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Abstract: In recent years, multiple hypothesis testing has come to the fore-
front of statistical research, ostensibly in relation to applications in genomics
and some other emerging fields. The false discovery rate (FDR) and its vari-
ants provide very important notions of errors in this context comparable to the
role of error probabilities in classical testing problems. Accurate estimation of
positive FDR (pFDR), a variant of the FDR, is essential in assessing and con-
trolling this measure. In a recent paper, the authors proposed a model-based
nonparametric Bayesian method of estimation of the pFDR function. In par-
ticular, the density of p-values was modeled as a mixture of decreasing beta
densities and an appropriate Dirichlet process was considered as a prior on the
mixing measure. The resulting procedure was shown to work well in simula-
tions. In this paper, we provide some theoretical results in support of the beta
mixture model for the density of p-values, and show that, under appropriate
conditions, the resulting posterior is consistent as the number of hypotheses
grows to infinity.

1. Introduction

Consider the problem of testing m null hypotheses H0,1, . . . , H0,m simultaneously,
where m is a large number. This type of multiple hypothesis testing problem has
received a lot of attention in recent years, primarily due to advanced data col-
lection techniques in genomics, microarray analysis, proteomics, fMRI and some
other fields. The analog of type I error probability in multiple testing problems
is given by the family-wise error rate, which is defined as the probability of mak-
ing at least one false rejection. Such a measure is too stringent when m is even
moderately large and will block many genuine discoveries (i.e., rejection of a false
null hypothesis). In a pioneering paper, Benjamini and Hochberg [2] introduced
the concept of the false discovery rate (FDR), the expected value of the ratio of
the number of false rejections to the total number of rejections, and described a
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procedure to control it. Mathematically, the FDR at a nominal level γ is given by
E(V/ max(R, 1)) = E(V/R|R > 0)P(R > 0), where R = R(γ) stands for the num-
ber of hypotheses rejected at nominal level γ and V = V (γ) is the number of false
rejections among these. Storey [11, 12] argued that the positive false discovery rate
(pFDR) (at nominal level γ) defined as E(V/R|R > 0), is a more relevant measure
to control. Storey’s approach consists of estimating the pFDR function at each γ
and choosing a γ so that the estimated pFDR function is within a given limit, α.
Storey [11, 12] showed that under a certain natural setup, the resulting procedure
controls pFDR by α. Some other related measures have also been considered in the
literature; see Benjamini and Hochberg [2], Efron and Tibshirani [3], Tsai et al. [14]
and Sarkar [10].

In order to estimate the pFDR function, Storey [11] considered a mixture model
setup, where each null hypothesis has a fixed probability, π, of being true. Thus,
the number of true null hypotheses, m0, is taken to be a random variable distrib-
uted as binomial (m, π). If the null hypothesis is true, then it is assumed that the
p-value associated with the corresponding test statistic is uniformly distributed.
The p-value when the alternative is true and has a fixed value θ, follows a distrib-
ution H = H(·|θ). It is somewhat unnatural to assume that the alternative value
remains fixed when the hypotheses themselves are appearing randomly. A more
natural assumption would be to assume that, given that null hypothesis is false,
the alternative is chosen randomly according to a distribution μ. Then, marginally,
the conclusion that the p-value under the alternative is distributed as H remains
unaffected, where now H stands for the mixture

∫
H(·|θ)dμ(θ). Under this setup,

Storey [11] showed that the pFDR at nominal level γ is given by the expression
πγ/[πγ + (1− π)H(γ)]. To estimate the pFDR, it then suffices to estimate π, since
the denominator can be estimated essentially by the empirical proportion R/m.
Actually, Storey [11] used a slightly different estimator to take into account the
problem of zeros in finite samples. Estimation of π is more delicate. Storey [11]
assumed that for some appropriate threshold value λ, all p-values over λ are as-
sociated with true null hypotheses. Equating the observed proportion of rejected
hypotheses with the expectation λ(1−π), and choosing λ appropriately, an estimate
of π, and hence that of pFDR, can be obtained.

