
LECTURE 1 

Origins 

In a set of lectures on curve estimates in the case of independent and 
dependent observations, it is perhaps appropriate to have initial comments 
that are in part reminiscences of earlier days and work in the area before 
proceeding to a discussion of current problems and research. This can provide 
a motivation for the later development. It is rather doubtful whether com
ments of this sort can be taken seriously as scientific history. Perhaps at
tempts at such reconstruction can only convince one of the difficulties involved 
in writing history. Nonetheless they can give a personal perspective of the 
time. 

During and after World War II there was a good deal of interest in 
dependent processes as models. One of the models examined probabilistically 
even before the war was that of a weakly stationary sequence of random 
variables x 1, t = ... , - 1, 0, 1, ... , that is, a sequence with constant mean and 
covariance function 

Tn _ m = COV( X n , X m) 

depending only on the time difference n - m. Such a sequence r m is positive 
definite so that for any complex constants cJ, 

n 

L C/i-1J5k ~ 0 
). k ~ 1 

for each positive integer n. An old result due to Herglotz (1911) states that the 
covariances are Fourier-Stieltjes coefficients of a bounded nondecreasing func
tion G, 

rn = Irr einA dG(A). 
-11' 

In current terminology, G(A) is called the spectral distribution function of the 
random sequence x,. There is a continuous time analogue of this result in 
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which one considers a random process x(t) continuous in mean square, 

limEix(t) -x(s)l 2 = 0. 
t->s 

The continuity in mean square implies that the weakly stationary process x(t) 
has a continuous covariance function 

r ( t - T) = cov( x ( t), x ( T)) . 

The covariance function r(t) is positive definite as in the discrete case and so 
has a Fourier-Stieltjes representation in terms of a bounded nondecreasing 
function G which is now 

r(t) = {' eitAdG(A) 
-00 

(Bochner's theorem). 
In common models, the spectral distribution function has a number of 

jumps (corresponding to discrete harmonics) and elsewhere a density 

dG(A) 
g(x) = dA · 

If there are no discrete harmonics, g(A) is called the spectral density of the 
process. Suppose one has a sequence of observations x 1, ... , xn of the process. 
Schuster (1898) suggested using the periodogram 

ln(A) = _1_1-£ x-e-iJAI2 
2rrn . .I 

J~l 

to detect harmonics in data. Of course, in those days, very simple models were 
used. The periodogram is basically the modulus squared of a finite Fourier 
transform of the data. Though the periodogram is useful in isolating harmon
ics, it has no direct value in estimating the continuous part of the spectrum or 
spectral density. If xn is a Gaussian process with mean zero and a continuous 
spectral density, then 

as n ~co but 

if A =I= f-1- , 0 :::;; A , f-1- :::;; rr, 

if A = f-1-, 0 < A, f-1- < rr, 
if A = f-1-, A = 0, rr. 

It is clear from this that the periodogram is hopeless as an estimate of the 
spectral density since it is not consistent. However, Daniell (1946) noted the 
asymptotic orthogonality of periodogram values at different frequencies and 
suggested smoothing periodogram values in the neighborhood of the frequency 
of interest. Bartlett (1948) and Tukey (1949) initially considered estimates 
(local) of the spectral density function. This led to the consideration of 
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estimates of the spectral density function, 

with 

and 

g,i(A) = /" W 71 (u -A)IN(u)du 
-77" 

1 n 
= _ '\' r*w(n)e-ivA 

2 £..... v v 
1T v= -n 

w~.n) = Jrr wn( u )ei••u du 
-rr 

*- * rl, - r. ·JJ' II :2':: 0. 

The smoothing weight functions wn(u) have total net mass one, 

Jrr W71(u) du = 1, 
-rr 
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and concentrate their mass more and more tightly in the neighborhood of zero 
as n -~ oo [see Rosenblatt (1985)]. For each s > 0, 

wn(u) ~ 0 

uniformly for lui ;::.: e as n ~ oo. Under rather broad conditions such sequences 
g,i(A) are consistent in estimation of g(A) as n ~ oo, in particular if 

J17" w;( u) du = o( n) 
-77" 

as n ~ oo. Such estimates are intrinsically biased since on the basis of observa
tions x 1, .•. , xn, one cannot obtain nontrivial estimates of r,, for I vi > n and 

1 ' 
g(A) = -2-- L rve-wA. 

1T ,, 

If x 1 is a Gaussian process with mean zero and a continuous spectral density, 
the variance of the estimate 

0 < A < rr, as n ~ oo. There is a doubling effect at A = 0 and A = rr and 
asymptotic uncorrelated behavior for the estimates corresponding to distinct 
nonnegative frequencies A, /.L. 

