
CHAPTER 1 

Introduction 

1.1. Overview. Higher order asymptotics deals with two sorts of closely 
related things. First, there are questions of approximation. One is concerned 
with expansions or inequalities for a distribution function, an asymptotic 
variance, the posterior density and integrated Bayes risk. Second, there are 
inferential issues. These involve, among other things, the application of the 
first set of ideas of the study of higher order efficiency, admissibility and 
minimaxity, conditional and adjusted likelihood and construction of noninfor­
mative priors by approximately matching posterior and frequentist probabil­
ity. In the matter of expansions, it is as important to have usable, explicit 
formulas as a rigorous proof that the expansions are valid in the sense of 
truly approximating a target quantity up to the claimed degree of accuracy. 

Classical asymptotics is based on the notion of asymptotic distribution, 
often derived from the central limit theorem, and usually the approximations 
are correct up to O(n 112 ), where n is the sample size. Higher order 
asymptotics provides refinements based on asymptotic expansions of the 
distribution or density function of an estimate and the posterior den­
sity function of the parameter. Posterior expansions are refinements of the 
Bernstein-von Mises theorem on asymptotic normality of the posterior, 
whereas the other expansions are rooted in the Edgeworth theory, which is 
itself a refinement of the central limit theorem. 

When higher order asymptotics is correct up to o(n 1 / 2 ), it is second order 
asymptotics. When further terms are picked up, so that the asymptotics is 
correct up to o(n - 1 ), it is third order asymptotics. In his pioneering papers, 
C. R. Rao coined the term second order efficiency for a concept that would now 
be called third order efficiency. The new terminology is essentially owing to 
Pfanzagl and Takeuchi. 

The stress in the subsequent chapters is on basic concepts and main 
results, with enough technical details to make applications to specific exam­
ples fairly easy. For the main results, we provide a proof, or, where a proof is 
too long or technical, a sketch of the argument and a reference to where 
details are available. We do not strive for maximum generality. 
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2 IIIGHER ORDER ASYMPTOTICS 

As background, we assume little more than basic results on various modes 
of convergence, for which Chapter 1 of Serfiing (1980) will suffice, and the 
basic theory of estimation in large samples under standard regularity condi­
tions, as contained in, say, Chapter 5 of Rao (1973). Occasionally we need also 
some knowledge of basic facts about exponential families; see Lehmann 
[(1986), pages 56-66, 142-143]. 

Welcome aboard. 

1.2. First order efficiency. To motivate the definition of higher order 
efficiency, we need to discuss briefly asymptotic efficiency or efficiency or first 
order efficiency. They all mean the same. 

We consider n r.v.'s X 1, X2 , ... , X 11 • Although neither independence nor 
identical distribution is essential, we will assume, for simplicity, the X's are 
i.i.d. The common p.d.f. or p.f. is p( xI fi ), () E @ c R ", where R P is the 
p-dimensional Euclidean space and (H) is an open p-dimensional subset. Most 
of the time we will work with p = 1 and writeR for R 1• So, unless otherwise 
stated, p ~ 1. 

The theory of asymptotic efficiency has been developed in a very general 
setting by Le Cam, tho essential ingredient being the locally asymptotically 
normal (LAN) condition 

( 1) 

where o is real and W:, is asymptotically normal, with mean zero and 
variance I( 0 ). Our development of the subject will be under the much 
stronger classical regularity conditions [soc Rao (1973), page 364] and is in 
the spirit of Rao (1963). This leads to simplicity, and is convenient as an 
introduction to higher order efficiency. 

Specifically, we make the following assumptions: 

AsSUMPTION A 1 . p( xI 0) is thrice continuously differentiable as a function 
of 8, interchanges of differentiation with respect to () and integration with 
respect to x are valid, and 

I dalog pI 
-d -a- < M(x), E(M(X)I8) < K 

(:i (}' 

for all 8' in a neighborhood of 0. Moreover, the Fisher information (per 
observation) 
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is finite and positive for all a. In addition, as in Rao (1963), we require the 
further assumption: 

AssuMPTION A 2 • Each estimate T, that we consider is asymptotically 
normal (A.N.) with mean 0 and variance v(())jn [AN.((), v(O)jn)], uniformly 
on compact 0-sets. 

The function v( 0) in A 2 depends on the estimate 1:,. Uniformity means 
the following: Given any compact set C and & > 0, 

lim sup supiP(vn(1:,- a)< y)- <{)(yiO, v( 0)) I< B, 
n-)''l~ ()f:-:=C .Y 

where <1)(-1 p,, rr 2 ) is the normal distribution function with mean p, and 
variance rr 2 . 

Sometimes, again following Rao (1963), instead of Assumption A 2 , we will 
need Assumption A:!: 

AssUMPTION Aa. T, is Fisher consistent. 