Although Storey [11] did not make any explicit assumption about H, implicitly it
was assumed that H is concentrated near zero. It is this assumption that leads to the
conclusion that almost every p-value over level λ must arise from null hypotheses.
While this is reasonable, it introduces some bias in the analysis because, although
relatively rare, p-values bigger than λ can occur under alternatives as well.

The density of p-values under alternatives usually has more features than is
assumed above. These important features may be exploited to construct a more re-
fined estimator of pFDR. For instance, the density of p-values under an alternative
value is often decreasing, dropping from an infinite height at 0 to a very low or
no height at 1, and the derivative of the density approaches zero near the point 1.
These densities resemble beta (a, b) densities be(x; a, b) = (1/B(a, b))xa−1(1−x)b−1

with a < 1 and b ≥ 1, or their mixtures, where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the
beta function. A reasonable model may be proposed for this type of densities, and
based on the model it may be possible to estimate the pFDR function more ac-
curately. Tang et al. [13] modeled the p-value density under the alternative as a
mixture of beta densities and thereby incorporated some of the salient features of
the p-value density directly into the model. They followed a Bayesian approach by
putting a Dirichlet process prior on the mixing distribution of the beta parameters.
The resulting posterior is amenable to Markov chain Monte-Carlo methods of com-
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putation. Tang et al. [13] showed by simulation that the resulting procedure gives
more stable and accurate estimates of the pFDR function.

In this paper, we theoretically study the appropriateness of the model assump-
tions made in Tang et al. [13] and investigate the support of the Dirichlet mixture
of beta prior. Our results provide important theoretical justification for the setup
assumed in Tang et al. [13]. Under certain conditions, we show that the posterior
distribution of the pFDR function is consistent as the number of hypotheses tends
to infinity.

2. Mixture model framework

2.1. Basic setup

Suppose we have observed the values of the test statistics for testing m null hy-
potheses H0,i, i = 1, . . . , m, against appropriate alternatives. Let X1, . . . , Xm stand
for the p-values for the respective m tests. We assume that the tests are based on
independent data, so that X1, . . . , Xm are independent. We also assume that there
is a random mechanism which independently determines whether H0,i’s are true or
false, respectively with probability π and 1 − π. Let Hi = I(H0,i is true), be the
indicator that the ith null hypothesis is true. Of course, Hi’s are unobserved.

The distribution of Xi under H0,i can be assumed to be the uniform distribution
on [0, 1]. This happens whenever the test statistic is a continuous random variable
and the null hypothesis is simple, or in situations like the t-test or F-test, where
the null hypothesis has been reduced to a simple one by considerations of similarity
or invariance. Under more general situations, the property can still be expected to
be approximately true if, for instance, a conditional predictive p-value or a partial
predictive p-value (Bayarri and Berger [1]) is used; see Robins et al. [9] for details.
If the null and alternative hypotheses are one-sided and the underlying distribution
has the monotone likelihood ratio (MLR) property, then the power function is
increasing in the parameter, and, as a result, the null distribution of the p-value is
stochastically larger than the uniform. Many estimation procedures remain valid in
a conservative sense when the actual null distribution is replaced by the uniform. It
is easy to show that Storey’s estimators have this property. The Bayesian estimator
of Tang et al. [13] also enjoys the same property – see Tang et al. [13] for discussion.
Henceforth we shall assume that the null distribution of p-values is U [0, 1].

Let f(x) stand for the density of the p-value under an alternative distribution.
The following result shows that under a natural condition, f(x) is decreasing.

Proposition 1. Suppose that the p-value is computed using a statistic, T , whose
density, gθ, has the MLR property. Then the p-value density f(x) is decreasing.

Proof. Let θ0 stand for the value of the parameter under the null hypothesis and
θ1 stand for the value under the alternative. Let Tobs stand for the observed value
of T . Denote the cumulative distribution function (c.d.f.) of gθ by Gθ. Then the
distribution function of the p-value under θ1 is

Fθ1(x) = Pθ1(Pθ0(Tn > Tobs) ≤ x) = 1 − Gθ1(G
−1
θ0

(1 − x)).

