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Ratio tests for change point detection

Lajos Horváth1,∗ , Zsuzsanna Horváth1 and Marie Hušková2,†

University of Utah and Charles University

Abstract: We propose new tests to detect a change in the mean of a time
series. Like many existing tests, the new ones are based on the CUSUM process.
Existing CUSUM tests require an estimator of a scale parameter to make them
asymptotically distribution free under the no change null hypothesis. Even if
the observations are independent, the estimation of the scale parameter is not
simple since the estimator for the scale parameter should be at least consistent
under the null as well as under the alternative. The situation is much more
complicated in case of dependent data, where the empirical spectral density
at 0 is used to scale the CUSUM process. To circumvent these difficulties, new
tests are proposed which are ratios of CUSUM functionals. We demonstrate
the applicability of our method to detect a change in the mean when the errors
are AR(1) and GARCH(1,1) sequences.

1. Introduction

Change point detection is an important part of statistical and economic analysis.
Predictions and statistical inference will be invalid if changes in the regimes during
the data collection period are not taken into account. The main problems in the
change point analysis are to decide whether the statistical model for a series of
observations does not change (no change situation) or whether the model changes
one or more times and in the latter case to identify when the changes have occured.
For surveys on change point methods we refer to Csörgő and Horváth [3] and Perron
[11].

In this paper we consider at most one change in the location model

Xk = μk + εk 1 ≤ k ≤ n,

where μ1, . . . , μn are the means of the respective observations while ε1, . . . , εn are
random error terms with zero mean satisfying some additional assumptions specified
below. Under the no change null hypothesis

H0 : μk = μ 1 ≤ k ≤ n

while under the alternative

HA : there is 1 ≤ k∗ < n such that μ1 = μ2 = · · · = μk �= μk+1 = · · · = μn.
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The most popular methods are based on functionals of properly standardized cumu-
lative sums (CUSUM)

∑k
i=1(Xi−X̄n), k = 1, . . . , n, where X̄n = (1/n)

∑
1≤i≤n Xi.

For example, we reject H0 if

Tn,1 = max
1≤k≤n

|
k∑

i=1

(Xi − X̄n)|/(nσ2
n)1/2

is large, where and nσ2
n is a proper estimator for the variance of

∑
1≤i≤n εi. Simi-

larly, the R/S statistic proposed by Lo [10] is

Tn,2 =
1

(nσ2
n)1/2

[
max

1≤k≤n

k∑
i=1

(Xi − X̄n) − min
1≤k≤n

k∑
i=1

(Xi − X̄n)

]
.

The statistic Tn,2 was modified by Giraitis et al. [5] who introduced

Tn,3 =
1

n2σ2
n

⎛⎜⎝ n∑
k=1

⎡⎣ k∑
j=1

(Xj − X̄n)

⎤⎦2

− 1
n

⎡⎣ n∑
k=1

k∑
j=1

(Xj − X̄n)

⎤⎦2
⎞⎟⎠ .

Under suitable assumptions on the error terms all three test statistics are sensitive
w.r.t. change(s) in the mean (location). Asymptotic properties of Tn,1, i = 1, 2, 3
were derived under the conditions

(1.1) Eεi = 0, 1 ≤ i < ∞
and

(1.2) there is σ > 0 such that n−1/2
∑

1≤i≤nt

εi
D[0,1]−→ σW (t)

where {W (t), 0 ≤ t < ∞} is a Wiener process. (
D[0,1]−→ denotes weak convergence

in D[0, 1].) Condition (1.2) means that {εi} is a weakly dependent sequence which
satisfies the functional central limit theorem. Since Tn,i, i = 1, 2, 3 are functions of
n−1/2

∑
1≤i≤nt εi, (1.2) will yield the asymptotic distributions of the test statistics

both under H0 and HA. However, the estimator σ2
n must satisfy that σ2

n
P→ σ2

under H0 and at least it must be bounded in probability under the alternative. If
{εi} is a strictly stationary sequence with 0 < Eε20 < ∞, then the estimation of σ2

is based on the fact that it is related to the spectral density at 0. So one needs to
choose a kernel and the number of lags used in the estimation. One of the most
popular choices is Bartlett’s estimator. However the rate of convergence is very slow
even under H0 and σ2

n might go to infinity under HA. Modifications of the Bartlett
estimator in the change point context can be found in Berkes et al. [1] and Berkes
et al. [2]. Therefore it is desirable to develop procedures for testing H0 against HA,
where the estimator of σ2 from (1.2) is not needed. We develop such test procedures
based on functionals of CUSUMs.

