
CHAPTER 4 

Models Invariant under 
Compact Groups 

Our goal here is to understand the structure of probability measures which are 
invariant under a compact group. In the first section, a basic representation 
theorem is proved and is interpreted in terms of random variables. Section 2 
contains some basic examples while applications to some robustness problems are 
given in Section 3. 

4.1. A representation theorem. Throughout this section, G is a compact 
group and v is the unique left (and right) invariant probability measure on G. In 
some situations, it is convenient to express certain equations in terms of a 
"random group element" U which has distribution v. This is written !f'(U) = v 
and we say U has a uniform distribution on G. What this means is that U is a 
random element of G and the expectation of any bounded measurable function 
of U is computed as 

Cf(U) = j f(u)v(du). 
G 

Naturally, the distribution of U is characterized by its invariance. That is, the 
equation 

!f'(U) = !f'(gU), gE G, 

characterizes the distribution of U because of the uniqueness of the invariant 
measure v. 

EXAMPLE 4.1. Let G be the group of n X n real orthogonal matrices on. The 
existence of v on on is given by general theory, but here we outline a "construc
tion" of U, and hence v, which uses the normal distribution. Let X1, ••• , Xn be 
iid N(O, In) random vectors in Rn. That X1, .•• , Xn are linearly independent 
with probability 1 is not hard to prove [see Proposition 7.1 in Eaton (1983) for 
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56 MODELS INVARIANT UNDER COMPACT GROUPS 

example]. Let Y1, ••• , Yn be an orthonormal basis for Rn obtained by performing 
the Gram-Schmidt orthogonalization procedure to X1, ..• , Xn in that order. 
Consider U E On with columns ¥;_, ... , Yn so that U = U(X1, ••• , Xn) is a func
tion of X1, ••• , Xn. Hence U is a random element of On. 

Using the definition of the Gram-Schmidt procedure, it is easy to show 

(4.1) U(gXl, ... , gXn) = gU(Xt, ... , Xn) 

for each g E on. In other words, the orthonormal basis one obtains from 
gX1, ••• , gXn is the same as one obtains by first constructing an orthonormal 
basis from xl, ... ' X, and then transforming the basis by g E on. 

The claim is that U is uniform on On. To see this, first observe that 

£'( X1, ••• , Xn) = ff'(gXI> ... , gXn) 

because X1, ••• , Xn are iid N(O, In)· Using (4.1), we then have 

ff'(U) = ff'(U(Xl> ... , Xn)) 

= ff'(U(gXJ, ... , gXn)) = ff'(gU(Xl, ... , Xn)) 

= ff'(gU). 

But, as remarked earlier, the relation ff'(U) = ff'(gU) for g E On characterizes 
the distribution of U as being uniform. With v = £'(U), v is the unique 
invariant probability on On. D 

Now consider a space X and suppose the compact group G acts topologically 
on X. Let P be a probability measure defined on the Borel a-algebra of X and 
define a new probability measure P1 by 

(4.2) P1 = 1 gPv(dg). 
G 

Equation ( 4.2) means 

(4.3) 

or in terms of f E K (X), 

(4.4) jf(x)P1(dx) = 11 f(gx)P(dx)v(dg). 
G X 

Using ( 4.3), it is obvious that hP1 = P 1 because v is the invariant probability 
measure on G. Thus, averaging gP with respect to v produces a G invariant 
probability. Also observe that if Pin (4.2) is invariant, then P = P1• 

There is an alternative way to write ( 4.2) which is also interesting. To this 
end, let U be uniform on G and for x E X, consider the random element 
Ux E X. For a Borel set B c X, the probability that Ux is in B is 

Prob(Ux E B) = v{g: gx E B}. 

The induced distribution of Ux on X is denoted by J.lx· In other words, 

J.LAB) = v{glgx E B}, 
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so that 

(4.5) <fff(Ux) = L,t(z)J-t)dz) = j0 f(gx)v(dg). 

THEOREM 4.1. For each x E X, the probability 1-tx is G-invariant. 

