
Chapter 7 

Monte Carlo Estimates on 
Pedigrees 

7.1 Baum algorithm for conditional probabilities 

While the above method of likelihood computation was known to Baum (1972), his 
primary aim was estimation of the transition probabilities of the Markov chain, and 
of the probability relationship between input and output (Baum and Petrie, 1966; 
Baurn eta!., 1970). Here, these are transition probabilities P(S.,j+l = s I s.,j = s*) 
and penetranee probabilities P(Y. ,J I S. ,j). If the latent variables S were observed, 
the sufficient statistics for estimation of these transition and penetrance parameters 
would be simple functions of Y and S. Thus, to estimate parameters of the model, 
for example by using an EM algorithm (Dempster et a!., 1977), one must impute 
these functions of the underlying S conditional on Y. Again, here we use the 
notation of meiosis indicators of section 4.7, but the framework is general to any 
hidden Markov model. 

Thus, the forward-backward algorithms of Baum et a!. (1970) address inter alia 
the computation of marginal probabilities 

Q1(s) = Pr(S •. i = s I Y), j = 1, ... ,L. 

We define two functions 

Qj(s) 

Qj+l(s) 

Pr(S.,j = s I yUl) 

Pr(S.,j+l = s 1 yUl). 

The function Qj (-) provides the imputation of S.,J given data yCil up to and 

including locus j' while Qj+l (.) is the predictor of s.,j+l also given yCil = 
(Y.,1, ... ,Y.,j)· 

Then QI (s) = Pr(S.,1 = s I Y.,I), 
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Qj+1 (s) = Pr(S.,J+1 = s I yU)) 

(7.1) = L Pr(S.,J+1 = siS.,j = s*) Qj(s*) 

(7.2) 

s• 

L Pr(S.,j+1 = s, s.,j = s* I yU+1)) 
s• 

E .. Pr(S.,j+l = s, s.,j = s*, Y.,j+I I yU)) 

Pr(Y.,j+1 I y(J)) 

ex L Pr(S.,j+l = s, s.,j = s*, Y.,j+l I y(J)) 
s• 

L (Pr(Y.,J+-IIS.,J+1 = s) 
s• 

Pr(S.,J+1 = siS.,j = s*) Pr(S.,j = s* I y(J))) 

Pr(Y.,J+IIS.,J+1 = 8) L (Pr(S.,J+I = 8/S.,J = 8*) Qj(s*)). 
s• 

Provided S.,J+1 takes only a limited number of values s, the probabilities may 
be normalized, giving each function Qj(8), j = 2, ... , L, in turn, the final one being 

(7.3) QL(s) = QL(s) = Pr(S.,L = s I Y) 

the desired distribution of s.,L given Y. 
Now we may proceed backwards to obtain Q1(·) for 

j = L- 1, ... , 3, 2, 1: 

Pr(S.,j-1 = 8, s.,j = s* I Y) 

Pr(S.,j = 8* I Y) Pr(S.,j-1 = 8 I s.,j = 8*, Y) 

Qj(8*) Pr(S.,j-1 = 8 I s.,j = ..,. , yU-1)) 

Qj(8*)Pr(S.,j = 8° I s.,j-1 = 8)Pr(S.,j-1 = 8 I y(j-1)) 
Pr(S.,j = 8* I yU-1)) 

(7.4) = Qj(8*) Pr(S.,j = s* I s.,j-1 = s)Qj_1 (8)/Qj(s*). 

The second step uses conditional independence of S.,j-1 and Y.,j, ... , Y.,L given 
S.,j, and the third is an application of Bayes Theorem, using the conditional 
independence of S.,1 and yU-1) given S.,J-1. Note that this backward step 
involves both the forward probability function Qj_1 (·) of equation (7.2) and the 
predictive probability Qj(·) of equation (7.1). Now the marginal probabilities 
QJ-I(s) = Pr(S.,J-1 = s I Y) are readily obtained by summing overs*: 

QJ-1(s) Pr(S.,J-1 = s I Y) 

(7.5) = L Pr(S.,j-1 = s, s.,j = s* I Y) 
s* 
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In the context of time series, equation (7.1) is known as the predictor, and (7.2) 
as the filter, while the backward equations (7.4) is the smoother, incorporating all 
data y into the imputation of each s.,j. 