In the definitions of Tn,i, i = 1, 2, 3, functionals of CUSUMs are computed for
the first k and the last n − k observations. If the difference between functionals is
large for at least one k, the null hypothesis of no change is rejected. We suggest
computing the ratio of the CUSUM functionals instead of the differences. This way
there will be no need for the estimation of σ2. Instead of using Tn,1 we suggest

Vn,1 = max
nδ≤k≤n−nδ

max1≤i≤k

∣∣∣∑1≤j≤i(Xj − X̄k)
∣∣∣

maxk≤i≤n

∣∣∣∑i≤j≤n(Xj − X̃k)
∣∣∣ ,
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where 0 < δ < 1/2 and

X̄k =
1
k

∑
1≤i≤k

Xi and X̃k =
1

n − k

∑
k<i≤n

Xi.

Similarly,

Vn,2 = max
nδ≤k≤n−nδ

max1≤i≤k

∑
1≤j≤i(Xj − X̄k) − min1≤i≤k

∑
1≤j≤i(Xj − X̄k)

maxk<i≤n

∑
i≤j≤n(Xj − X̃k) − mink<i≤n

∑
i≤j≤n(Xj − X̃k)

and

Vn,3 = max
nδ≤k≤n−δn

∑k
i=1

[∑i
j=1(Xj − X̄k)

]2
− 1

k

[∑k
i=1

∑i
j=1(Xj − X̄k)

]2
∑n

i=k+1

[∑n
j=i(Xj − X̃k)

]2
− 1

n−k

[∑n
i=k+1

∑n
j=i(Xj − X̃k)

]2 .

Our first result gives the convergence in distribution results for Vn,i, i = 1, 2, 3 under
H0. Let W (t), 0 ≤ t < ∞ be a Wiener process and define the following processes:

η1,1(t) = sup
0≤s≤t

|W (s) − (s/t)W (t)|,

η1,2(t) = sup
t≤s≤1

|W ∗(s) − (1 − s)/(1 − t)W ∗(t)|,

η2,1(t) = sup
0≤s≤t

(W (s) − (s/t)W (t)) − inf
0≤s≤t

(W (s) − (s/t)W (t)),

η2,2(t) = sup
t≤s≤1

(W ∗(s) − ((1 − s)/(1 − t))W ∗(t))

− inf
t≤s≤1

(W ∗(s) − ((1 − s)/(1 − t))W ∗(t)),

η3,1(t) =
∫ t

0

(W (s) − (s/t)W (t))2ds − 1
t

(∫ t

0

(W (s) − (s/t)W (t))ds

)2

and

η3,2(t) =
∫ 1

t

(W ∗(s) − ((1 − s)/(1 − t))W ∗(t))2ds

− 1
1 − t

(∫ 1

t

(W ∗(s) − ((1 − s)/(1 − t))W ∗(t))ds

)2

,

where W ∗(t) = W (1) − W (t).

Theorem 1.1. If H0, (1.1) and (1.2) hold then

(1.3) Vn,1
D→ sup

δ≤t≤1−δ

η1,1(t)
η1,2(t)

,

(1.4) Vn,2
D→ sup

δ≤t≤1−δ

η2,1(t)
η2,2(t)

and

(1.5) Vn,3
D→ sup

δ≤t≤1−δ

η3,1(t)
η3,2(t)

.
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We note that supδ≤t≤1−δ can be replaced with sup0<t≤1−δ in (1.3)–(1.5). Since

lim
t→1−

sup
t≤s≤1

∣∣∣∣W ∗(s) − 1 − s

1 − t
W ∗(t)

∣∣∣∣ = 0 a.s.,

lim
t→1−

sup
t≤s≤1

(
W ∗(s) − 1 − s

1 − t
W ∗(t)