Hence the p-value density is given by

(2.1) fθ1(x) =
gθ1(G

−1
θ0

(1 − x))

gθ0(G
−1
θ0

(1 − x))
=

gθ1(z)
gθ0(z)

,
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where z = G−1
θ0

(1 − x). By the MLR property, the expression in (2.1) is increasing
in z, equivalently decreasing in x.

For standard two-sided tests like the z-test or t-test, the density of the p-value un-
der the alternative is also decreasing. Under certain assumptions which are satisfied
generally, the following result shows a two-sided analog of the previous proposition.

Proposition 2. Suppose that the p-value is computed using a statistic T whose
density gθ is symmetric under the null hypothesis H0 : θ = θ0. Further suppose that
for the symmetrized density g̃θ(z) = (gθ(z) + gθ(−z))/2, the ratio g̃θ(z)/gθ0(z) is
increasing in z. Then the p-value density h(x) is decreasing.

Proof. With notations as in the last proof, the distribution function of the p-value
under θ1 is

Fθ1(x) = Pθ1(2Pθ0(Tn > |Tobs|) ≤ x)
= 1 − Gθ1(G

−1
θ0

(1 − x/2)) + Gθ1(−G−1
θ0

(1 − x/2)).

The p-value density can be seen to be given by

(2.2) f(x) = fθ1(x) =
gθ1(G

−1
θ0

(1 − x/2))

2gθ0(G
−1
θ0

(1 − x/2))
+

gθ1(−G−1
θ0

(1 − x/2))

2gθ0(−G−1
θ0

(1 − x/2))
=

g̃θ1(z)
gθ0(z)

,

which is decreasing in x by the given assumption.

The p-value density for a one-sided hypothesis generally decays to zero as x
tends to 1. Let L stand for the lower limit of the value of the test statistic, which
is often −∞. Assume that as z → L, we have that gθ1(z)/gθ0(z) → 0. Then, clearly
it follows from (2.1) that f(x) → 0 as x → 1, since z = G−1

θ0
(1 − x) → L as x → 1.

For a two-sided hypothesis, g̃θ1(z)/gθ0(z) will not generally go to 0 as z → L,
and hence the minimum value of the p-value density will be a (small) positive
number. For instance, for the two-sided normal location model, the minimum value
is e−nθ2/2, where n is the sample size on which the test is based.

2.2. Identifiability and continuity properties

If a c.d.f. F on [0,1] can be written as F (x) = πx + (1 − π)H(x), where H(·) is
another c.d.f. on [0,1], then the representation is generally not unique, so that π and
H are not separately identifiable. The components π and H can be identified by
imposing the additional condition that H cannot be represented as a mixture with
another uniform component, which, for the case when H has a continuous density
h, translates into h(1) = 0. Define the map π(F ) from the space of continuous c.d.f.
on [0,1] to [0,1] as the maximum possible value of π in the mixture representation
F (x) = πx + (1 − π)H(x). As in all mixture problems, H is not defined when
π(F ) is one, that is, F is the uniform distribution on [0,1]. When F physically
stands for the p-value distribution, π(F ) is an upper bound for the proportion of
null hypothesis and therefore π(F )γ/F (γ) is an upper bound for the actual pFDR.
Thus this choice of π is appropriate in a conservative sense in that in order to
control pFDR, it suffices to control the auxiliary quantity pFDR(F ; γ) defined as
π(F )γ/F (γ).

Let F stand for all F representable as F (x) = πx + (1 − π)H(x) for π ∈ [0, 1].
The following proposition shows an important upper-semicontinuity property of the
map π(F ). Let →w stand for weak convergence of probability distributions.
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(a) (b)

Fig 1. Plots of p-value density for t-test with 3 d.f. (a) p-value density of one-sided t-test.
(b) p-value density of two-sided t-test.

Proposition 3. The class F is weakly closed and the map F �→ π(F ) on F is
upper-semicontinuous, that is,

if Fn →w F, then lim sup
n→∞

π(Fn) ≤ π(F ).

Further, for any γ, lim supn→∞ pFDR(Fn; γ) ≤ pFDR(F ; γ).