Finally, instead of computing the marginal distributions Q i ( s), we may prefer 
a realization from the joint distribution Pr(S I Y). The Baum algorithm provides 
this also. The forward computation is exactly as before (equation (7.2)). The 
backward computation is replaced by sampling. First, s.,L is sampled from QL(·) 
(equation (7.3)). Then, similarly to equation (7.4), given a realization of 
(S.,j = s*, S.,H1, ... , S.,L), a straightforward application of Bayes Theorem gives 

Pr(S.,j-1 =s I s.,j =s*,S·,i+l·····s.,L,Y) 

Pr(S.,j-1 = s I s.,j = s*, yU- 1)) 

(7.6) ex Pr(S.,j = s* I s.,j-1 = s)Qj_l (s) 

where proportionality is with respect to s. Normalizing these probabilities, we can 
realize S.,j-1· This is done for each j = L, L- 1, ... , 4, 3, 2 in turn, providing an 
overall realization S = (S.,1, ... , S.,L) from Pr(S I Y). 

7.2 An EM algorithm for map estimation 

Suppose, as above we have L marker loci along a chromosome, with recombination 
frequencies Pm,j-1 and PJ,j- 1 in male and female meioses, respectively, between 
locus j - 1 and locus j. With data Y and latent variables S consider the complete
data log-likelihood 

L 

logPr(S, Y) log(Pr(S.,l)) + L log(Pr(S.,j I s.,j-1)) 
j=2 

L 

(7.7) + .l::log(Pr(Y.,j I s.,j)) 
j=1 

(see equation 6.1). Now, in the absence of interference, the recombination 
probabilities Pm,j-1 and PJ,J-1 enter only into the term log(Pr(S.,j I s.,J-d) which 
takes the form 

log(Pr(S.,j I s.,j-1 )) = Rm,j-1 log(pm,j-1) + (Mm- Rm,j-1) log(l- Pm,j-d 

+ Rj,j-1log(pJ,j-1) + (Mt- Rf,i-d log(!- PJ,J-1) 

where Rm,j-1 = 2:::; male ISi,j- S;,j-1l is the number of recombinations in interval 
(j- l,j) in male meioses, and Mm is the total number of male meioses scored in 
the pedigree. The recombination counts Rt,J- 1 , for j == 2, ... , L, and total meioses 
M 1 are similarly defined for the female meioses. Thus computation of the expected 
complete-data log-likelihood requires only computation of 

Rm,j-1 == E(Rm,j-1 I Y) 

== L E(ISi,j - Si,j-11) 
i male 
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and similarly Rf,j-1 , which are easily computed from equation (7.4). Since this 
is a simple binomial log-likelihood, the M-step sets the new estimate of Pm,j-1 to 
Rm,j-I/ Mm, and similarly for all intervals j = 2, 3, ... , L and for both the male 
and female meioses. The EM algorithm is thus readily implemented to provide 
estimates of recombination frequencies for all intervals and for both sexes. 

An alternative is Monte-Carlo EM. Instead of computing the bivariate 
distributions of (S.,j-1' s.,j) (equation (7.4))' N realizations of s, {S(T); T = 
1, ... , N}, are obtained from the conditional distribution of Pr(S I Y) under the 
current parameter values, as described above (equations (7.3) and (7.6)). These 
are scored exactly as above: 

R(T) = """' IS~T)- s~T) I· 
m,j-1 ~ t,J t,J-1 

i male 

A Monte Carlo estimate of Rm,j-l is L~=1 R~!j-dN, and the new estimate of 

Pm,j- 1 is Rm,j-I/Mm as before, again with analogous formulae for all intervals and 
both sexes. This Monte Carlo EM is readily implemented, and, like many Monte 
Carlo EM procedures, performs as well as the deterministic version. Initially, the 
Monte Carlo sample size N need not be large, although for the final EM steps it 
should be increased. We return to Monte Carlo EM in section 9.3. 

7.3 Importance sampling for likelihoods 

The primary aim in computation of Pr(Y) on a pedigree is normally segregation 
or linkage analysis. For segregation analysis, or for linkage analyses where trait 
loci are explicitly modeled, computations using the Elston-Stewart framework 
is more straightforward, but computations are then limited to few loci, and to 
relatively simple pedigrees. .For computations for multiple markers, the Lander
Green paradigm is more natural and more effective, but is limited to small pedigrees. 
Despite increasing computational power, the feasibility of exact computations on 
pedigrees remains limited. A pedigree may often be too large for computation of 
the likelihood using the methods of section 6.2, there may be too many linked loci 
for the method of section 6.3, or the pedigree may be too complex for the methods 
of section 6.5. Where exact computation is infeasible, Monte Carlo estimation 
(section 3. 7) offers an alternative. 