PROOF. Since !l'(Ux) = J-tx, 

g}-tx =!l'(g(Ux)) =!l'((gU)x) =.fll(Ux) = J-tx, 

where the next to the last equality follows from the uniformity of U on G. 0 

The random variable Ux E X obviously takes its value in the orbit of x since 
U E G. Thus J-tx = .fll(Ux) is a G-invariant probability measure on Ox= {gxl 
g E G}. Since G acts transitively on Ox and G is compact, Theorem 2.2 shows 
that 1-tx is in fact the unique invariant probability measure on Ox (modulo 
checking the regularity conditions needed to apply Theorem 2.2). This turns out 
to be a useful way to think about 1-tx· 

Since 1-tx is G-invariant for each x E X, the average of f.tx (over X) is also 
G-invariant. In symbols, 

is invariant. This equation means 

for each Borel set B. The next result shows that every invariant probability has 
such a representation as an average of the t-tx's. 

THEOREM 4.2. Suppose P is a G-invariant probability measure on X. Then 

(4.6) 

PROOF. When Pis invariant, Equation (4.2) is 

P = jgPv(dg), 

which expres..o;;ed as in (4.4), with f = 18 , is 

P(B) = jajx 18 (gx)P(dx)v(dg). 

Interchanging integrals and using the definition of f.tx yields 

P(B) = fxfa 18 (gx)v(dg)P(dx) 

= jxt-tx(B)P( dx) 

which is just ( 4.6). 0 
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Theorem 4.2 is unsatisfactory because of the following. Notice that 

!Lgx = ff'(Ugx) = ff'(Ux) = !Lx 

because v = ff'(U) is both left- and right-invariant. Thus, x ~ ILx is an invariant 
function and hence can be written as a function of a maximal invariant, say t( x ). 
Thus it should be possible to express the average (4.6) as an average over the 
maximal invariant (i.e., over the orbits in X) rather than over the whole space X. 
In order to make this precise, we need the notion of a measurable cross section. 
The Borel a-algebra of X is denoted by .?A. 

DEFINITION 4.1. A subset Y c X is a measurable cross section if: 

(i) Y is measurable. 
(ii) For each x, Y n Ox consists of exactly one point, say y( x ). 

(iii) The function t defined on X toY by t(x) = y(x) is !!J measurable when Y 
has the a-algebra {B n YiB E !!J} = !!Jl. 

Assume Y is a measurable cross-section. 

THEOREM 4.3. For each probability Q defined on (Y, !!J1), the measure 

(4.7) 

is a G-invariant probability on (X, !!J). Conversely, if P is a G-invariant 
probability on (X, !!J), then there exists a probability Q on (Y, !!J1) such that 
(4.7) holds. 

PROOF. Equation (4.7) means that 

P(B) = jyp.y(B)Q(dy) 

or in terms of a bounded measurable function f, 

(4.8) jt(x)P(dx) = 1 j f(gy)v(dg)Q(dy). 
y G 

Because (g, x) ~ gx is jointly continuous and hence jointly measurable, joint 
measurability of (g, y) ~ f(gy) is easily verified. Thus (4.8) makes sense. That 
(4.7) defines a G-invariant probability is easily checked because p. is G
invariant. For the converse, consider a probability P which is invariant'. Then, 
for any bounded measurable function f defined on X, we have 

j f(x)P(dx) = j f(gx )P(dx) 

forgE G. Integration then yields 

( 4.9) 1 I (X) P( dx) = f 1 I ( gx) P( dx) p ( dg) = r f I ( gx) p ( dg) P( dx). 
X G X JX G 
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For x fixed, there exists a g0 E G such that x = g0 t(x) because x and t(x) are 
in the same orbit. The invariance of v gives 

j f(gx)v(dg) = j f(gg0 t(x))v(dg) = jf(gt(x))v(dg). 
G G 

The assumed measurability of t implies that 

H( t( X)) = f f ( gt( X)) v ( dg) 
G 

is a measurable function. Define the mea..<;ure Q on (Y, !21) by 

Q(B) = P( t- 1(B)) 

so that 

fx H(t(x))P(dx) = ~ H(y)Q(dy). 

Thus from ( 4.9), we have 

1 f(x)P(dx) = 1 j f(gt(x))v(dg)P(dx), 
X X G 

which is just ( 4.8). D 

The interpretation of Theorem 4.3 in terms of random variables is the 
following. In our earlier notation, let U be uniform on G. Also let Y be a random 
variable taking values in (Y, !21) which is independent of U. That is, U and Y 
are defined on some probability space for which they are independent. Now, 
form 

X= UYE X, 

where by UY, we mean the group element U acting on Y. Thus X is a random 
variable in X. Because U and Yare independent, 

.P(gX) = .P(g(UY)) = .P(UY) = .P(X) 

since 

.P(gU) = .P(U), gE G. 

