
Chapter 7 

Likelihood Models for 
Repeated Binary Data 

In Section 6.1 we showed the close correspondence between exponential 
family likelihood theory and quasi-likelihood for generalized linear mod­
els in the univariate setting. In the multivariate case, it is not possible 
to completely generalize the GLM theory to likelihoods in a way which 
is entirely satisfactory for non-normal data. Here we will deal with some 
approaches to constructing likelihood models for repeated binary data. 
To fix ideas, we will first consider a single sample, no covariates, with 
ni = n. We also drop the subscript i for much of the discussion for 
simplicity. 

With measured multivariate responses, likelihood based analyses are 
invariably based on the Multivariate Normal (MVN) distribution, al­
though how the mean and variance are parameterized may differ for 
different models. The MVN has many attractive features: 

1. In the general case, the distribution is indexed by n parameters for 
the mean p, and n(n + 1)/2 parameters for the variance-covariance 
matrix 2:. 

2. Any subset of then-vector Y, say Ys, also has a multivariate normal 
with p,8 and 2:8 being the corresponding subsets of (p,, 2:). This 
property is known as reproducibility. 

3. The MVN ensures consistency of ML estimates of p, and 2:, even 
if MVN does not hold. In particular, if E (Y) = X ;3 and V (Y) = 
2: (a), then the ML estimates of (;3, a) will be consistent even if Y 
is not MVN. 
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4. The parameters p, and ~ are distinct. 

In contrast, many of these features do not hold when yT = (Y1 , ... , Yn) 
and each Yj is binary. One attractive feature of binary data is that it is 
always true that the joint pdf of Y is multinomial with 2n points in the 
sample space; that is, it is not an assumption like the MVN, but can be 
derived from first principles. 

1. In the most general case, the joint pdf has 2n - 1 parameters, 
which grows much more rapidly than n + n(n + 1)/2 as n gets 
large. This implies we need models which permit parsimonious 
parameter specification. The parsimonious parameter models are 
derived by making assumptions on the multivariate distribution. 

2. Given a subset Ys, the joint distribution of the Ys is also multi­
nomial, but the parameters of the pdf of Ys are now sums of the 
parameters of the pdf of Y. For example, if n = 3 and 

denote the parameters of the cell probabilities for (Y1, Y2, Y3), then 
the marginal distribution of (Y1, Y2) is again multinomial, but with 
parameters 

1 

1ri1i2 2::: 1ri1i2i3 

is=O 

3. The parameters for the mean and variance are functionally related: 

var (lj) = E(lj)(1- E(lj)), j = 1, . .. ,n, 

and 

cov (lj, Yk) = P(lj = Yk = 1)- E(lj)E(Yk), j, k = 1, ... ,n. 

4. As we have discussed in Chapter 6, we also typically use a nonlinear 
link function to relate covariates to E(lj) = P,j. 

All of these features mean that likelihood models for binary responses 
are more difficult to formulate than was the case with linear models in 
the MVN setting. 
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When dealing with the GLM model for multivariate data with co­
variates, we seek to specify a distribution for each Yi (nxl)' i = 1, ... , N, 
while retaining the basic regression model of interest, namely that 

/-Li = E(J:i) = g(Xd3) (7.1) 

for 

£ (t-ti) = Xi[3. (7.2) 

By definition, the distribution of J:i is multinomial; we can view the mean 
restriction as imposing a model on the n one-way margins of an n di­
mensional array with cell probabilities 7ri (2nxl)· The cell probabilities 
depend upon i through the covariates specifying the margins. It may 
also be desirable to let the association parameters depend upon covari­
ates. Thus the main issue for likelihood modeling is how to model higher 
order associations in the table in a flexible and interpretable way that is 
consistent with the model for the mean /-Li· Several general approaches 
have been suggested; we focus here on two approaches, both of which 
are related to the general log-linear modeling system for contingency ta­
bles. We will first briefly review this approach to modeling associations 
with multivariate binary responses, and then discuss two modifications 
for longitudinal data. 

7.1 A brief overview of log-linear models 

These models were introduced by Birch (1963), and they have enjoyed 
considerable success for 1) studying associations among a set of n binary 
(or categorical) variables or for 2) logistic regression when one of the 
n variables is an outcome, and the remainder are categorical predictors 
(Bishop, Fineberg and Holland, 1975). 

To explain basic ideas, we first consider n = 3, and assume no co­
variates. Again, we generally drop the subscript i. The basic principle is 
that the multinomial cell probabilities are not especially useful for study­
ing associations or the effects of covariates, so we make a transformation 
from 7r to some other parameter set which is useful. The transformation 
needs to be one-to-one and invertible, and we need the new parameters 
to have meaningful interpretations. 