It is remarkable that the suggestions of Daniell were anticipated a long time 
ago in a recently rediscovered paper of Einstein (1914). Heuristically some
thing like the representation of the covariance function as a Fourier integral is 
anticipated. Then a local smoothing of a periodogram as suggested by Daniell 
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is discussed. An extended discussion of Einstein's paper is given in Yaglom 
(1987). 

Perhaps the main point to note is that the research mentioned here focused 
on local estimation [estimation of the spectral density rather than that of a 
more global character] of the spectral distribution function [investigated in 
Grenander and Rosenblatt (1956)]. Also it is curious that the context was 
that of dependent stationary sequences. My own exposure to these questions 
in spectral estimation arose in joint work with Grenander [Grenander and 
Rosenblatt (1953)] who was then visiting the University of Chicago statistics 
group of which I was then a member. 

Global estimation in the case of independent observations, estimation of the 
sample distribution function, had been of interest for some time. Of course the 
sample distribution function is an unbiased estimate of the distribution func
tion and its covariance properties were well known. More elaborate questions 
relating to the Kolmogorov and von Mises metrics had been investigated. On 
seeing a paper of Fix and Hodges (1951) on discrimination using a simple 
probability density estimate, it was a natural question for me [Rosenblatt 
(1956a)] to reflect on the mean and covariance of probability density estimates 
given by a kernel function with bandwidth and examine their asymptotic 
properties as n ~ oo and the bandwidth tends to zero. In particular, this 
seemed to be especialiy persuasive in terms of the parallel with spectral density 
estimates in the case of stationary sequences. 

Given any method of smoothing or representing a function, one can adapt 
the method to the estimation of a probability density or a regression function. 
The kernel estimate of a density function can be associated with the method of 
approximating a function by convoluting with a narrowly concentrated kernel. 
For it is obtained by convoluting the sample distribution function with a 
narrowly focused kernel, 

1 n (x-X) 1 (x-u) 
fn(x) = nb L w b 1 = b jw -b- dFn(u). 

nJ·-1 n n n 

Here, of course, Fn( u) is the sample distribution function of the independent, 
identically distributed random variables Xi, j = 1, ... , n. 

Another method of approximation or interpolation has been based on spline 
functions. Splines already appear in the work of Euler. But much of the 
interest in splines as a method of approximation or interpolation has been due 
to the work of Schoenberg (1964). It is clear that such methods based on 
splines have a greater global stability than methods using, for example, 
polynomial approximation. Boneva, Kendall and Stefanov (1971) proposed 
using histosplines in density estimation. This seems to have been the first 
paper on methods involving splines proposed in density estimation. Associated 
with a spline there are knots. A polynomial spline of degree m (for example, a 
cubic spline) is an m th degree polynomial between neighboring knots and is 
globally continuously differentiable m - 1 times. A family of splines called 
B-splines is sometimes introduced for convenience in some representations 
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[see de Boor (1978)]. B-splines of order k are (k - 1)st degree polynomial 
splines that have a relative local character. Given knots t = (t;), the ith 
B-spline for this series of knots is 

Bu.t(x) = (ti+k - t;)[t;, ... , t;+il]( ·- x):- 1 

for all x with [ t;, ... , t; +"] the k th difference operator at the points t;, ... , t; +h. 

One can show only k B-splines might have a specific interval [tJ, t.inl in their 
support, Bi_ 1,+ 1, ... , B.i. 

What has been termed a smoothing spline was proposed by Schoenberg. 
Given approximate values 

( 1.1) Y; = g(x;) + E; 

of a smooth function g at the points x 1, ••• , xn E [0, 1], the object is to 
approximate g by the function f that minimizes 

( 1.2) 

The solution f is a polynomial spline of degree 2m - 1 with knots at 
x 1, ... , xn that satisfies the natural boundary conditions 

[U>(O) = [U>(l) for j = m, ... , 2m-· 1. 

The interval [0, 1] is taken here for convenience. Obviously there is the natural 
modification for any finite interval or even the whole real line. Splines satisfy
ing these boundary conditions are sometimes called natural splines. The 
original idea qualitatively is due to Whittaker (1923) who considered uniformly 
spaced data points and suggested using m th order differences rather than 
jJ[ [<"'>(t)]2 dt. If one looks at the specification (1.1), it is plausible to think of 
formalizing the model in a statistical context by thinking of the errors E; as 
independent identically distributed errors. Much of the interest in smoothing 
splines and various extensions of this idea are due to Wahba (1973) and her 
collaborators. 

It is apparent that one could also think of orthogonal series expansions of 
an appropriate character as providing reasonable estimators. Cencov (1962) 
introduced this idea. 

Various ideas that come up naturally in approximation theory [see Shapiro 
(1969)] crop up again in a number of the questions that arise here in a 
stochastic context. 

Given an initial motivation in curve estimation (spectral) for stationary 
dependent sequences, it is interesting that research in probability density 
estimation for many years was pursued only in the domain of independent 
observations. 
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