
Chapter 8 

Markov chain Monte Carlo 
on Pedigrees 

8.1 Simulation conditional on data: MCMC 

Equation (7.10) gave the likelihood for a genetic model on a pedigree as an 
expectation over latent variables X, and hence, in principle, provided a method 
for Monte Carlo estimation of the likelihood. We need to estimate 

L(B) = Pe(Y) = L Pe(X, Y). 
X 

As previously, any suitable latent variables may be used, normally either meiosis 
indicators S or genotypes G. For convenience, we use the general notation X for 
the general formulation. 

However, unless the simulation distribution P*(X) is conditioned in some way 
on data Y, equation (7.10) is often useless. Genotypes or gene descent patterns 
simulated from the prior probability distribution given only the model and the 
pedigree structure will rarely even be consistent with the observed data. Importance 
sampling considerations dictate that the sampling distribution should be close to 
proportional to Pe(X, Y), or as a function of latent variables X to Pe(X I Y) 
(equation (7.12)). Intuitively also, to obtain realizations that have better than 
infinitesimal probability of giving a non-negligible contribution to the likelihood we 
must simulate conditional on the data. However 

(8.1) P. (X I Y) = Pe(X, Y) 
0 JPe(Y) ' 

and the normalizing factor P0 (Y) is unknown. If we could compute L(B) = P0 (Y), 
Monte Carlo estimation of likelihoods would be unnecessary. 

Enter Markov chain Monte Carlo, or MCMC. We review briefly the Metropolis­
Hastings class of algorithms (Hastings, 1970) for generating dependent realizations 
from a target probability distribution known only up to a normalizing factor. For 
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consistency of notation, we denote the target distribution by Po (X I Y). The space 
of possible values of X is denoted X. For each X in X a proposal distributwn q(·; X) 
is defined. Then, if the process is now at X the next value is generated as follows: 

1. Generate xt from the proposal distribution q(·; X) 
2. Compute the Hastings ratio 

(8.2) h(xt; X) = q(X; xt)Po (xt I Y). 
q(Xt; X)Po(X I Y) 

Note that h depends only on the ratio of densities Po(·/ Y), so that any normalizing 
factor need not be computed. 

3. The resampled X* is then determined from the Hastings ratio as follows: 

P*(X* = xt) 

P*(X* =X) 

= a = min(1, h(Xt; X)) 

= (1- a). 

Thus a is the acceptance probabzlity for the proposed xt. 
Clearly, given the current value of X, the probability distribution of X* is 
determined, independently of the past of the process: a Markov chain on the space 
X of values of X has been defined. 

It remains to show that the desired distribution P0 (X/Y) is an equilibrium 
distribution of the Markov chain. Hence, if the chain is aperiodic and irreducible, 
Po(X/Y) is the unique equilibrium distribution. In this case, the ergodic theorem 
provides that time averages over realizations of the chain converge to expectations 
under the equilibrium distribution. These time-averages may then be used as Monte 
Carlo estimates of these expectations, just as previously in sections 3. 7 and 7.6 
simple averages of independent realizations were used. 

The net resampling distribution P*(X*) is compounded from the proposal 
q(Xt; X) and the acceptance or rejection step. Since the process is symmetric 
in X and a proposed xt, with h(Xt; X) = (h(X; xt))- 1 , without loss of generality 
we can assume h(Xt;X) ;=:: 1 or 

q(X; xt)Po(xt 1 Y) ;:::: q(xt; X)Po(X 1 Y). 

Then a proposed transition from X to xt is accepted (a = 1) and the probability 
of the move is the proposal probability: 

P*(Xt;X) = q(Xt;X). 