The log-linear transform can be written in the form 
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for a certain C1. The elements of A can be partitioned as: 

Label Effects Number 

main effects n 

2 - way effects 

3- way effects A123, A124, ... , An(n-1)(n-2) 

where, for n = 3, 

and similarly, for A2, A3, 

and similarly for A13, A23, and 

, _ l { 7rU17r001 __,_ 7T"UQ7T"QQO} 
A123- n . , 

7T"1Q17T"Qll 7T"1QQ7T"Q1Q 

and where* indicates taking the geometric mean over the omitted sub­
scripts. Thus 

where 

so that 

where 

It follows that 

Similar expressions can be derived for A12 and A123· From this it is 
apparent that A = C[ ln 1r for an appropriate C1 since each element A 
is a linear combination of the elements of ln 1r. Note that A is (2n - 1) 
and 1r is 2n, but I: 1r = 1, hence there are only 2n - 1 unique cell 
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probabilities. As we will discuss, the "higher order" A's (..\12, ... , ..\123) 
have interpretation as associations. 

The log-linear transformation has many attractive features: 

1. Apart from >.1, ... , An, which are often called the main effects, the 
higher order parameters can be thought of as log odds-ratios and 
differences of log odds-ratios, etc. To see this, consider the highest 
order term, or ..\123 when n = 3. Rewriting ..\123 as 

>. l {P(Y1 = 1, y2 = 11 y3 = 1) P(Y1 = 0,12 = 0 I Y3 = 1) I 
123 = n P(Y1 = 1,12 = 0 I Yg = 1) P(Y1 = 0, Y2 = 11 Yg = 1) 

P(Y1 = 1, y2 = 1 I y3 = 0) P(Y1 = 0, y2 = 0 I y3 = 0)} 
P(Y1 = 1,12 = 0 I y3 = 0) P(Y1 = 0,12 = 1 I Yg = 1) ' 

where we use the fact that 

Thus ..\123 is the log odds-ratio measuring association between Y1 
and Y2 given Yg = 1, minus the same log odds-ratio conditional on 
Yg = 0; i.e., e>-123 is a ratio of odds-ratios. Note that by symmetry, 
..\123 can also be thought of measuring odds-ratios for variables Y1 
and Yg given 12, or 12 and Y3 given Y1. 

If ..\123 = 0, it implies that these 2-way conditional odds-ratios are 
independent of the value of the variable being conditioned on, i.e., 

and similarly for OR(Y1, Y3 I 12), etc. In this case, the two-way 
parameters ..\12, etc., are directly interpretable as log odds-ratios, 
and it follows from setting ..\123 = 0, and using the definition of 
..\12, etc., that 

Al2 = OR(Yl, y2 I Y3), 

Al3 = OR(Yl, y3 I 12), 

A23 = OR(Y2, y3 I Yl). 

2. To specify parsimonious models, we can take the higher associations 
(.A's) to be zero and get meaningful reduced models. The pairwise 
model is a popular choice: 

>. = (..\1, ..\2, ..\3, ..\12, ..\13, ..\23), 

..\123 = 0, 
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partly because this reduces us ton parameters for the mean (A1, A2, A3) 

and n(n- 1)/2 for the associations. With longitudinal data, we 
might also consider first order Markov models: 

where 

3. It is easy to characterize and compute the MLE's of A by using 
Iterative Proportional Fitting (IPF). 

4. The A's are variation independent, i.e., A E iRk, where k = dim 
A, so there are no restrictions on A's, i.e., log-odds ratios do not 
depend on the margins (AI, ... , An)· 

5. Properties 4 and 5 are related to the fact that A is the vector of 
canonical parameters in the exponential family representation of 
the multinomial. As shown by Cox (1972), for n = 3; we may write 

The log-linear representation of 1r forms the basis for approaches 
(discussed in Section 7.3) suggested by Zhao and Prentice (1990) and 
Fitzmaurice and Laird (1993). The major difficulty with the log-linear 
model is that the "main effects," Al, ... , An, are not very interesting or 
meaningful; this might be expected from a model designed to study only 
associations. If we are interested in /Lij = E(Yij IXij) as a function of 
covariates, this transformation is not attractive because the 1-li/s are not 
a simple function of the A's. We now discuss the Multivariate Logistic 
Transform which can be viewed as very similar to the log-linear, but the 
model uses marginal rather than conditional odds-ratios. 

7.2 The Multivariate Logistic Transform (MLT) 

The MLT is quite similar in nature to the log-linear transform. It is 
defined for the general case by 
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for appropriate matrices C2 and L. For n = 3, define 

8o = ln (L 1r) = 0, 

and similarly for 82 and 83; 

and similarly for 813 and 823, and 

Here 8o is a normalizing constant, ensuring I: 1r = 1. So the MLT is 
exactly like the log-linear transform, except a "+" replaces a "*" in the 
omitted subscript. Thus we can partition 8 as 

Label Parameter Number 

main effects 81, 82,83 3 
two-way associations 812, 813, 823 3 
three-way association 8123 1. 

Hence the main effects are precisely the parameters of interest, and the 
associations are marginal, rather than the conditional odds ratios. 