)
(1.6)

− inf
t≤s≤1

(
W ∗(s) − 1 − s

1 − t
W ∗(t)

)
= 0 a.s.,

and

lim
t→1−

∫ 1

t

(
W ∗(s) − 1 − s

1 − t
W ∗(t)

)2

ds

− 1
1 − t

(∫ 1

t

(
W ∗(s) − 1 − s

1 − t
W ∗(t)

)
ds

)2

= 0 a.s.

we cannot replace supδ≤t≤1−δ with supδ≤t<1, in (1.3)–(1.5).
The Wiener process W has independent increments and therefore for any 0 < t <

1 we have that {W (s)−(s/t)W (t), 0 ≤ s ≤ t} and {W ∗(s)−((1 − s)/(1 − t))W ∗(t),
t ≤ s ≤ 1} are independent. Change of variable and the scale transformation of W
give that

η1,1(t) = sup
0≤u≤1

|W (ut) − uW (t)| D= t1/2 sup
0≤u≤1

|B(u)|, for all 0 < t < 1,

where B(u) = W (u) − uW (1) is a Brownian bridge. Therefore for any 0 < t < 1

η1,1(t)
η1,2(t)

D=
(

t

1 − t

)1/2 sup0≤u≤1 |B1(u)|
sup0≤u≤1 |B2(u)| ,

where {B1(u), 0 ≤ u ≤ 1} and {B2(u), 0 ≤ u ≤ 1} are independent Brownian
bridges. Similar arguments give

η2,1(t)
η2,2(t)

D=
(

t

1 − t

)1/2 sup0≤u≤1 B1(u) − inf0≤u≤1 B1(u)
sup0≤u≤1 B2(u) − inf0≤u≤1 B2(u)

and

η3,1(t)
η3,2(t)

D=
t

1 − t

∫ 1

0
B2

1(u)du −
(∫ 1

0
B1(u)du

)2

∫ 1

0
B2

2(u)du −
( ∫ 1

0
B2(u)du

)2

for any 0 < t < 1.
Kim [7] used ratio tests to detect changes in the persistence of a linear time series.

The asymptotic as well as the finite sample properties (including power) of Kim’s
test were investigated by Kim et al. [8] and Leybourne and Taylor [9]. Since we try
to detect changes in the means (location) our tests are different from Kim’s so we
need to investigate the asymptotic power. Let Δn = μk∗ − μk∗+1 be the size of the
change.

Theorem 1.2. If (1.1) and (1.2) and HA hold,

(1.7) k∗ = [nθ] with some 0 < θ < 1,
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and

(1.8) n1/2|Δn| → ∞,

then
Vn,i

P→ ∞, i = 1, 2, 3,

assuming that

(1.9) δ < θ < 1 − δ.

Our tests were developed to check if the mean has changed at an unknown time.
Ratio type tests can also be used to see if the sequence changes from “stationary”
into “difference stationary” . We say that the sequence is “stationary” if the sum of
the Xk’s satisfies the functional central limit theorem and “difference stationary”
if the Xk’s themselves satisfy the functional central limit theorem with suitable
normalization. Now we consider the following alternative:

H∗
A : there is 1 ≤ k∗ < n such thatXk =

{
μ + εk, 1 ≤ k ≤ k∗,

μ + εk∗ + . . . + εk, k∗ < k ≤ n.

The statistics Vn,i, i = 1, 2, 3 may not be able to detect if H0 or H∗
A hold, since even

under H∗
A the statistics have nondegenerate limit distributions. Hence we suggest

the following modification of the test statistics to detect H∗
A:

Zn,1 = max
nδ≤k≤n−nδ

maxk≤i≤n

∣∣∣∑i≤j≤n(Xj − X̃k)
∣∣∣

max1≤i≤k

∣∣∣∑1≤j≤i(Xj − X̄k)
∣∣∣ ,

Zn,2 = max
nδ≤k≤n−nδ

maxk<i≤n

∑
i≤j≤n(Xj − X̃k) − mink<i≤n

∑
i≤j≤n(Xj − X̃k)

max1≤i≤k

∑
1≤j≤i(Xj − X̄k) − min1≤i≤k

∑
1≤j≤i(Xj − X̄k)

and

Zn,3 = max
nδ≤k≤n−δn

∑n
i=k+1

[∑n
j=i(Xj − X̃k)