For the reverse move, from xt, X must be both proposed and accepted. Thus, the 
probability, P* (X; X t), of the reverse transition is 

(X· xt) q(Xt; X)Po(X 1 Y) 
q ' q(X; Xt)P0 (Xt 1 Y) 

t Po(X I Y) 
q(X ; X) P0 (Xt I Y)" 

Combining these two equations, we have 

(8.3) P*(xt; X)Po(X I Y) = P*(X; xt)Po(Xt I Y). 
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In words, under the defined Markov chain and distribution Pe ( · I Y), the probability 
of being at X and moving to xt is the same as the probability of being at xt and 
moving to X. This detazled balance condition holds for all X and xt, which is a 
sufficient condition for Pe ( · I Y) to be an equilibrium distribution of the Markov 
chain. 

The algorithm of Metropolis et al. (1953) is a special case; if q(Xt; X) = q(X; xt) 
the Hastings ratio reduces to the odds ratio of the proposal state xt versus the 
current state X. An alternative version of MCMC sampling is the Gibbs sampler 
(Geman and Geman, 1984). We consider here the general case in which, at a given 
step, X is partitioned into two sets of components, X = (Xu, X 1), the subscripts 
u denoting updated and f denoting fixed. These subsets change at each step, so 
that every component of X is sometimes updated. The sampled X* differs from 
X only in the set of components Xu, and X~ is sampled from the distribution 
Pe(XuiXI, Y). Suppose X is currently from the desired distribution Pe(X I Y), 
so that the marginal distribution of the current X1 is Pe(XI I Y). Thus the 
distribution of the resampled X* is 

P*(X* X*) 
U) I 

(8.4) 

= P*(X~ I Xj)P*(Xj) 

= Pe(X~IXI, Y)Pe(XI I Y) 
Pe(X* I Y). 

Thus the Gibbs sampler also maintains the equilibrium distribution Pe(· I Y). 
The Gibbs sampler is, in fact, a special case of a Metropolis-Hastings sampler. 

Consider a Metropolis-Ha..'ltings sampler in which the proposal distribution is the 
resampling distribution of the Gibbs sampler: 

where I(·) is the indicator function. Then the Hastings ratio is 

h(xt; x) = 

= 

q(X; xt)Po(xt 1 Y) 
q(Xt; X)Pe(X I Y) 

Pe(XuiXI, Y)Po(Xt I Y) 
Pe(XtiX1, Y)Pe(X I Y). 

Pe(X I Y) Pe(XI I Y) Po(Xt I Y) 
Pe(XI I Y) Pe(Xt I Y) Pe(X I Y) 
1. 

In this case a:: h(Xt; X)= 1, and no rejection step is necessary. Although, in the 
Gibbs sampler there is no rejection step, X* = X is possible, since Xu is a possible 
value for the resampled x:. 

In order for the time-average over the chain to converge to the expectation under 
the equilibrium distribution, the ergodic theorem must apply. For discrete Markov 
chains, we need irreducibility. However, in practice, too much attention is paid 
to irreducibility. Any chain can be made irreducible, using Metropolis rejection, 
but irreducibility per se is useless. For example, one might decide that once in 
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a million trials one will propose a new realization from the prior distribution of 
latent variables. Once in a million million realizations one might get something 
compatible with the data. Once in a million, million, million trials one might get 
an accepted realization. Obviously nothing has changed with regard to realizations 
from the chain, but the sampler is irreducible. Metropolis rejected restarts are often 
a good idea -- one of several key ideas in getting better samplers, and in assessing 
how good they are. However, it has to be done with the practical goal of more 
efficient Monte Carlo estimation. 

There are two (related) sorts of convergence which often get confused. One is 
convergence of the marginal distribution of each X(r) to the equilibrium distribution 
of the Markov chain as T becomes large. The other relates to the convergence 
of a time-average over the chain to the expectation of the function under the 
equilibrium distribution. Both depend on the mixing properties of the Markov 
chain, and parameters such as the largest non-unit eigenvalue of the transition 
matrix, but the first can (in principle) be addressed by burn-in (discarding enough 
realizations before starting to accumulate the time-average) and is not normally a 
practical problem. The second class of questions remain even if we could start in 
the equilibrium probability distribution. This is a much bigger problem; all parts 
of the space contributing substantially to the target probability distribution must 
be sampled. Although shorter runs in different parts of the space may be helpful in 
diagnosing a problem, Monte Carlo estimation must be done using a time-average 
of a single realization of the Markov chain process. Runs in different parts of the 
space cannot be combined, without knowledge of how to weight the realizations 
from the different starts. (See Geyer (1992) for more discussion.) 