The MLT was originally introduced by Grizzle, Starmer and Koch 
(1969), who proposed a weighted least squares analysis. McCullagh and 
Nelder (1989) coined the MLT phrase for n = 3, and proposed a maxi­
mum likelihood analysis. The general case is considered in Glonek and 
McCullagh (1995). 
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REMARKS. 

1. Multivariate logistic models are attractive because the main effects 
are those of most interest in many longitudinal data settings. As 
with log-linear models, we can set higher order terms to zero and 
get meaningful models. 

2. Unlike log-linear models, ()is not variation independent, and there 
may be margin incompatibility. 

3. As with log-linear models, there is no closed form solution for esti­
mating 8 under ML, nor, except in special cases, can one invert the 
transform to express 1r in terms of 8. This must be done iteratively, 
and makes computations complex. 

4. The parameter sets are not orthogonal. To be explicit, suppose 
now that each individual has covariate vectors Xi for Yi and Fi for 
the association parameters, and we write 

pxl 
m x 1 

where 8f0 denotes the higher order effects (i.e., 8's with at least 
two subscripts) and a is a parameter indexing the associations. 

The information matrix, I ( g ) , is not block diagonal, as it is in 

the MVN setting. 

5. Because () involves marginal moments of all order, it is relatively 
easy to handle missing responses (assuming MAR). 

6. The MLT is reproducible. 

7.3 A Mixed Parameter Transform 

One way to retain the attractive features of both the log-linear and the 
MLT models is to use a mixed parameterization: Make a transformation 
from 1r to (8L,;..H0 ) where (jL = (81, ... ,8n) and ;..HO is).. without the 
main effects. Thus 
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and given covariate matrices Xi and Fi for the ith subject we can write 

Since the >..H0 are the canonical parameters, several of the attractive 
features of log-linear models are retained. 

A general expression for the likelihood equations under the mixed 
model for ((3, a) are given by: 

~ ( w- 0 ) -l ( var(Yi) cov(Yi, Ti)) T ( Yi - /.1i) = o, 
L... 8Ti !!B. var('D) Ti - Ti 
i=l a~ 8a ~ 

where Ti is the vector of sufficient statistics for >..H0 : 1i = (Yi1Yi2, Yi1Yi3, 
... , Yi1Yi2 ... Yin) and Ti = E(Ti). If we fit a parsimonious model, some 
of the higher order >..'s will be set to zero, and the dimension will be 
reduced. For the mixed model parameterization, Fitzmaurice and Laird 
(1993) have shown that these likelihood equations can be rewritten as 

where ~i1 = var(Yi). Thus the likelihood equations for (3 are identical 
to GEE, where Wi = ~i 1 : 

UJ1i N (.!;) )T t; 813 wi (Yi - J.1i) = o. 

The difference is that var (Yi) is derived from the model for the distribu­
tion of }i. 

In addition, Fitzmaurice and Laird (1993) show that the Fisher infor­
mation matrix for ((3, a) is block diagonal, thus the (3 and a parameters 
are orthogonal: 

where ri = var (Ti) and ei = cov (Yi, Ti). Thus avar (fj) is the same as 
the GEE variance when Wi = ~i1 . 
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By analogy with GEE, we will obtain a consistent estimate of (3 even 
if the model 

t5{W = Fi a 

is wrong so that var (li) is misspecified. In this case, however the Fisher 
information will not give the correct variance. 

REMARKS. 

• Because odds ratios are invariant to changes in the margins, the 
k-vector ( t5L, >..H0 ) is variation independent in ~k. 

• A computational algorithm for obtaining MLE's is given in Fitz­
maurice and Laird (1993). 

• A drawback to this parameterization is that because the associa­
tion parameters are conditional rather than marginal odds ratios, 
this approach cannot be generalized to the arbitrary unbalanced 
case, and the interpretation of the association parameters is not 
always meaningful in the longitudinal setting, i.e., the log odds ra­
tio expressing association between Y1 and Y2 conditional on the 
future value Y3. A related feature is that the distribution is not 
reproducible, i.e., any subset of Y, say Ys, does not have a mixed 
parameter model representation. 

Fitzmaurice, Laird and Lipsitz (1995) discuss estimation when im­
balance arises due to missing responses. Although the computations are 
generally straightforward, many of the nice features of the complete data 
case are lost. In particular, the likelihood equations become 

N ( *J 0 ) T ( ~i1 0) ( E(Yi!Ypss)- f.ti) tt 0 Fi -~i~i1 I E(TiiYiOBS)- Ti 
0, 

For (3 this yields 

~ 

so that these are no longer the same as the GEE. In particular, (3 will 
generally not be consistent for (3 with either MCAR or MAR data, unless 
the distribution of Yi is correctly specified. This differs from ML with 
multivariate normal responses where estimates for (3 are always consistent 
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under MCAR even when the multivariate normal is misspecified. In 
addition, the asymptotic covariance of (a, (3) is no longer zero, and the 
parameters are not orthogonal. Some simulations in simple cases suggest 
that the bias due to model misspecification in MCAR settings is small. 
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