]2
− 1

n−k

[∑n
i=k+1

∑n
j=i(Xj − X̃j)

]2
∑k

i=1

[∑i
j=1(Xj − X̄k)

]2
− 1

k

[∑k
i=1

∑i
j=1(xj − X̄k)

]2
The limit distributions of Zn,i, i = 1, 2, 3 can be easily derived following the proof
of Theorem 1.2 and we get the following results:

Zn,1
D→ sup

δ≤t≤1−δ

η1,2(t)
η1,1(t)

, Zn,2
D→ sup

δ≤t≤1−δ

η2,2(t)
η2,1(t)

and Zn,3
D→ sup

δ≤t≤1−δ

η3,2(t)
η3,1(t)

.

Theorem 1.3. If (1.1), (1.2), (1.7)–(1.9) and H∗
A hold, then

Zn,i
P→ ∞, i = 1, 2, 3.

However, Vn,i, i = 1, 2, 3 have power against the alternative

H∗∗
A : there is 1 ≤ k∗ < n such that Xk =

{
μ + εk∗ + · · · + εk, 1 ≤ k ≤ k∗,

μ + εk, k∗ < k ≤ n.
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Theorem 1.4. If (1.1), (1.2), (1.7)–(1.9) and H∗∗
A hold, then

Vn,i
P→ ∞, i = 1, 2, 3.

The alternative H∗∗
A is somewhat the opposite of H∗

A; the first observations follow
a random walk and at k∗ they turn into a “stationary” sequence. Of course, the
statistics may not detect the difference between H0 and H∗

A. If we are interested
only if a change occured from or into a random walk at an unknown time, i/e.,we
are testing H0 against H∗

A ∪ H∗∗
A , we must combine Vn,i and Zn,i. Let

T̃n,i = max(Vn,i, Zn,i) i = 1, 2, 3.

Following the proof of Theorem 1.1 one can easily verify that under H0

T̃n,1
D→ max

{
sup

δ≤t≤1−δ

η1,2(t)
η1,1(t)

, sup
δ≤t≤1−δ

η1,1(t)
η1,2(t)

}
,

T̃n,2
D→ max

{
sup

δ≤t≤1−δ

η2,2(t)
η2,1(t)

, sup
δ≤t≤1−δ

η2,1(t)
η2,2(t)

}
,

Tn,3
D→ max

{
sup

δ≤t≤1−δ

η3,2(t)
η3,1(t)

, sup
δ≤t≤1−δ

η3,1(t)
η3,2(t)

,

}
.

Theorem 1.5. If (1.1), (1.2), (1.7)–(1.9) and H∗∗
A hold, then

T̃n,i
P→ ∞, i = 1, 2, 3.

Remark 1.1. It would be more natural to use δ = 0 in our results. However, as we
pointed out after Theorem 1.1, (1.6) yields that sup0<t<1 η1,1(t)/η1,2(t) = ∞ a.s.
By Chung’s law (cf. Csörgő and Révész [4]) for any ν > 1/2

lim
t→1−

(1 − t)−νη1,2(t) = ∞ a.s.

and therefore

(1.10) P{ sup
0<t<1

(1 − t)νη1,1(t)/η1,2(t) < ∞} = 1.

By (1.10) we conjecture that

max
1<k<n

(
1 − k

n

)ν
max
1≤i≤k

|
∑

1≤j≤i

(Xj − X̄k)|

max
k≤i≤n

|
∑

i≤j≤n

(XjX̃k)|
D→ sup

0<t<1
(1 − t)ν η1,1(t)

η1,2(t)
.

Using weight functions, the statistics Vn,2 and Vn,3 can be modified in a similar
way so one can take δ = 0 in the weighted statistics.