Estimation of the standard deviations of Monte Carlo estimates of expectations 
is essential. Several easily implemented estimators have been proposed, but 
assessment of the estimates is hard, in practice. Again, Geyer (1992) is a good 
reference. One of the simplest methods of estimating Monte Carlo variances is by 
using batch means (Hastings, 1970). One divides the realizations into sufficiently 
large batches so that the batch means are "almost independent", and relates the 
variance of independent batch means to the variance of the overall mean (the 
estimator of the expectation). The variance of independent batch means can 
be estimated from the empirical variance as in section 3.7. One can test for 
autocorrelation between the batch means. This is quite effective if the sampler 
is doing well, but can severely underestimate variance if the sampler is not getting 
around the space. However, other variance estimators have the same deficiency, 
and the empirical variance of the batch means is easily computed. 

Variance estimation also relates to the choice of spacing in sampling realizations 
from an MCMC. The optimal spacing is the one that achieves minimum 
computational cost for given precision of the resulting estimator. This optimal 
spacing depends on the relative costs of generating the samples and of evaluating 
the contribution to the estimator at the realized values, but is seldom large 
(Geyer, 1992). 

This section has aimed only to outline the main principles and issues in MCMC. 
For those who wish to pursue the topic, Gilks et al. (1996) is a good starting point, 
while there is already a large more recent literature. 
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8.2 Single-site updating methods 

As in other areas of application, the earliest MCMC samplers that were used 
to realize latent variables on pedigrees conditional on phenotypic data were 
mainly single-site updating methods. The proposed changes to the latent variable 
configurations were thus very small. Lange and Matthysse (1989) used as their 
latent variables both the genotypes and inheritance patterns of genes, and used 
a Metropolis algorithm to propose changes. Sheehan (1990) and Thompson and 
Guo (1991) used a Gibbs sampling approach, using the genotypes as the latent 
variables, while Thompson (1994a; 1994b) used a Metropolis algorithm to update 
a single meiosis indicator S;,j for meiosis i and locus j. 

Unfortunately, in genetic examples the constraints on genotypes G or meiosis 
indicators S imposed by Mendelian segregation and discrete marker phenotypes 
mean that any proposal that makes multiple changes to the current value of G or 
S has a high probability of proposing a configuration inconsistent with the data 
Y. By contrast, although proposed changes are small, single-site updates are easily 
proposed and often accepted. The genes and heritable effects in an individual are 
determined by those in his parents, and jointly with those in his spouse, influence 
those in his offspring (Figure 1.3(a)). This neighborhood structure means that 
a single-site Gibbs sampler is easy to implement. Each genetic effect in each 
individual is successively updated, conditional upon the remainder. 

Specifically, where genotypes G are the latent variables, underlying genotypes 
for both trait and marker loci are sampled individual by individual and locus by 
locus. For a single-site update to component G;,1, the genotype of individual i at 
locus j, the proposal distribution for the Gibbs sampler (equation (8.4)) is 

Qi,j(G*; G) Po(G;,j I G-(i,j)• Y) for component (i,j) 

(8.5) Gk,1 Gk,l for (k,l) ::/:- (i,j), or G:._(i,j) = G-(i,j)· 

As for S in section 4. 7, we use the standard notation G ___ ( i,j) for the set of all 
components of G other than G;,j. This full conditional distribution for G;,j is easily 
computed, but only small changes to G are possible at each step. On the other 
hand, the full conditionals for larger blocks of components G, = { G;,j; ( i, j) E T} 
are more computationally intensive or even infeasible. 

