
CHAPTER 4 

Curvature and 
Information Loss 

4.1. Curvature. This chapter contains a very informal discussion of 
curvature and connections along the lines of Efron (1975), who introduced 
curvature, and his discussant, Dawid (1975), who related Efron's curvature to 
the notion of "connection" in differential geometry. A more rigorous treatment 
is available in the articles in Amari, Barndorff-Nielsen, Kass, Lauritzen and 
Rao (1987); see also Kass (1989). 

Consider a planar curve 

y =y(x). 

Then the curvature at x, y( x ), is the rate at which the tangent changes 
direction in a neighborhood of x and is defined as 

da . a( x + h) - a( x) 
y(x) =- = hm ------

ds h --. 0 S ( X + h) - S ( X) ' 

where a( x) is the angle that the tangent makes with a fixed line and s( x) is 
the length along the curve up to x from a fixed point. 

Consider now a curved exponential, (") an open interval and {3( fJ) a curve 
in Rk. Given two K-dimensional vectors, define the inner product by 

where ~ = 2.0 is a positive definite matrix to be specified later. Then, 
i) 

(4.1) cos( angle between (3 1 , {3 2 ) = < {31 , {32 )/11 (3 1 11·11 {32 11, 

where II !311 = ( {32..(31') 112• 

If s0 is the length of the curve (3 = (3( 0) from &0 to (}, then 

ds( B) I ( . . )1;2 
~ lio = f3(Bo)~oof3(0o) ' 
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where ~(8) is, as before, the derivative of {3(8) with respect to 8. Curvature 
is defined, as before, by 

( 4.2) da(O) I 
'Y ( 8) I 00 = ds ( (}) , 

Oo 

where cos(a(O)) is given by (4.1) with {31 = {3(80 ) and {32 = rJ(80 +dO). 
Note that 

and hence, from (4.2), 

( 4.3) 

da(O) I 
y(Oo) = ds(O). 

Oo 

sin da( (}) - da( (}) 

. sin a( 80 + h) 
,~1~ h 

h 

s(80 +h) - s(00 ) 

where Mu = /3;'i 00 {3/', i, j = 1, 2, and {31 = rJ(80 ), {32 = /3(00 ), /3UJ0 ) being 
the second derivative with respect to 8. 

So 

( 4.4) 

The choice of ~~J is now specified. Take it as the (k X k) information 
I) 

matrix of the original exponential (see Section 2.4), that is, of 

p(xl {3) = d( f3)exp{~f3;(8){;(x)}A(x), 

and evaluate at {3 = {3( 80 ). So 

(4.5) 'io =[Eo alogp(xlf3) alogp(xi,B) I l· 
o o d/3; (}{3i /l(Oo) 

Finally we define curvature for a general family of probability densities 
satisfying regularity conditions. Consider such a family p( xI 8 ), 8 E ("), ® an 
open interval. Let 

( 4.6) 
. dlogp(xl8) 
!(8)= . 

de 

We identify l(8) as a "tangent" to the "curve" 0 -~ p(·l8). One defines an 
(abstract) tangent space at 8 as the linear space of all random variables Y 
with E0(Y) = 0, and chooses l0 as a distinguished element of this space. The 
"inner product" of two such tangents l0 and l0 is defined by 

0 

(4.7) (l1J0 ,l0 ) = Cov(t00 ,l0 l80 ). 

Now repeating the calculations made for a curved exponential with l( 8) 
replacing ~( ()) and using the new inner product, we get "statistical curva-
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ture" at 80 1s 

( 4.8) 
y( 80 ) = limiting rate at which i( e) changes its angle at 80 

def 

= [IMI/Mi31f12 , 

where M = [Mii] is the dispersion matrix (under 00 ) of l(fJ0 ) and i(&0 ) = 
(d 2 log p(xJ8))/d0 2 Io 0 • 

It is easy to check that this is a proper generalization of the notion 
introduced earlier in the sense that for a curved exponential, statistical 
curvature equals (geometrical) curvature of the curve of fJ ~ {3( 8 ). 

Note that if we have to calculate the curvature at a different point 81 , we 
must use the corresponding inner product. Inner products change with fJ. 
More about this when we discuss "connections." 

4.2. Geometry of information loss. By passing to the space of the 
(minimal) sufficient statistic, we assume, without loss of generality, that the 
curved exponential is of the form 

( 4.9) p ( xI f3 ( e ) ) = p ( x 14>) = c ( fJ) exp ( ~ f3i ( O) xi) 

(up to a factor involving only x ). 
Fix 80 • By making one-to-one linear transformations on the x's, f3's and 

&'s, we may assume, without loss of generality, 

(4.10) 

80 = 0, dispersion matrix of X= I (identity matrix), 

P-(80 ) = 1r(00 ) = E(XI8 0 ) ~ 0, 

13( Oo) = 0, 

tJ;( 80 ) = 0, i=2,3, ... ,k. 