Remark 1.2. We would like to note that ratio tests can be derived not only for
partial sums with a Wiener limit but for more general processes.
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2. Applications

In our first example the error terms are linear processes defined as

(2.1) εk =
∞∑

i=0

αiδk−i,

where
(2.2)

δi,−∞ < i < ∞ are independent identically distributed random variables

and
Eδ0 = 0 and Eδ2

0 < ∞.

If

(2.3)
∑

0≤i<∞
|αi| < ∞ and

∑
0≤i<∞

αi �= 0,

then (1.2) holds with σ2 = Eδ2
0(
∑

0≤i<∞ αi)2. The proof of (2.3) is in Hannan [6]
(cf. also Wang et al. [12]). We would like to note that by Wu and Min [13], (1.2)
holds for sums of linear processes without assuming (2.2).

We studied the behaviour of Vn,1 when δ = 0.2. We used Monte Carlo simula-
tions to get critical values for sup.2≤t≤.8 η1,1(t)/η1,2(t). In our simulation study we
assumed that δi,−∞ < i < ∞ are independent standard normal random variables
and ci = ρi. This means that the observations are elements of of a stationary AR(1)
process with parameter ρ. The results in Table 1 suggest that the asymptotic criti-
cal values are acceptable even for moderate sample sizes, if ρ is not close to 1. The
power in Tables 2–7 is a decreasing function of ρ as ρ tends to 1. The location of
the time of the change has little effect on the power; the power is nearly the same
for k∗ = n/2 and k∗ = n/4.

In the second example we assume that εk are elements of a GARCH(1,1) sequence.
This means that εk satisfies the recursion

εk = δkτk and τ2
k = ω + αε2k−1 + βτ2

k−1, −∞ < k < ∞,

where ω > 0, α ≥ 0, β ≥ 0. Assuming that (2.2) holds and

Eδ2
0 < ∞ and αEδ2

0 + β < 1,

then Berkes et al. [2] proved that (1.1) is satisfied with σ2 = ω/(1 − αEδ2
0 − β).

Table 1

Simulated significance levels for Vn,1 when δ = 0.2

ρ
n Level 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
200 0.1 0.148 0.154 0.164 0.183 0.204 0.233 0.273 0.338 0.230
200 0.05 0.088 0.089 0.108 0.120 0.136 0.158 0.204 0.265 0.152
200 0.01 0.023 0.024 0.032 0.040 0.051 0.069 0.094 0.143 0.072
500 0.1 0.116 0.121 0.125 0.154 0.152 0.166 0.205 0.235 0.326
500 0.05 0.061 0.066 0.067 0.078 0.087 0.102 0.133 0.157 0.244
500 0.01 0.013 0.016 0.017 0.019 0.024 0.036 0.051 0.058 0.012

1000 0.1 0.120 0.100 0.110 0.120 0.130 0.150 0.168 0.200 0.230
1000 0.05 0.072 0.048 0.052 0.058 0.062 0.070 0.096 0.116 0.152
1000 0.01 0.016 0.004 0.004 0.004 0.008 0.010 0.018 0.022 0.072
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Table 2

Power of Vn,1 when δ = 0.2, Δ = 0.5 and k� = n/2

ρ
n Level 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
200 0.1 0.586 0.528 0.474 0.420 0.379 0.366 0.357 0.385 0.488
200 0.05 0.467 0.414 0.367 0.325 0.289 0.271 0.270 0.301 0.411
200 0.01 0.261 0.223 0.192 0.165 0.147 0.131 0.137 0.166 0.260
500 0.1 0.868 0.806 0.720 0.623 0.525 0.431 0.359 0.311 0.349
500 0.05 0.779 0.669 0.608 0.509 0.408 0.326 0.263 0.223 0.267
500 0.01 0.551 0.453 0.369 0.282 0.212 0.158 0.122 0.104 0.137

1000 0.1 0.974 0.940 0.892 0.836 0.700 0.558 0.424 0.358 0.308
1000 0.05 0.940 0.892 0.838 0.710 0.592 0.452 0.306 0.272 0.216
1000 0.01 0.818 0.700 0.596 0.492 0.362 0.254 0.148 0.128 0.118