For certain data configurations, the single-site genotypic Gibbs sampler is not 
irreducible when a locus is multiallelic. However, theoretical irreducibility can 
always be easily achieved. The practical problem is failure of the sampler to 
mix adequately. This can be a problem on large pedigrees even for diallelic loci, 
particularly if underlying genotypes are highly constrained (but not determined) 
by the data. The reducibility of the Gibbs sampler for genetic loci with more than 
two alleles was first addressed by Sheehan and Thomas (1993), in the context of 
a single-genotype Gibbs sampler. Their method used modification of either the 
segregation probabilities or the penetrance probabilities, so that the sampler was 
no longer irreducible. For example, modifying the penetrances 

P*(Y. · I G -) 1,J l,J = Po(Yi,i I G;,j) if P.o(Y.· - I G· -) > 0 t,J t,] 

(8.6) P*(Y.· . I G -) z,J z,J = c if Po(Yi,J I G;,j) = 0. 
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Then 

Pe(G, Y) 
P•(G, Y) 

1 if Pe (Y I G) > 0 

0 if Pe(Y I G) = 0. 

Thus no reweighting is required in order for the realizations to represent the 
distribution of genotypes under the true genetic model. All realizations consistent 
with the true model have equal weight; those inconsistent with it are just dropped 
from the output sample. Lin et a!. (1993) used similar penetrance modifications 
to achieve irreducibility, but used Metropolis-coupled samplers (Geyer, 1991a), 
coupling a sampler under the true model to samplers which were not only 
irreducible, but also moved more quickly around the space. Rather than a 
uniform penetrance modification for all individuals, only individual-specific changes 
necessary to achieve irreducibility are made. The expansion of the space that is 
sampled is therefore limited. 

Several methods for more efficient sampling of the space of feasible underlying 
genotype configurations have been developed. Some of these are due to Shili Lin 
(Lin et a!., 1993; Lin et a!., 1994). Others are due to Eric Sobel (Sobel and 
Lange, 1993) and to Charles Geyer (Geyer and Thompson, 1995). We briefly 
outline here only the methods of Lin eta!. (1993; 1994), directed specifically towards 
sampling of genotypes at polymorphic marker loci where there are many unsampled 
individuals in the pedigree. These methods use a form of "heated proposals", 
resulting in samplers that move around the space of genotypic configurations far 
more effectively. 

One possibility is to base a Metropolis-Hastings sampler on the local conditional 
distribution for the single component G,,1 (equation (8.5)), but in a way that 
enhances movement around the space. The method of Lin et a!. (1994) "flattens" 
the proposal distribution in a manner similar to simulated annealing, using a 
"temperature" parameter T: 

q,,1 (G*; G) ex: (Po(Gi,j I G-(•,J)' Y)/IT for component (i,J) 

Gi.,1 = Gk,l for (k,l) =I= (i,j), or G:_(•,Jl = G-(•,il· 

The Hastings ratio is then 

h(G*; G) 

= 

= 

= 

q(G; G*)Pe(G* I Y) 
q(G•; G)Pe(G I Y) 

(Pe(G,,1 I G:_(•,J)' Y)Ff1'Pe(G* I Y) 

(Po(G:,1 I G-(•,j), Y)) 11TPo(G I Y) 

(Po(G I Y))1/T Pe(G* I Y)(Po(G_(•,J) I Y))1/T 

(Pe(G• I Y))l/T Pe(G I Y)(Pe(G:_(•,J) I Y))l/T 

(Pe(G* I vw-1/T 
(Po(G I Y))1-1/1' 

(Po(G7,1 I G-(•,1), Y)) 1- 1/T 

(Pe(G,,1 I G-(z,J)' Y))l--1/T 
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using, in several steps, the fact that G -(i,j) = G:_(i,j). The Hastings ratio is thus 
as easily computed as the local conditionals Po ( G;,j I G --(i,j), Y). An interesting 
feature of this system is that, with T > 1, the probability of change in G is reduced 
from that for the Gibbs sampler, where T = 1 (C. Jennison, pers. comm. 1992). 
However, because this increases the probability that the sampler remains in low­
probability states, it increases the overall probability of a succession of changes that 
moves G to a different part of the space. The probabilities of single-step changes 
are not necessarily indicative of overall performance of the sampler, particularly in 
high-dimensional spaces. 