Given phenotypic data Y on a pedigree, the likelihood for parameters (} 
specifying a genetic model can be written 

(7.8) L(B) = Pe(Y) = L Pe(Y I X) Pe(X) 
X 

where X are latent variables, either the genotypes G or the meiosis indicators S. 
Thus 

(7.9) L(fJ) = Ee(Pe(Y I X)). 
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This is the form given by Ott (1979), and in principle we could estimate L(O) by 
simulating X from the prior genotype distribution under model() and averaging the 
value of the penetrance probabilities Po(Y I X) for the realized values of X. This 
does not work well, except on very small pedigrees, since the realized X are almost 
certain to be inconsistent with data Y, or at best to make infinitesimal contribution 
to the likelihood. 

Of course, realhmtions may be made from any distribution p• (X) 
(equation (3.12)): 

(7.10) L(O) E .(Po(X, Y)) 
P P*(X) 

provided (equation (3.13)) 

(7.11) P*(X) > 0 if Po(X, Y) > 0. 

An advantage of this approach is that a single set of realizations from P* (X) will 
provide a Monte Carlo estimate of L(O) over a range of models 0. That is, one set of 
realizations provides an estimate of the likelihood function, not only the likelihood 
at a single point. The first use of Monte Carlo likelihood function estimation in the 
context of pedigree analysis is due to K. Lange in Ott (1979). In this case, P*(X) 
was taken to be Po0 (X). However, this is no more effective than the original form 
(7.9). Again almost all realizations may be incompatible with Y or provide only 
infinitesimal contributions to the likelihood. 

Recall again the brief discussion of importance sampling in section 3. 7. In 
addition to the requirement (7.11), one must be able to realize from the distribution 
P*(X), and one must be able to evaluate P*(x) at the realized values x in order 
to compute the estimate. Finally, in order to reduce the Monte Carlo variance 
(section 3.7), P*(X) should be approximately proportional to the summand 
Po (X, Y). In order to meet this requirement note: 

(7.12) Po(X I Y) <X Po(X, Y). 

However, simulation from Po(X I Y) would be useless, even if possible, since we 
must also be able to evaluate it in our Monte Carlo estimate, and to evaluate it 
we need to know the denominator Po(Y), which is what we are trying to estimate. 
One alternative is to realize from a distribution close to Po(X I Y), which can be 
evaluated. 

A disadvantage of the likelihood function estimation approach (7.10) is that the 
range of models for which this estimation is effective is likely to be small, given the 
requirement that the single P* (X) must be approximately proportional to all the 
Po(X, Y). 

7.4 Risk probabilities and reverse peeling 

In analyses of data on a pedigree, under a model indexed by known values of the 
parameters (), quantities of interest include the conditional genotype probabilities 
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P11 ( G;,.IY) for individuals i. These probabilities are known as risk probabilities, 
since the genotypes of interest are often those conferring a disease risk. In 
sections 6.1 and 7.1 we saw that, for a first-order Markov structure for latent 
variables S.,J, sequential computation of the likelihood Po (Y) using the functions 

Rj(s) PII(Y.,k, k = (j + 1), ... 'L I s.,j = s) 

had the same computational complexity as computation of conditional probabilities 
QJ(s) = Pr(S.,j = s I Y) using the two functions 

Qj(s) 

Qj+l(s) 

Pr(S.,j = s I Y., 1 , •.• , Y.,J) and 

Pr(S.,j+l = s I Y.,l, ... , Y.,j) 

The latter computation requires two passes along the chromosome (forward 
and backward), while the likelihood computation requires only one (forward or 
backward), but in both cases the computation is of order 4m L where m is the 
number of meioses in the pedigree. 