Efron (1975) calls this the standard form. 
Let l 1 be the unit vector along tJ(00 ), that is, (1, 0, 0, ... , 0) and let l 2 be 

the unit vector which is orthogonal to l 1 and lies in the linear space spanned 
by tJ( 00 ), /3( 00 ). Locally everything happens in this space, but to make our life 
easy, we will take k = 2. 

Let L 1; be the level curve of {j in the space of the (minimal) sufficient 
statistic based on n observations, that is, 

La= { ( xl' x2); fi( xl' XX) = fi} ( e being the observed value) 

= {(xl,xz); t3Cfi)(xr- ~-t(e/) = o} 
( 4.11) 

since the observed value of e will be close to 8o' J-L( {j) will be close to J-L( 8o ), 
which is zero by assumption. Hence L11 may be approximated by a line 

( 4.12) 
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Information loss for the mle, as defined by Fisher, is [see (3.2) and (3.3)] 

( 4.13) 

where i is now based on n observations, 

(4.13a) l(Oo) = dlog p(X~~J ... ,XniO) loo = n{,B(Oo)(XT- J.LT(eo))} 

= n{I( 00 )} 112 X, 

41 

since ,82 (00 ) = 0, .812 (00 ) = /(00 ) by (4.10). Since X E L 1;, 0 is the observed 
value and L 0 is approximated by the line (4.12), 

(4.14) ~-X1 = {tana(O)}X2 (approximately), 

where a( B) is theA angle between ,8(0) and ,8(80 ). Since 0 is close to 80 = 0, 
we may think of 0 of de. Hence, using the definition of curvature, 

( 4.15) tan a( e) =c y( flo) 8 (approximately) 0 

Hence making use of (4.13a), (4.14) and (4.15), 

( 4.16) Var(t( 80 )10) = n 2/ 2 ( 80 )y 2 ( 80 )0 2 Var00( X 2 IO). 

Since [see, e.g., (3.9a)] 

( 0- 80 ) ""l( 80 )/nl( 00 ) 
( 4.17) 

= a linear function of xl 
and xl and Xz are independent under Oa, 

(4.18) Var11u{X2 IB) ""'Var110(X2 [X1 ) = Var00(X2 ) = 1jn. 

So information loss is, by (4.13), 

E 110(Var( l( 80 )18)) ""'E110 ( nl 2 ( 80 )!' 2 ( 80 ) 02 ) 

( 4.19) 
2 2 1 2 ~ nl y nl = y (80 )/(80 ). 

We have used various approximations to deduce the formula 

( 4.20) (limiting) informationlossinusing e= y 2 (80 )1(00 ). 

The relation (4.20) follows immediately from Theorem 3.1 and the defini­
tion of y 2(80 ), if we adopt the Fisher-Rao modified formulation of the notion 
of information loss and replace the left-hand side of(4.20) by the measure E 2 

(with Tn replaced by 0). 
Ghosh notes in his discussion in Efron (1975) that the quantity y 2 (or 

rather some multiple of it) appears naturally in inference questions, even if 
one does not seek a geometric interpretation. Pfanzagl was led to it through a 
study of the local power of tests. Ghosh and Subramanyam (1974) were led to 
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it through their evaluation of the minimum value of E 2 and a study of the 
condition when the minimum E 2 can be zero. They noted that the minimum 
E 2 , which equals E 2 for e, can be zero for all 8 if and only if the curved 
exponential is linear exponential. 

The curvature y has an interesting invariance property. If one transforms 
to w, where w is a one-to-one twice differentiable function of 8, then with the 
new parametrization, 

( d() )6 
IM for wl = dw IM for 81, 

I 
de 1

2 
I for w = dw I for 8. 

Hence y is invariant under the reparametrization. In fact if one wants a 
"normalized" E 2 of the form Ed{I(8)}k, which is invariant under repar­
ametrization, then one must have k = 3. This explains the otherwise mysteri­
ous appearance of the power 3 in the denominator of y. 

Efron's original idea of using y 2 as a diagnostic tool for when not to use a 
locally most powerful test has not been followed up. For use of y 2 in Bayesian 
inference, see Kass (1988) and Kass, Tierney and Kadane (1989). 

4.3. Curvature and connection. "Connections" were first used in 
statistics by Chentsov (1972). Revival of interest arose from Dawid's com­
ments on a paper by Efron [Dawid (1975)]. Much of the recent work is due to 
Amari (1985). 

To motivate connections, note that in Efron's work on curvature, as given 
in Section 4.1, the tangent T0 at f) has to be "displaced" to be brought into 
same (inner product) space as the tangent T,, , so that the angle between uo 
them can be measured. More generally, one can have a "connection," as in 
differential geometry, which tells you how to correspond to the tangent 7;1o+de 

an element, say T~0 in the tangent space at 00 . It is then possible to compute 
the angle between T,; and T" using the inner product of the tangent space at 

0 0 "O 

fJ 0 . Note that both in the context of differential geometry and (statistical) 
curvature, the tangent spaces at different 8-points have a different geometry 
(leading, in most cases, to different inner products) and elements from two 
such spaces do not have a well-defined angle between them without a 
"connection" which lifts elements from one space to the other in a suitable 
way. 