Under the assumption that S.,J are first-order Markov over loci j (section 4.7), 
the single-site meiosis indicator sampler is also easily implemented (Thompson, 
1994a). Since S;,j is binary, a Metropolis algorithm is natural. A meiosis i and 
locus j are selected at random, and a change from S;,j = s to S;,j = (1 - s) is 
proposed. This proposal changes only the recombinant/non-recombinant status in 
the two intervals adjoining locus j, and the conditional probability of marker data 
at locus j: 

h(S*;S) 

(8.7) 

Po(Y I S*)Po(S*) 
Po(Y I S)Pe(S) 

Pe (Y.,j I s:JPo (s;,j I Si,j-1, S;,j+J) 

Po(Y.,j I s.,j)Po(Si,j I Si,j-1, S;,j+r) 

Pe(Y.,j I s:) ( PJ-1 ) Tj-1 ( Pi ) 7j 

Po(Y.,j I s.,j) 1- PJ-1 1- Pi 

for j = 1, ... , L (see equation 4.12). Here PJ-1 = Pr(Si,J-1 -1- S;,j) is the 
recombination frequency between locus j - 1 and locus j, and Tj-1 = (ISi,J-1 -
sl -- ISi,j- 1 - 1 + sl) is the indicator of whether the proposal places (TJ-1 = +1) 
or removes (TJ _1 = -1) a recombination between locus j - 1 and j. The values 
PJ and Tj are analogously defined for the interval j to j + 1, and Po = PL = ~· 
The first term in the Hastings ratio h(S*; S) is given by equation (3.10) and is 
easily computed by the methods outlined in that section, provided there are not 
too many data S.,J on the pedigree. Generally, the space of latent variables is 
smaller for S than for G, and hence MCMC is more effective. The sampler may 
not be irreducible (Sobel and Lange, 1996), but there are many fewer constraints 
than with a genotypic sampler and irreducibility is often provable on a locus-by­
locus basis (Thompson, 1994a; Thompson and Heath, 1999). Note that, provided 
recombination frequencies between adjacent loci are strictly positive, irreducibility 
is a single-locus issue. 

8.3 Combining exact computation and Monte 
Carlo 

A major difficulty with MCMC methods is to ensure proper mixing of the samplers, 
and hence efficient Monte Carlo estimation. On large pedigrees, with models 
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FIGURE 8.1. The conditional independence structure for MCMC sampling 

or data involving multiple linked loci, single-variable MCMC updating methods 
are not effective. Some approaches to improving Monte Carlo estimates involve 
some combination of exact and Monte Carlo computation. One straightforward 
idea is simply to compute exactly on those parts of the pedigree on which 
this is possible (Thompson, 1991). The results from peeling peripheral parts 
of the pedigree enter as potentials on nodes of the remaining core (Geyer and 
Thompson, 1995), and the space over which MCMC sampling is required is 
reduced. Rao-Blackwellized estimators for mixed-model likelihoods (section 9.3) 
also combine exact computation with MCMC sampling. However, the sampling 
used for these estimators by Thompson and Guo (1991) was single-site updating. 
Major improvements can be gained only by improved MCMC samplers. 