With Q = .P(Y) and P = .P(X), it follows immediately that for any bounded 
measurable function f, 

t!f(X) = fxt(x)P(dx) =t!f(UY) = ~~)(gy)v(dg)Q(dy), 

which is just (4.8) again. Conversely, suppose X takes values in X and .P(X) = 

P = .P(gX). Then Equation (4.8) immediately implies the existence of two 
random variables U E G and Y E Y which are independent, .P(U) = v and 
.P(Y) = Q, such that .P(X) = .P(UY). Summarizing this gives: 
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THEOREM 4.4. Let U be uniform on G and let Y be a measurable cross 
section. For a random variable X E X, the following are equivalent: 

(i) !£'(X) = .fl?(gX), g E G. 
(ii) There exists a random variable Y E Y which i._.:; independent of U such 

that .fl?(X) = .fl?(UY). 

Various versions of Theorems 4.3 and 4.4 and related results appear in the 
mathematical and statistical literature. Here are a few relevant references: 
Wijsman (1957), Farrell (1962), Hall, Wijsman and Ghosh (1965), Dawid (1977), 
Eaton and Kariya (1984) and the references therein. 

4.2. Some standard examples. In the examples below, the random variable 
notation of Theorem 4.4 is used rather than the more cumbersome notation of 
Theorem 4.3. 

EXAMPLE 4.2. This example is related to exchangeable 0-1 valued random 
variables. The space X consists of the set of all n vectors x whose coordinates 
are only 0 or 1. Thus X has 2n elements and we usually write X= {0, 1 }n. The 
group f!Jn of n X n permutation matrices acts on the vectors x by matrix 
multiplication. Of course, if the random vector X EX satisfies !£'(X)= .fl?(gX), 
g E f!Jn, then X is exchangeable. To apply Theorem 4.4, let Y = {y0 , y1, ... , Yn}, 
where Yi E X has its first i coordinates equal to 1 and the remaining coordinates 
equal to 0. That Y is a cross section is clear. 

To say U is uniform on f!Jn means that U is picked at random from the set of 
n! permutation matrices. Theorem 4.4 implies that X is exchangeable iff 

.fl?(X) = .fl?(UY), 

where Y has an arbitrary distribution on Y and is independent of U. In other 
words, X is exchangeable iff X is generated by first picking a Yi E Y according 
to some distribution and then randomly permuting the elements of the picked Yi· 

D 

EXAMPLE 4.3. Here we return to the spherical distributions on Rn = X. 
With G = On, a random vector X ERn which satisfies !£'(X)= .fl?(gX), g Eon 
has a spherical distribution. Let y0 be a ·fixed vector of length 1 in Rn and set 

Y = { ay0 ja E Rl, a ;;:: 0}. 

Since the orbits in Rn are spheres of a given radius, it is clear that Y intersects 
each orbit in exactly one point. In other words, an orbit is {gxjg E On} and 
llxlly0 is the intersection of Y and {gxjg E On}· That Y is measurable and that 
t(x) = llxlly0 is a measurable function is clear, soY is a measurable cross section. 

As an Example 4.1, u E on is a random orthogonal matrix. For a random 
variable Y E Y, write Y = Ry0 where R is a nonnegative random variable and 
independent of U. Then X is spherical iff 

!£'(X) = .fl?(U( Ry0 )) = !£'( RUy0 ) 
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for some R ;:::: 0 independent of U. Note that Uy0 has a uniform distribution on 
{ xlx E Rn, llxll = 1} so that X is spherical iff X is generated by first picking a 
radius R and then independently picking a point Uy0 at random on the surface 
of the unit sphere. D 

ExAMPLE 4.4. This example generalizes the previous one. The space X of this 
example consists of the set of all n X p real matrices of rank p sop ::::; n. The 
group G = On acts topologically on the left of X by matrix multiplication, 
X ~ gx for X E X and g E on. There are two rather natural choices for a cross 
section in this example. The first is the set 

Y1 = { ( ~) E Xjs is p X p and positive definite}. 

