The commutativity of Zd
2 underlies the argument above. A similar ar-

gument can be given for any walks involving Gelfand pairs where the convolution
operation is commutative. See Diaconis (1987, Chapter 3-G).

2.5. A Fourier connection

This section shows how a natural choice of the map α can force consideration of the
eigenvalues of the underlying walk. Let G be a finite Abelian group. Let S = S−1

be a set containing the identity and generating G. Let

Q(t) = δS(t)/|S| for t ∈ G (2.33)

be the corresponding measure on G. To study convolution powers of Q by Stein’s
method, choices must be made in the basic diagram

X0

�

X

R

�����

�����

E0

E

β
�

F0

F

α

�

�
T0

T

�
U0

(2.34)

Here X = L(Gn), the operator E is expectation with respect to the n-fold
produce measure Q × Q · · · × Q,X0 = L(G) and E0 is expectation with respect to
the uniform distribution. The map βf(x1 · · ·xn) = f(x1 + · · ·+ xn) and T is based
on an exchangeable pair formed by choosing a random coordinate and replacing it
with a random choice in S. All of these choices are just as seen in Section 1. Further
F0 = X0 and F is taken as the anti-symmetric functions from Gn × Gn.

The map α seems crucial. One natural choice is

αf(x, y ) = f
(
S(x )

)
− f

(
S( y )

)
, with S(x) = x1 + · · · + xn. (2.35)
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This gives

αf(x ) = f
(
S(x )

)
− 1

n|S|
∑
s,s′

Nsf
(
S(x ) + s′ − s

)
. (2.36)

In (2.36) the sum is over all pairs s, s′ ∈ S × S and Ns is the number of times s
appears in x. This suggests choosing T0, the characterizing map, as

T0f(t) =
(
δid − Q 	 Q̃ 	 f(t)

)
for t ∈ G. (2.37)

In (2.37), the convolution of functions is f1 	 f2(t) =
∑

s∈G f1(t − s)f2(s), Q̃(t) =
Q(−t), and δid is point mass at the identity of G. It is clear that E0T0 = 0. The
lemma below will show that KerE0 = Im T0 and provide an explicit inverse U0 as
required by Stein’s formalism, provided that the Fourier transform of Q does not
vanish.

To set things up, recall that a character of G is a map χ : G → C such that
χ(s+ t) = χ(s)χ(t) for all s, t ∈ G. The set of distinct characters is denoted Ĝ. The
Fourier transform is defined by

Q̂(χ) =
∑
s∈G

Q(s)χ(s).

As usual Q1	Q2(χ) = Q1(χ)Q2(χ) and the uniform distribution has zero transform
except at the character χ(s) ≡ 1 (the trivial character). Convergence to uniformity
can often be studied by bounding the transform and showing how fast its powers
tend to zero. As shown, e.g., in Diaconis (1988, Chapter 3E), the eigenvalues of the
Markov chain associated to the random walk are precisely the number Q̂(χ) and χ

varies in Ĝ. In particular, the random walk converges to the uniform distribution
if and only if |Q̂(χ)| 	= 1 for χ non-trivial.

To invert the map T0 of (2.37) involves solving for g in the equation T0g = f ,
or (δ0 − Q 	 Q̃) 	 g = f . Taking transforms,(

1 −
∣∣Q̂(χ)

∣∣2)ĝ(χ) = f̂(χ).

This defines g uniquely (up to constants), since |Q̂(χ)| 	= 1. To summarize:

Lemma 2.5.1. Under the assumptions above, assume Q̂(χ) 	= 1 for χ 	= 1. Let T0

be defined by (2.37). Define

U0f(t) =
1
|G|

∑
χ∈Ĝ−1

f̂(χ)

(1 − |Q̂(χ)|2
χ(t−1).

Then
T0U0f(t) = f(t) − E0f. (2.38)

Proof. The maps U0 and T0 are linear. Each vanishes on constant functions. Con-
sider T0Û0f(χ) = f̂(χ) for χ non-trivial. Thus both sides of (2.38) have the same
transform at all representations.

Corollary 2.5.1. If |Q̂(χ)| 	= 1 for χ non-trivial Ker E0 = Im T0.

Let us plug these computations into Stein’s lemma (Lemma 4). From (2.36)
and (2.37)

(βT0 − Tα)f(x ) =
(
δid − Q 	 Q̃

)
	 f

(
S(x )

)
−

{
f
(
S(x )

)
− 1

n|S|
∑
s,s′

Nsf
(
S(x ) + s′ − s

)}
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with
f = U0δA,

where U0 is defined in Lemma 5.
The procedure above seems convoluted. To turn it into a bound of some sort,

note that for any A and non-trivial χ, |δ̂A(χ)| ≤ |G|
2 so that

∣∣f(s)
∣∣ ≤ 1

2

∑
χ∈Ĝ−1

1

1 − |Q̂(χ)|2
≤ |G|

2
1

1 − π2
�

(2.39)

with π� = maxχ |Q̂(χ)|, the largest non-trivial eigenvalue. As above, for any s,
|Ns − n

|S| | ≤
√

n
|S| . Combining bounds,

∥∥Q�n − U
∥∥ ≤

√
|S|
n

|G|
2

,
1

1 − π2
�

. (2.40)

Example 1. Take G = Zp for p odd and S = {0, 1,−1}, the bound becomes

∥∥Q�n − U
∥∥ ≤ Cp3

√
n

with universal C. Here, the easily proved result π� = 1 − C′

p2 for C′ constant, was
used. This shows that n � p6 steps are sufficient to have small variation distance
small. As is well known, n � p2 steps are necessary and suffice.

The main reason for including this section is to indicate a connection between
Stein’s method and the eigenvalues. The argument does underscore the value of
choosing a characterizing operator with a simple inverse.
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