Recently a variety of joint-updating schemes have been developed. For example, 
Jensen et al. (1995) update genotypes of blocks of individuals jointly at several loci. 
Jensen and Kong (1999) update arbitrary collections of the latent variables in the 
pedigree, selected using the HUGIN Bayesian expert system software (Andersen 
et al., 1989). Heath (1997) and Thompson and Heath (1999) use the meiosis 
indicators S = {Si,i}· Heath (1997) updates jointly the components of S.,j, 
the indicators at a single locus j: the £-sampler. Thompson and Heath (1999) 
update jointly the components of Si,., the meiosis indicators for all loci in a single 
meiosis i: the M-sampler. All these MCMC methods provide, directly or indirectly, 
realizations of the descent of genes in pedigrees and the genotypes of individuals, 
and hence Monte Carlo estimates of likelihoods for linkage and segregation analysis 
(sections 6.2, 6.3 and 7.6), and the probabilities of gene identity by descent and 
haplotype sharing conditional on observed trait and marker data Y (section 3.6). 
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In a llayesian framework, the segregation and linkage parameters of genetic models 
are assigned prior probability distributions (see section 2.4). In this case, the 
same MCMC methods provide estimates of the posterior probability distributions 
of linkage and trait gene effects and locations. 

In the locus-by-locus sampler (L-sampler) first developed by Kong (1991), all 
genotypes G.,j = { G;,j} at a single locus j are updated conditionally upon those 
at neighboring loci. Computationally the approach is analogous to the sequential 
imputation method of section 7.5, except that sampling is from the full conditional 
of G.,J· Heath (1997) has further developed the L-sampler, and widened its 
scope, using S.,J rather than G.,1. Because of the structure, this full conditional 
distribution of S.,J given the data Y and the meiosis indicators s_1 = {S.,1, l f j} 
is 

Po(S.,j I s_j, Y) Po (S.,1 1 s.,J-1, s.,j+l, Y.,1). 

That is, the distribution depends only on current values of S.,j-l and S.,J+l 
and data Y.,j. Thus, the calculation of Po(S.,j I s_j, Y) is a single-locus 
peeling computation analogous to those of section 6.3, and is often feasible. 
The developments of Heath (1997) are in the context of Bayesian analyses of 
quantitative traits, under models of several loci contributing additively to the trait 
value. His approach uses a variety of improved sampling and computational ideas, 
including more efficient peeling algorithms, integrated proposal distributions (Besag 
et a!., 1995) and reversible jump MCMC (Green, 1995). The output consists of 
realizations of putative trait loci from a Bayesian posterior; no likelihood or loci 
score is obtained. One great advantage of the L-sampler is that it is irreducible, 
provided only that recombination probabilities between adjacent loci are strictly 
positive. Moreover, this MCMC sampling is a great improvement over single-site 
methods. However, when there are multiple tightly linked marker loci, mixing can 
be poor. 

8.4 Tightly-linked loci: the M-sampler 

The single-site (S;,J) or single-locus (S.,j) update has mixing problems when loci are 
tightly linked. An alternative form of block-updating is to update jointly the meiosis 
indicators for all loci in a given meiosis (S;,.). The M-sampler is a whole-meiosis 
Gibbs sampler (Thompson and Heath, 1999) for S;, •. At each step a random meiosis 
is selected for updating; alternatives in which meioses are updated sequentially are 
also possible. Note also that, for an unobserved founder with only one offspring in 
the pedigree, the meiosis from the founder parent to the offspring can be ignored 
(and not sampled), since there is no information on the haplotypes transmitted. 

To implement the M-sampler we must compute 

Pr(S;,. I {Sk,., k f i}, Y). 

As previously (section 6.2), we suppose that the marker data Y can be partitioned 
into data relating to each locus j = 1, 2, ... , L, and that the loci are numbered in 
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order along the chromosome. Then 

Y = (Y.,1, ... ,Y.,L). 

As in section 6.2, let 

y(i) = (Y.,l, ... , Y.,j), so Y = y(L). 