Efron's algorithm for doing this tacitly defines a connection which has 
come to be known as the exponential connection. In this framework, curva­
ture vanishes if and only if the family P(·le), e E e, is a linear exponential 
family. 

Another connection, of importance in statistics, is the "mixing connection" 
due to Dawid, under which the curvature is zero if and only if the family 
P(·l8) is a mixture 8P0 + (1 - 8)P1 , 0 ~ e ~ 1. 
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These two connections happen to be the two most useful members of a 
family of connections, first introduced by Chentsov; see his book [ Chentsov 
(1972)] or his recent article [Chentsov (1990)] on Kolmogorov in The Annals 
of Statistics. Each kind of curvature measures how far a given family of 
densities is from a family with a particular structure that is called linear. A 
good overview is available in the introductory article by Kass (1987). 

The best application in statistics still seems to be Efron's. However, Amari 
has shown the mixture connection also has an interesting role in third order 
efficiency; For example, the loss of information due to use of a FC, FOE Tn 
equals y 2 I + f3i /2, where f3i is the curvature arising from the mixture 
connection and the suffix T indicates we are looking at the family of densities 
of Tn. See Kass (1987) for more details. 

A natural analytical tool arising from all this is the notion of a covariant 
derivative D, which is defined as follows. Let the lifting under a given 
connection be indicated by the map MO. Then 

where in the above the tangent, elements M(T11 +h) and T.11 are best 
0 () 

thought of as operators on some suitable function space. For example, we can 
think of 1;1 as djdfJ0 and so DT.8 is a second order differential operator. 

() () 

Often connections are defined by specifying D. An example of use of this 
notion, due to Amari and Kumon (1984), is in the treatment ofNeyman--Scott 
problems. 

4.4. Asymptotic ancillaries and conditional loss of information. 
Fisher had always advocated inference conditional on a suitable ancillary 
statistic, which captures some significant aspect of the observed data but 
whose distribution is free of e. For example, as first pointed out by Cox 
(1958), if the sample size n is a random variable, taking, say, two values 2 
and 100 with positive probability, it would be absurd not to condition on its 
observed value. A general ancillary statistic is somewhat like the sample size 
in Cox's example. A paradigm for statistics, in which inference is conditional 
on suitably chosen ancillary statistics, is half way between the frequentist 
paradigm and the Bayesian paradigm, where inference is conditional on the 
full data. For a discussion, see Cox and Hinkley (1974), Basu (1988) and 
Lehmann (1986); see also Barndorff-Nielsen (1988). 

In the context of information loss, Fisher also advocated conditioning on 

the negative of which is often called Fisher's observed information. Like the 
sample size n in Cox's beautiful example, it does seem to measure something 
like how informative the sample is. 
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Pierce (1975) was probably the first to suggest that i(e) can be used to 
construct an asymptotically ancillary statistic. It is unclear if Fisher also had 
anything like this in mind when he advocated conditioning on l(o). Efron and 
Hinkley (1978) proposed the use of the asymptotically ancillary statistic 

1 - l"( o);I( o) 
cp= 

y( 0) 
In this connection Barndorff-Nielsen (1978) has criticized the concept by 
pointing out that if one takes a linear exponential family, then l( 0) will 
involve the (minimal) sufficient statistic and hence conditioning on that 
would not make sense (except, of course, to a Bayesian). It is not clear to us 
whether there are compelling reasons for conditioning on cp, but Barndorff­
Nielsen's comments do not seem to be justified for two reasons. For a linear 
exponential, y = 0, and so cp is not well defined. Second, with 0 as the 
natural parameter, 

n 

log P = n log c( o) + eExi. 
1 

Then n- 1 Z( o) - I( e) = 0 identically, and so, trivially, is exactly ancillary. 
Let us get back to Fisher's idea of conditioning on i( 8 ). The following 

statements are no more than a modern version of what Fisher knew. The mle 
0 is asymptotically sufficient to a first order (in a sense that can be made 
precise) and this is closely related to its being FOE. However, though TOE, it 
is not asymptotically sufficient to a third order, this being clear from the 
limiting positive value ofloss of information. If we condition on i( 0), it is not 
hard to see that conditionally the (limiting) loss of information due to use of 0 
is zero. It is easiest to see this in the framework of Section 4.1. We approxi­
mate l(O) by l(H0 ) and note that Var(l(80 )/0, i(00 )) = 0 exactly. More gener­
ally, if we replace the measure of loss of information E 2 of (3.5) in Chapter 3 
by 

E 2 = inf lim Var 0 - ni( 0- 8) -- nA11 ( 0- 8) ( 
d log p A A 2 

A n->X de 

I 
2 

1 d 2 log p 
- n A22 ( -;; d 0 2 11 + I ( 8 ) ) 

A ( 1 d 2 log p ) ) - n A12 ( 0 -- 8) -;; d 8 2 + I ( 8) , 

then it is clear from the expansion of(O- 0) in (3.9a) that this new E 2 equals 
zero. The point of all this is that, in a sense, 0 and i( e) together seem to carry 
all the information in the data up to third order. 
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