This choice stems from the factorization 

for each x E X where 

s = (x'x )112 

is the unique positive definite matrix satisfying s 2 = x'x. [One version of this 
well known result is Proposition 5.5 in Eaton (1983').] The uniqueness of s in this 
factorization shows that Y1 intersects each orbit in exactly one point. The 
measurability is easily checked since Y1 is a relatively open subset of X and the 
map 

( 1/2) t(x) = (x'~) E Y1 

is continuous. 
Now, consider X EX which satisfies .P(X) = .P(gX). Random matrices with 

this property are sometimes said to have left-orthogonally invariant distribu
tions. Examples of such distributions on X are provided by taking X to have 
density (with respect to Lebesgue measure) on X of the form q(x'x) where q is a 
nonnegative function defined on p X p positive definite matrices. For example 

r~rn/2 [ 1 ] 
q(x'x) = (ff;)np exp -2 trx'x~- 1 , 

where ~ is p X p and positive definite, correspond to X with iid rows which are 
Np(O, ~). 

When !C'(X) = .P(gX), g E On, Theorem 4.4 implies that 

.P(X) =.P(u(~)), 
where U is uniform on On and is independent of S. The distribution of S is 
arbitrary over p X p positive definites. 

The representation 



62 MODELS INVARIANT UNDER COMPACT GROUPS 

can also be written 

where 

is an element of Fp, n as described in Example 2.3. Thus 

2(X) = 2( u( g)) = 2( u( ~, )s) = 2(tls) 

with tl and S independent. That Ll has a uniform distribution on Ji~. n follows 
from the transitivity of the action of On on Fp, n· 

Much the same analysis as above can be given based on the representation 

where u is an element of the group of p X p upper triangular matrices with 
positive diagonal elements, say G{; . In this case, a cross section is taken to be 

Y2 = { ( ~) E Xlu E G{;}. 

That u is unique in this representation is well known [for example, see Proposi
tion 5.2 in Eaton (1983)]. The remainder of the analysis and application of 
Theorem 4.4 is left to the reader. D 

EXAMPLE 4.5. Let SP be the real vector space of the p X p symmetric 
matrices. The group OP acts on SP via 

s---+ gsg' 

for s E sp and g E op. To say that a random element X E sp has an invariant 
distribution is to say that 

2(X) = 2(gXg'), g E op. 
Examples of such distributions on SP include the Wishart distribution with 
identity scale matrix as well as certain versions of the multivariate beta and 
multivariate F distributions. For example, see Olkin and Rubin (1964). Define 
v c sp by 

Y = {DE SPID is diagonal, dn ~ · · · ~ dPP}, 

where the diagonal elements of Dare d 11, ••• , dpp· Clearly Y is a closed subset of 
sp. The spectral theorem shows that every s E sp can be written 

s = gDg' 

for some g E OP and some DEY. Of course, the diagonal elements of Dare the 
eigenvalues of s and the function 

t(s) = D 
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is continuous and hence measurable. That Y is a measurable cross section is now 
apparent. 

Theorem 4.4 asserts that if 

.P(X) = .P(gXg') forgE OP, then .P(X) = .P(UYU'), 

where U is uniform on OP and is independent of Y E Y. The distribution of Y is 
arbitrary. In other words X is generated by choosing the ordered eigenvalues 
according to some arbitrary distribution and then randomly "moving" Y via the 
map 

Y~ UYU' 
with U uniform on OP. D 

EXAMPLE 4.6. This example deals with yet another matrix decomposition 
result involving singular values. The space X is the vector space 2'p, n of n X p 
real matrices with p ::;; n. The group in question is the product group On X OP 
which acts on 2'p, n via 

x ~ gxh' 

for g E on and h E op. The singular value decomposition for X is 

X= g( ~)h 
with g E on and hE op. Here D is a p X p diagonal matrix with diagonal 
elements d 11 ~ • • • ~ dPP ~ 0. These diagonal elements are the square roots of 
the eigenvalues of x'x. Thus, a candidate for a cross section is 

Y = { ( ~) E !f'p, niD is diagonal, d 11 ~ · • • ~ dpp ~ 0}. 

Arguments similar to those given previously show that indeed Y is a measurable 
cross section. 