We have seen in section 3.6 that Pr(Y.,i I S.,j) can be easily computed. 
Now define 

Qj(8) = Pr(S;,j = 8 I {Sk,.,k -:j:. i}, yUl) 

for 8 = 0, 1. Note that this function Qj(-) is analogous, but not identical, to 

the function Q} (-) of section 7.1. There the probability considered was the joint 
distribution for all components of S.,J> conditional on yUJ; here the probability 
is for S;,j conditioning additionally on indicators at other meioses {Sk,., k -:j:. i}. 
Meiosis indicators S;,. are a priori independent over i, and become dependent only 
through conditioning on the data Y (Figure 8.1). Thus, Qj(8) is the probability for 
the meiosis indicator S;,j, given the data yU) and other (k -:j:. i) meiosis indicators 
at loci up to and including locus j. (The components Sk,l for l > j are irrelevant, 
since Y.,1 is not conditioned upon.) Thus, by analogy with section 7.1, Qj(s) may 
be computed sequentially just as in equation (7.2). The only difference is that now, 
rather than considering all 2m possible values of S.,j, we consider only values of the 
single binary indicator S;,j, conditioning on the remainder ( k -:j:. i) which remain 
fixed. In meiosis i, there is no recombination between locus (j -1) and locus j if the 
value (s = 0, 1) of S;,j is the same as at locus (j- 1), and there is recombination 
if the values differ. That is 

Qt (8) <X Pr(Y.,1 I s.,I) 

and 

Qj(8) <X Pr(Y.,j I s.,j) (Qj_l (s)(l- Pi-d 

(8.8) + Qj_ 1 (1 - 8)Pi-d 

for j = 2, ... , L. In this equation, S.,i takes the current value at meioses k other 
than i, and the values for meiosis i. As before, Pi- 1 is the recombination frequency 
between locus j - 1 and locus j. Thus we may compute (8.8) for each j in turn, 
working forwards sequentially along the chromosome. 

Finally we have computed 

Qt(8) = Pr(S;,L = 8 I {Sk,., k -:j:. i}, Y = y(L)) 

and thus S;,L may be sampled from this desired conditional distribution. Suppose 
now each S;,l has been successively sampled from the required distribution for 
l = L, L - 1, ... , j + 1, j. Then 

Pr(Si,j-1 = s I {Sk,., k -:j:. i}, {S;,L, l = j, ... , L }, Y) 

(8.9) ex Qj_1 (8) (Ti Pi-1 + (1- Ti)(l- Pi-1)) 
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where Ti = ISi,i -- sl is the indicator of recombination in the interval j - 1 to j. 
Thus we may work backwards along the chromosome, sampling each Si,j in turn 
(j = L, ... , 1), obtaining overall a joint realization of Si,j, j = 1, ... , L from its full 
conditional distribution given {SA:,., k -:f. i} andY. Again, this is directly analogous 
to equation (7.6) of section 7.1. 

Throughout this chapter we have ignored the fact that genetic maps differ 
between males and females: the order of loci is the same, but the recombination 
frequencies can differ quite widely. Linkage analysis computations should 
accommodate different values of recombination frequencies for males and females. 
For the M-sarnpler this is particularly straightforward, since each meiosis is in a 
male or in a female. As will be shown in section 11.2, the M-sampler can also 
incorporate more general meiosis models, including genetic interference, by using a 
Metropolis-Hastings acceptance/rejection step (Thompson, 2000a). 

Implementations of almost all the computational algorithms referred to in this 
chapter are freely available by ftp. The Rockefeller Genetic Linkage Software list at 
http:/ /linkage.rockefeller.edujsoft/list.htrnl is an excellent reference. The software 
of our group is implemented primarily in our MORGAN package, which is available 
by ftp at . The most recent release of MORGAN (MORGAN_VF1, shortly to be 
replaced by MORGAN_V2.3) includes L-sampler and M-sampler implementations. 
The site www.stat.washington.edu/thornpsonfGenepifpangaea.shtml also includes 
the Loki package for MCMC linkage analysis of quantitative traits (Heath, 1997). 
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