Table 3

Power of Vn,1 when δ = 0.2, Δ = 1 and k� = n/2

ρ
n Level 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
200 0.1 0.962 0.929 0.880 0.807 0.718 0.613 0.523 0.465 0.511
200 0.05 0.919 0.872 0.805 0.720 0.616 0.516 0.427 0.381 0.430
200 0.01 0.775 0.694 0.604 0.505 0.4112 0.325 0.265 0.230 0.277
500 0.1 0.999 0.999 0.993 0.976 0.935 0.840 0.686 0.494 0.406
500 0.05 0.999 0.993 0.981 0.947 0.877 0.756 0.577 0.398 0.321
500 0.01 0.980 0.957 0.905 0.819 0.702 0.533 0.356 0.230 0.182

1000 0.1 1 1 1 0.998 0.992 0.954 0.846 0.592 0.350
1000 0.05 1 1 1 0.994 0.974 0.918 0.756 0.496 0.290
1000 0.01 1 0.996 0.988 0.966 0.890 0.776 0.536 0.302 0.144

Table 4

Power of Vn,1 when δ = 0.2, Δ = 1.5 and k� = n/2

ρ
n Level 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
200 0.1 0.999 0.997 0.989 0.970 0.925 0.842 0.719 0.594 0.553
200 0.05 0.996 0.987 0.972 0.937 0.871 0.764 0.630 0.501 0.471
200 0.01 0.969 0.938 0.889 0.812 0.706 0.572 0.440 0.341 0.327
500 0.1 1 1 1 1 0.997 0.977 0.904 0.717 0.493
500 0.05 1 1 1 0.998 0.989 0.952 0.838 0.622 0.402
500 0.01 1 0.999 0.995 0.982 0.941 0.837 0.661 0.410 0.248

1000 0.1 1 1 1 1 1 0.998 0.984 0.860 0.572
1000 0.05 1 1 1 1 1 0.998 0.964 0.788 0.460
1000 0.01 1 1 1 1 0.996 0.970 0.876 0.606 0.270

Table 5

Power of Vn,1 when δ = 0.2, Δ = 0.5 and k� = n/4

ρ
n Level 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
200 0.1 0.563 0.512 0.461 0.415 0.378 0.350 0.346 0.387 0.492
200 0.05 0.443 0.396 0.349 0.308 0.275 0.256 0.256 0.294 0.414
200 0.01 0.229 0.198 0.174 0.149 0.130 0.121 0.124 0.159 0.268
500 0.1 0.836 0.772 0.687 0.591 0.499 0.405 0.341 0.299 0.347
500 0.05 0.744 0.662 0.567 0.474 0.383 0.308 0.246 0.216 0.260
500 0.01 0.496 0.411 0.331 0.258 0.195 0.139 0.108 0.097 0.138

1000 0.1 0.964 0.946 0.894 0.812 0.698 0.556 0.412 0.300 0.268
1000 0.05 0.942 0.890 0.814 0.706 0.580 0.428 0.310 0.226 0.176
1000 0.01 0.798 0.694 0.592 0.450 0.328 0.228 0.150 0.090 0.082
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Table 6

Power of Vn,1 when δ = 0.2, Δ = 1 and k� = n/4

ρ
n Level 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
200 0.1 0.948 0.912 0.857 0.785 0.694 0.591 0.504 0.463 0.517
200 0.05 0.901 0.846 0.781 0.693 0.589 0.494 0.415 0.375 0.436
200 0.01 0.739 0.659 0.565 0.474 0.385 0.308 0.250 0.228 0.291
500 0.1 0.999 0.997 0.987 0.968 0.911 0.808 0.657 0.491 0.404
500 0.05 0.997 0.988 0.972 0.927 0.846 0.721 0.550 0.391 0.318
500 0.01 0.968 0.934 0.873 0.781 0.653 0.495 0.344 0.223 0.182

1000 0.1 1 1 1 0.998 0.994 0.952 0.820 0.590 0.368
1000 0.05 1 1 0.998 0.996 0.980 0.904 0.730 0.464 0.278
1000 0.01 0.998 0.994 0.962 0.874 0.726 0.488 0.266 0.126 0.082