The same applies to latent variables G;,. on a pedigree structure. If Po(Y) can 
be computed, using the peeling method outlined in section 6.3, so also can the risk 
probabilities P0 (G;,. I Y). This can be done by taking each individual i in turn, as 
the final individual L in a peeling sequence (equation (7.3)). However, it is more 
effectively accomplished by saving, for each possible value g of G;,., the probabilities 
R; (g) (equation ( 6.2)), obtained in peeling up the pedigree. These probabilities are 
then combined with the functions Ri(g) (equation (6.3)) obtained by progressing 
back down the pedigree. For example, if individual i divides the pedigree into two 
parts, the set D(i) connected through his spouses and offspring, and the set A(i) 
connected through his parents (including his siblings and their descendants), then 
in proceeding up the pedigree 

R;(g) Pe(Y D(i) I G;,. =g) 

while in proceeding down, relative to individual i, 

R;(g) = Po(Y A(i),Gi,. =g) 

so that 

Po(G;,. = g I Y) ex Po(Yi,. I G;,. = g)R;(g)R;(g) 

and these probabilities may be normalized to give the required probabilities 
Po(G;,. I Y). This procedure of working back down the pedigree to obtain risk 
probabilities is sometimes known as reverse peeling. In the case where peeling 
always up the pedigree is computationally feasible, all risk probabilities on a large 
pedigree can be computed in two passes through the pedigree. Even on a complex 
pedigree, with multiple interconnecting loops, few passes through the pedigree arc 
required to obtain all the marginal (over individuals i) conditional (on Y) risk 
probabilities (Thompson, 1981). 
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7.5 Elods and SIMLINK 

Simulation of data random variables Y is often undertaken as part of a power 
study. For example, simulation of latent genotypes G and wsulting marker and 
trait phenotypes Y can be used to assess the power of a potential linkage study. 
Before the times of readily available genome-wide marker data, linkage detection 
was primarily a question analyzing the coinheritance of observed trait phenotypes 
Y T and marker locus phenotypes Y M, for a single trait locus, T, and single marker 
locus,M. If the two loci are linked, the recombination frequency is p < ~' while if 
they are unlinked inheritance is independent at the two loci (p = ~). Thus we have 
the lad score (Morton, 1955); 

(7.13) lod(p) = 

which is the logarithm of the likelihood ratio comparing the two hypotheses (see 
equation ( 4.3)). The expected lod score is then 

Elod(p) Ep(Iog(Pp(Y M, Y r)) - log(Pp=~ (Y M, Y T ))) 

(7.14) = Ep(log(Pp(Y M, Yr)) -log(P(Y M )) -log(P(Yr))). 

In advance of a study, one may compute the expected lod score to be obtained, 
given the sizes and counts of pedigree structures available, as was previously done 
in the case of homozygosity mapping (equation ( 4.8)). As discussed in section 4.4, 
if base-e lod scores are used, Elodp is also the Kullback-Leibler information K(p = 
~; p) for testing p = ~ when the true value of the recombination frequency is 
p. Thompson ct al. (1978) first developed these Elods in the context of linkage 
analysis, and they have become quite widely used (Ott, 1999). In fact, Thompson 
et al. (1978) produced Monte Carlo estimates of the expectation in equation (7.14), 
by simulating the underlying trait and marker genotypes from Pp(GM, Gr), and 
then the associated phenotypes, and then computing the lod score (7.13) for each 
realized set of phenotypes. 

As data at multiple DNA markers became potentially available, there was a rush 
to map Mendelian traits, using previously collected trait data. The Elod became 
an important tool in assessing whether there were sufficient trait data for probable 
linkage detection if the marker typing were to be undertaken. One problem in using 
the Elod (7.14) is that the expectation is over both trait and marker phenotypes. 
Normally, however, there was already information on the trait phenotypes Y T 

that would be available to researchers. Ploughman and Boehnke (1989) addressed 
this case. Given a single-locus trait model, and trait data Y r, it is possible to 
simulate the underlying inheritance patterns or genotypes, Gr, at the trait locus. 
This is accomplished by a Monte Carlo version of reverse peeling (section 7.4) 
analogous to that given by equation (7.6) in section 7.1. Once trait genotypes Gr 
arc realized, conditional on the available trait data Y r, marker latent genotypes 
G M and potentially observable marker phenotypes Y M are readily obtained: 
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(7.15) 
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Pp(YM,GM,Gr I Yr) = P(YM I GM)Pp(GM I Gr) 

P(Gr I Yr) 

The dependence structure here is a special case of that shown in Figure 6.1. The 
combined realizations (Y r, Y M) may be used to estimate a Elod, conditional upon 
the fixed Y T. These conditional Elods became an essential tool in applied studies, 
particularly during the 1980s when many Mendelian traits were mapped, and 
marker typing remained the most expensive component of studies. 