If X/s are multinomial, assuming (k + 1) distinct values a 1, a 2 , ... , ak 1 1 

with probability ?T/0 ), 7T 2 ( a), ... , 1r11 1 /0 ), then T, is said to be Fisher consis­
tent if 

where P; is the proportion of X 1, ... , X, that equals a; and H 1s a real 
valued function such that 

that is, T,, depends on the observations only through the sufficient statistic 
(p 1, ..• , p 1), this dependence is free of n and T, evaluated at the true 
proportions gives the true value of 0. The concept is owing to Fisher and the 
explicit definition is owing to Rao. We shall define later a curved exponential 
family and Fisher consistent estimates in that setting, following Ghosh and 
Subramanyam (1974) and Efron (1975). Assumption Aa will be taken to 
imply we are in the multinomial or, more generally, the curved exponential 
setting. 

For a Fisher consistent T, to be consistent in the usual sense, that is, for 
T, ·--? P 0, one needs H to be continuous. If one also has a continuously 
differentiable H, then, by the so-called delta method, that is, Taylor expan­
sion, T, is asymptotically normal. 

The following facts are owing to Rao; see Ghosh (1985) for detailed review 
and references. 



4 HIGHER ORDER ASYMPTOTICS 

THEOREM 1.1. Assume Assumptions A 1, and A 2 or A 3 , with H continu­
ously differentiable. Then 

(i) v(H) ~ 1jl(H). 
(ii) (a) lim,_,"' P{---y < Vn(T,- fJ) <yiH}::;; fYy'P(dyl0,1jl(fJ)), 

(b) liminf, >-'E{U(Vn(T,- O)))} ~ f"'xl(y)<I>(dyl0,1jl(H)), where lis 
a nonnegative loss function and l(O) = 0, l(y) = l(-y) and l(y)::;; l(z) if 
0 ::;;y < z. 

Part (ii)(a) is an immediate consequence of the first inequality, often called 
Fisher's inequality, and then (ii)(b) follows from (ii)(a) by an easy argument 
involving integration by parts. 

An alternative route, due to Le Cam and Hajek, is to consider all esti­
mates, not necessarily satisfying Assumption A 2 or Aa, but using the local 
minimax criterion 

lim liminf sup E{l(Vn(T,,- fJ'))IO'}, 
8~0 n->x I0'-1!1<8 

which is always greater than or equal to the right-hand side of (ii)(b), under 
the same assumptions on l. For the proof of this, one needs only the LAN 
condition; see Le Cam and Yang (1990) or Ibragimov and Has'minskii [(1981), 
Chapter 2]. 

DEFINITION 1.1. T, is efficient or first order efficient (FOE) if T,, is A.N. 
(0, 1jnl(O)) and satisfies A 2 or Aa. 

Note that without Assumption A 2 or A 3 , Fisher's inequality v(O) ~ 1jl(fJ) 
need not hold. In fact, as first pointed out by Hodges in the early 1950s, one 
takes an estimate 1:, that is A.N. (0, 1jnl(O)), for example, the maximum 
likelihood estimate (mle), and shrinks it suitably toward a fixed point 00 so 
that for the new "superefficient" estimate, v(00 ) < (1(00 )) 1 and l'(O) = 
(I( 0)) 1 for 0 * 00 . Such shrinkage estimates, including the famous James­
Stein estimates, which improve on the sample mean for a p-variate normal 
with p > 2, are excluded by Assumption A 2 or A 3 . 

1.3. Third order efficiency. Many classical estimates, including the 
mle, are FOE. To distinguish between them, we introduce the notion of 
estimates that are third order efficient (TOE), which is the modern name for 
the concept for which Rao had coined the term second order efficient. We will 
clarify later why second order efficiency fails to distinguish between FOE 
estimates. 

Consider two FOE estimates T;"' i = 0, 1. Typically the asymptotic mean 
and variance ofT;, will have expansions of the form 

b;( 0) 
0 + -- + o(n 1 ) 

n 
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and 
1 A;( 8) 2 

n/(8)-+-T+o(n ), 

respectively. A precise interpretation of these expansions, as well as a method 
for calculating b; and A;, will be given in the next chapter. 

It makes sense to restrict higher order comparison of variance to FOE 
estimates which have the same bias up to o( n 1 ), that is, assume b0( (:i) = 

b1(8) = b(8). Informally, Ton is TOE among FOE estimates with same 
asymptotic bias up to o(n -l ), if 

A 0(8) sA1(8) 't:/8 

for all competing FOE estimates T1n. 

One natural choice is b(O) = 0. In this case, one is confining attention to 
FOE estimates which are asymptotically unbiased up to o(n 1 ). There are 
other natural choices. For example, one starts with a particular FOE T,,, say, 
and takes the bias term for Tn as b( (:i ). The TOE estimate in this class will be 
an improvement on Tn. Finding a TOE estimate is rather like using a 
Rao--Blackwell theorem when a complete sufficient statistic exists- -one gets 
either a minimum variance unbiased estimate or improves upon a given 
estimate. 

No single estimate is TOE among all FOE estimates. Rather, there is a 
sort of complete class of TOE's from which you can always get one to beat a 
given FOE. 

The above informal definition of TOE and the subsequent remarks need 
the following qualification. Usually, in theorems on TOE, there will be 
additional regularity conditions on the FOE's being considered, which involve 
strengthening of Assumption A 2 or Aa. 
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