Table 7

Power of Vn,1 when δ = 0.2, Δ = 1.5 and k� = n/4

ρ
n Level 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
200 0.1 0.999 0.995 0.984 0.962 0.909 0.830 0.712 0.598 0.566
200 0.05 0.993 0.983 0.968 0.922 0.854 0.753 0.624 0.505 0.483
200 0.01 0.961 0.923 0.871 0.795 0.682 0.556 0.429 0.340 0.343
500 0.1 1 1 1 0.999 0.994 0.966 0.874 0.695 0.499
500 0.05 1 1 0.999 0.995 0.982 0.931 0.808 0.601 0.402
500 0.01 0.999 0.997 0.990 0.966 0.915 0.803 0.622 0.409 0.239

1000 0.1 1 1 1 1 1 0.998 0.974 0.826 0.472
200 0.05 1 1 1 1 1 0.994 0.944 0.732 0.386
200 0.01 1 1 1 1 0.992 0.952 0.814 0.522 0.230

Table 8

Power of Vn,1 when ω = 1, α = 0.1 β = 0.1 and k∗ = n/2

n Level Δ Sim. sign. lev. Δ Power Δ Power Δ Power
200 0.1 0 0.182 0.5 0.615 1 0.968 1.5 0.999
200 0.05 0 0.07 0.5 0.499 1 0.962 1.5 0.997
200 0.01 0 0.02 0.5 0.270 1 0.802 1.5 0.975
500 0.1 0 0.114 0.5 1 1 1 1.5 1
500 0.05 0 0.06 0.5 1 1 1 1.5 1
500 0.01 0 0.01 0.5 0.600 1 0.984 1.5 0.999

1000 0.1 0 0.116 0.5 0.982 1 1 1.5 1
1000 0.05 0 0.06 0.5 0.962 1 1 1.5 1
1000 0.01 0 0.01 0.5 0.850 1 1 1.5 1

The simulations are based again on the assumption that the δi’s are independent
standard normal variables. Comparing Tables 8 and 9, we can conclude that the
ratio test is working well even for small sample sizes when the size of the change
is Δ = 0 (no change), Δ = 0.5, 1, 1.5. The values ω = 1, α = 0.1 and β = 0.1
correspond to very weak dependence between the observations while the choice
ω = 0.5, α = 0.1 and β = 0.7 corresponds to stronger dependence. In both cases
the power is high and the same power was obtained for k∗ = n/2 and k∗ = n/4.

3. Proofs

Proof of Theorem 1.1. We can assume without loss of generality that μ = 0. Let

Zn,1(t) = n−1/2
∑

1≤i≤nt

εi and Zn,2(t) = n−1/2
∑

nt<i≤n

εi
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Table 9

Power of Vn,1, when ω = 0.5, α = 0.1, β = 0.7 and k∗ = n/2

n Level Δ Sim. sign. lev. Δ Power Δ Power Δ Power
200 0.1 0 0.128 0.5 0.478 1 0.967 1.5 0.995
200 0.05 0 0.071 0.5 0.372 1 0.842 1.5 0.985
200 0.01 0 0.018 0.5 0.179 1 0.637 1.5 0.916
500 0.1 0 0.107 0.5 0.775 1 0.998 1.5 1
500 0.05 0 0.060 0.5 0.663 1 0.990 1.5 1
500 0.01 0 0.012 0.5 0.423 1 0.938 1.5 0.998

1000 0.1 0 0.116 0.5 0.954 1 1 1.5 1
1000 0.05 0 0.064 0.5 0.892 1 1 1.5 1
1000 0.01 0 0.008 0.5 0.744 1 0.998 1.5 1

Condition (1.2) yields that

(3.1) (Zn,1, (t)Zn,2(t))
D2[0,1]−→ σ(W (t), W ∗(t)),

where W ∗(t) = W (1) − W (t). Since

n−1/2 sup
1<i≤nt

∣∣∣∣∣∣
∑

1≤j≤i

(Xj − X̄[nt])

∣∣∣∣∣∣ = sup
0<i≤nt

∣∣∣∣Zn,1(i/n) − i

[nt]
Zn,1(t)