Now, consider X E 2'p, n such that .P(X) = .P(gXh') forgE on and h E op. 
Examples of such distributions include the multivariate normal distribution on 
2'p, n (with mean 0 and identity covariance) and certain versions of the multi
variate t distribution [for example, see Dickey (1967) or Eaton (1985)]. To 
describe the implications of Theorem 4.4, first note that the uniform distribution 
on on X op is just product Haar measure because on X op is a direct product. 
Thus, u = (Ul, U2) is uniform on on X op when ul is uniform on on, u2 is 
uniform on OP and U1 and U2 are independent. Therefore, when X has an 
invariant distribution on .Pp, n' 

.P(X) = 2'( U1YU2'), 

where ul, y and u2 are mutually independent and y has an arbitrary distribu
tion on Y. D 

4.3. Null robustness applications. The material in this section comes 
mainly from Das Gupta (1979) and from Eaton and Kariya (1984). The problem 
discussed here is motivated by the following example. Consider a random vector 
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X ERn and set 

e'X 
T(X)-

-!lXII' 

where e is the vector of 1's in Rn and II · II denotes the usual norm on Rn. 
Student's t statistic: is a one-to-one function of T(X) so the distribution of T(X) 
determines the distribution of Student's t statistic and conversely. In fact, a bit 
of algebra shows that 

tn-1 = nl/2(1- n-lr2)1/2' 

where tn __ 1 denotes the usual t statistic. When the coordinates of X are iid 
N(O, 1), then tn 1 has the Student tn _1 distribution and hence the distribution 
ofT is fixed, say Q0 • Now, we ask: Under what conditions on .P(X) does .P(T) 
remain fixed at Q0 (and hence tn_ 1 will still have Student's tn-l distribution)? 
Fisher observed that if 2( X) is On-invariant, as it is when the coordinates of X 
are iid N(O, 1), then X/IIXII is uniform on {xlx ERn, llxll = 1}. Thus, the 
distribution of T(X) must remain the same when the coordinates of X are iid 
N(O, 1) as when .P(X) is On-invariant. What makes this argument tick is: 

(i) T(X) = T(cX), c > 0. 
(ii) X/IIXII is uniform when .P(X) is On-invariant. 

Condition (i) implies T is a function of X/IIXII while (ii) fixes the distribution of 
X/IIXII· 

There are a number of other examples where arguments similar to the one 
above can be used to show that distributions of statistics of interest can be 
derived using invariance rather than distributional assumptions. In such cases, 
the conditions under which the statistic has the given distribution can sometimes 
be substantially weakened. It is this general problem to which we now tum. 

Here is one way to describe the problem. A random variable X E X is given as 
is a statistic T(X). A compact group K acts measurably on X. Let fJJK denote 
the set of all probability measures on X which are K invariant. In what follows, 
.P(T(X)iP) denotes the distribution of T(X) when .P(X) = P. The problem 
addressed below is the following: 

Under what conditions is it the case that 

(4.10) .P(T(X)!P) =.P(T(X)!P') forall P,P' EfJJK? 

Under some regularity, Das Gupta (1979) provided some sufficient conditions 
for (4.10) to hold. To describe these, first assume that 

(4.11) 

Then, by Theorem 2.3, the group action of K can be moved to the range space of 
T, say (Y, 86\). Assume that K acts measurably on (Y, 8i3\). 

THEOREM 4.5. If K acts transitively on Y, then (4.10) holds. 
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PROOF. The transitivity of K on (Y, .%\) implies there is exactly one K 
invariant probability measure on (Y, 981), say Q0 • But, when !l'(X) E 9K, then 
!l'(X) = !l'(kX) for all k E K. Using the definition of the induced group action, 
we see that !l'(X) E g;K implies 

.P(T(X)) = !l'(T(kX)) = .P(kT(X)). 

Thus, the induced distribution ofT is K invariant so .P(T(X)) = Q0 • D 

EXAMPLE 4.7. Suppose xl, ... ' xn is a random sample from a p-dimensional 
N(J.L, ~)with J.L and~ unknown. The usual Hotelling statistic for testing J.L = 0 is 
easily shown to be a function of 

T(X) = X(X'Xr 1X', 

where X: n X p has rows X{, ... , X~. When J.L = 0, 

.P(X) = N(O, In Q9 ~), 

so !l'(yX) = !l'(X) for y EOn. The sample space X for this example is taken to 
be the set of n X p real matrices of rank p (a set of Lebesgue measure 0 has been 
removed). Thus, the range of T is the set Sn, P of n X n rank p orthogonal 
projections. 