7.6 Sequential imputation 

We turn now to a use of reverse peeling (section 7.4) in the Monte Carlo estimation 
of likelihoods (section 7.3). Recall that efficient Monte Carlo estimation of the 
likelihood L(O) = Pe(Y) will result from sampling latent genotypes G from a 
distribution P*(G) close to proportional to the joint probability Po(G, Y) 

P*(G) ~ Pe(G I Y) ex: Pe(G, Y) 

(equation (7.12)). The following approach to choice of P*(G) is due to Kong eta!. 
(1994) and Irwin et a!. (1994). 

Suppose, as before, there are data at L genetic loci (say a disease and L - 1 
markers) on a chromosome, and assume absence of genetic interference. Let Y.,j 
again denote the data for locus j and G.,j the underlying genotypes at that locus 
for all members of the pedigree. Note that, provided paternal and maternal alleles 
are distinguished, genotypes G.,j satisfy the same first-order Markov dependence 
over loci as do the meiosis indicators S.,j (Figure 6.1). For any specified 80 of 
interest, a realization a:,j is obtained for each locus in turn from the distribution 

P*(G.,i) Re (G ' I a·(j-l) yU)) 
0 •,J ' 

= Poo(G.,j I a:,ll ... a:,j-1' Y.,1, ... 'Y.,j-1' Y.,j) 

Poo(G.,j I a:,j-1• Y.,j) 

where as in section 6.1, y(i) = (Y.,1 , ••• , Y.,j), G(j) is analogously defined, and 80 

indexes the genetic model. Predictive weights wi are also computed: 

w]· = Ro (Y ' I yU- 1) a•U-1)) = Ro (Y ' I G* ' ). 
0 •,J ' 0 •,J •,J-1 

Due to the conditional independence structure, each of the realizations of G.,j 
and each computation of Wj is computationally equivalent to a single-locus peeling 
computation analogous to those of section 7.4. 
Now 

Re (G ' I a•(j- 1) yU)) 
0 •,J ' 

PP (G . y . 1 a·U-1) yU-t>) 
170 •,J' •,J ' 

PP (Y ' I G•U-·1) y(j-1)) 
170 •,J ' 

Re (G ' y ' I a•(j-1) y(j-1)) 
0 •,J, •,J , 



7.6. SEQUENTIAL IMPUTATION 101 

Thus the joint simulation distribution for G* = (G;,1, ... ,a:,L) is 

L 

P*(G*) II Poo(G.,j I a•(j-lJ,y(j)) 
j=l 

where WL(G*) = n~=l Wj. Thus 

Ep· (WL(G*)) = L WL(G*)P*(G*) 

(7.16) LPo0 (G*,Y) = Po0 (Y). 
G• 

A Monte Carlo estimate of L(Bo) = Po0 (Y) is given by the mean value of 
WL(G*), over repeated independent repetitions of the sequential imputation 
process. Repeating the process for different trait locus positions on the chromosome, 
one obtains an estimated likelihood curve for the location of the trait locus. That 
is, we have a Monte Carlo estimate of the location lod score curve (section 6.2). 

In genetic analyses, given the data, conditional expectations with respect to some 
particular model Po0 (-) are often needed. These address such questions as: In which 
meioses and at what locations are the recombinations? Who should be sampled to 
obtain most additional information about the trait model or trait locus position? 
Where are the biggest uncertainties in underlying marker genotypes? How would 
it affect inferences to reduce such uncertainty? In principle, such expectations can 
be readily estimated, using the sequential imputation probability distribution P* 
and computed weights WL. For any function g• of GandY, 

Eo0 (g*(G, Y) I Y) = Lg*(G, Y)Po 0 (G I Y) 
G 

Lg*(G, Y) P*~)~)(G) 
G IJo 

Ep· (g*(G, Y)WL(G)) 
= Po0 (Y) 

The normalizing factor Pe0 (Y) is the unknown likelihood. Equation (7.16) provides 
a Monte Carlo estimate of Po0 (Y), so that 

(7.17) Eo 0 (g*(G, Y) I Y) 
Ep· (g*(G, Y)WL(G)) 

Ep.(WL(G)) 

In this ratio estimator (7.17), each expectation in numerator and denominator is 
estimated by averaging values of each argument over independent realizations of 
G from the distribution P* (G). The same realizations may be used in estimating 
both the numerator and demoninator. This is often advantageous, since often 
there will then be positive correlation between the two Monte Carlo estimates, 
with consequent reduction in the Monte Carlo variance of the ratio. 
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