∣∣∣∣
and similarly

n−1/2 sup
nt<i≤n

∣∣∣∣∣∣
∑

i≤j≤n

(Xj − X̃[nt])

∣∣∣∣∣∣ = sup
nt<i≤n

∣∣∣∣Zn,2(i/n) − n − 1
n − [nt]

Zn,2(t)
∣∣∣∣ .

by (3.1) we have for all 0 < δ < 1/2,⎛⎝n−1/2 sup
0<i≤nt

∣∣∣∣∣∣
∑

1≤j≤i

(Xj − X̄[nt])

∣∣∣∣∣∣ , n−1/2 sup
nt<i≤n

∣∣∣∣∣∣
∑

i≤j≤n

(Xj − X̃[nt])

∣∣∣∣∣∣
⎞⎠

D2[δ,1−δ]−→ σ

(
sup

0<s≤t
|W (s) − (s/t)W (t)|, sup

t≤s≤1
|W ∗(s) − ((1 − s)/(1 − t))W ∗(t)|

)
.

Hence the proof of (1.3) is complete. The statistics Vn,2 and Vn,3 are also continuous
functionals of Zn,1(t), Zn,2(t), 0 ≤ t ≤ 1. Hence the arguments in the proof of (1.3)
can be repeated.

Proof of Theorem 1.2. Let k > k∗. Then the definition of Xj gives

i∑
j=1

(Xn − X̄k)

=

⎧⎨⎩
∑i

j=1 εj − i
k

∑k
j=1 εj − i(k−k∗)

k Δn, if 1 ≤ i ≤ k∗

∑i
j=1 εj − i

k

∑k
j=1 εj + (i − k∗)Δn − i(k−k∗)

k Δn, if k∗ < k.

If k = [nτ ] with some θ < τ < 1 − δ, we get that

n−1/2 max
1≤i≤k

∣∣∣∣∣∣
∑

1≤j≤i

(Xj − Xk)

∣∣∣∣∣∣ ≥ n−1/2

∣∣∣∣∣∣
∑

1≤j≤k∗

(Xj − X̄k)

∣∣∣∣∣∣
= OP (1) +

k∗(k − k∗)
k

n−1/2|Δn|.
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Since there is no change in the means of Xk, Xk+1 . . . , Xn, by Theorem 1.1 we have
that

n−1/2 max
k≤i≤n

∣∣∣∣∣∣
∑

i≤j≤n

(Xj − X̃k)

∣∣∣∣∣∣ D→ σ(1 − τ)1/2 sup
0≤t≤1

|B(t)|,

where {B(t), 0 ≤ t ≤ 1} is a Brownian bridge. Observing that k∗(k−k∗)n−1/2|Δn|/
k → ∞ we conclude that Vn,1

P→ ∞. Similar arguments yield the proof when i = 2
and 3.

Proof of Theorem 1.3. It follows from condition (1.2) that⎧⎨⎩n−1/2 max
1≤i≤k∗

∣∣∣∣∣∣
∑

1≤j≤i

(Xj − X̄k∗

∣∣∣∣∣∣ , n−3/2 max
k∗<i≤n

∣∣∣∣∣∣
∑

i≤j≤n

(Xj − X̃k)

∣∣∣∣∣∣
⎫⎬⎭

D→ σ

{
sup

0≤t≤θ

∣∣∣∣W (t) − t

θ
W (θ)

∣∣∣∣ ,
sup

θ≤t≤1

∣∣∣∣∫ 1

t

(W (s) − W (θ))ds − 1 − t

1 − θ

∫ 1

θ

(W (s) − W (θ))ds

∣∣∣∣} ,

proving that Zn,1
P→ ∞. Similar arguments give that Zn,i

P→ ∞ when i = 2 and 3.

Proof of Theorem 1.4. Simple modifications of of the proof of Theorem 1.3 gives
the results.

Proof of Theorem 1.5. It is an immediate consequence of Theorems 1.3 and 1.4.
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[2] Berkes, I., Horváth, L., Kokoszka, P. and Shao, Q.-M. (2006). On
discriminating between long–range dependence and changes in the mean. Ann.
Statist. 34 1140–1165.
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