With K = On, assumption (4.11) is valid as is the transitivity of the induced 
group action on Sn,p· The conclusion is that .P(T) is equal to the unique 
invariant probability on Sn, P which was introduced in Example 2.10. Hence the 
null distribution of Hotelling's statistic is the same when !l'(X) = N(O, In Q9 ~) 
as when !l'(X) = !l'(yX) for y EOn. D 

In some cases of interest, assumption (4.11) does not hold but (4.10) is still 
valid. An alternative set of assumptions which yields (4.10) is given in Eaton and 
Kariya (1984). To describe these, assume that G is a topological group which 
acts measurably and transitively on X, K is a compact subgroup of G and H is a 
subgroup of G such that 

G = K. H = {khlk E K, hE H}. 

Therefore, the subgroups K and H generate G. 

THEOREM 4.6. Assume that T( X) is an H-invariant function. If either II or 
K is a normal subgroup of G, then (4.10) holds. 

PROOF. First assume that K is normal in G. To establish the theorem, it 
suffices to show that for any bounded measurable function f, 

(4.12) jf(T(x))P(dx) = jt(T(x))P'(dx) for P, P' E 9K. 

Because kP = P, we have 

j f ( T( x)) P( dx) = f f ( T( kx)) P( dx). 
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Integrating both sides of this equality with respect to the invariant probability 
measure on K yields 

f f(T(x ))P( dx) = f f f(T(kx ))v( dk )P( dx). 

Fix x0 E X and use the transitivity of G = K · H to write x = k 1hx0 . Using the 
in variance of T under H and the in variance of v, we have 

j f(T(kx ))v(dx) = j f(T(kk 1hx0 ))v(dk) = j f( T( h- 1khx0 ))v(dk ). 

Since the map k ~ h 1kh is a continuous isomorphism of K, the uniqueness of v 
implies that v is invariant under this map. Therefore 

jf(T(kx))v(dk) = jt(T(kx0 ))v(dk), 

which yields the equation 

jt(T(x))P(dx) = jt(T(kx0 ))v(dk). 

Because this equation holds for each P E .OJJK, obviously (4.12) holds. Thus the 
theorem is proved when K is normal in G. The proof when H is normal in G is 
similar and the details are left to the reader. D 

ExAMPLE 4.8. In this example where canonical correlations are discussed, 
Theorem 4.6 is applicable but Theorem 4.5 is not. Consider a random matrix 
Z: n X p which has rank p and partition Z as Z = (Z1Z2 ), where Zi is n X Pi• 
i = 1, 2. Without essential loss of generality, the mean 0 case is treated here. The 
random rank Pi orthogonal projection 

Qi = Zi(Z[Z;) - 1Zf, i = 1, 2, 

takes values in the space sn, Pi of the last example. The squared canonical 
correlations are defined to be the r = min{p1, p 2} largest eigenvalues of Q1Q2 • 

That this definition agrees with more traditional definitions is easily checked. 
Given Z, let T(Z) be the vector of the r largest eigenvalues (arranged in 

order) of Q1Q2 • When Z is N(O, In ® IP), the density of T(Z) is given in 
Anderson [(1958), Chapter 13]. To describe a large class of distributions of Z for 
which the distribution of T(Z) is that when Z is N(O, In® IP), consider the 
group G whose elements are (y, 1/;, A, B) withy, If; E On, A E Glp, and BE GlPz' 
The action of G on (z1, z2 ) is 

(z~> z2 ) ~ ( yz1A', !f;z 2B') 

and the group operation is 

( Y1> 1/;p A1, Bl)( Y2, 1/;2, A2, B2) = ( Y1Y2, 1/;II/;2, ArA2, B1B2). 

That G is transitive on the set X of n X p matrices of rank p is easily checked. 
To apply Theorem 4.6, let 

H= {y,!f;,A,B)iy=!f;} 
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and 

K = {(y, 1/;, A, B)ll/; =In, A= Ip,• B = IPJ. 

Then G = K · H, K is compact and K is normal in G. Since T(Z) 1s H
invariant, (4.10) holds. In other words, 

.?((ZpZ2 )) =.?((yZ1,Z2 )) 

implies that the distribution of T(Z) is the same as when .?(Z) = N(O, In ~ IP). 
0 

Other examples and references can be found in Das Gupta (1979) and Eaton 
and Kariya (1984). 