Proof. Let Fn ∈ F and Fn →w F . Because πn = π(Fn) is a bounded sequence and
Hn in the representation Fn(x) = πnx + (1 − πn)Hn(x) is tight, we may assume
that both are convergent along a subsequence, to π∗ and H∗, respectively. Then
F (x) = π∗x + (1 − π∗)H∗(x), and hence F ∈ F .

Observe that for any F ∈ F , F̄ (λ) ≥ π(F )(1 − λ) for all 0 ≤ λ ≤ 1 and that
π(F ) = inf{F̄ (λ)/(1 − λ) : 0 < λ ≤ 1}. The infimum is attained because, by our
choice, π(F ) is the largest π in the mixture representation.

Now for any fixed λ0 which is a continuity point of F , we have that

lim sup
n→∞

π(Fn) = lim sup
n→∞

inf
λ

F̄n(λ)
1 − λ

≤ lim
n→∞

F̄n(λ0)
1 − λ0

=
F̄ (λ0)
1 − λ0

.

Since λ0 is arbitrary and the set of continuity points of F is dense in [0,1], the first
assertion follows.

The last relation clearly follows from the expression for pFDR.

Under additional restrictions, identifiability of the components π and H and
continuity of π(F ) may be established. For example, the following class of c.d.f.
F allows π and H to be identified from F . Assume that the p-value distribution
H under the alternative belongs to D, the class of c.d.f. on [0,1] which admits a
density h, with h(1) = 0. Let FD denote the class of all c.d.f. on [0,1] of the form
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F (x) = πx + (1− π)H(x) for π ∈ (0, 1) and H ∈ D. Let fπ,h = π + (1− π)h be the
corresponding mixture density.

Proposition 4. If fπ,h = fπ∗,h∗ , then π = π∗ and h = h∗.

Proof. fπ,h = fπ∗,h∗ implies π +(1−π)h(x) = π∗ +(1−π∗)h∗(x) for all x. Putting
x = 1 and using the fact that h(x) = h∗(x) = 0, we have π = π∗. This now implies
h = h∗ or H = H∗.

To study consistency, we need to show that π and h can be continuously solved
from f . However, the class FD is not weakly closed. We need to impose a restriction
on the class of alternative densities so that the tail at 1 remains thin even in the weak
limit. Let B denote a class of c.d.f. on [0,1] that is weakly closed and for all H ∈ B we
have limy→0 y−1H̄(1− y) = 0. The interval (1− y, 1] is open in [0, 1]. Hence, by the
portmanteau theorem, Hn →w H implies that H̄(1 − y) ≤ lim infn→∞ H̄n(1 − y).
Thus for the weak limit H of a sequence Hn ∈ B to be in B, one needs to be
able to interchange the order of the limits with respect to y and n. For instance, if
B = {H : H̄(1 − x) ≤ ψ(x) for all x < δ}, where δ > 0 is a fixed number and ψ is
a fixed function which satisfies ψ(x) = o(x) as x → 0 (like Cx1+ε), then the class
B satisfies the requirement. Let FB denote the class of c.d.f. on [0,1] representable
as F (x) = πx + (1− π)H(x) for π ∈ (0, 1) and H ∈ B. Note that FB need not be a
subset of FD as the c.d.f. in B need not have a density.

Proposition 5. Identifiability in Proposition 4 holds if F ∈ FB.

Proof. If πx + (1 − π)H(x) = π∗x + (1 − π∗)H∗(x) for all x, then

π(1 − x) + (1 − π)H̄(x) = π∗(1 − x) + (1 − π∗)H̄∗(x).

Dividing both sides by 1 − x and letting x → 1, we obtain π = π∗ and hence
H = H∗.

Proposition 6. The map (π, H) �→ Fπ,H is a homeomorphism from (0, 1) × B to
FB, where B and FB are the weak topology.

Proof. (Forward side) If πn → π and Hn →w H, then Hn(x) → H(x) at all
continuity points x, giving πnx + (1 − πn)Hn(x) → πx + (1 − π)H(x).

(Reverse side) Let Fπn,Hn →w Fπ,H . To show that πn → π and Hn →w H. Fix
any subsequence n′. It is enough to extract a further subsequence n′′ along which
πn′′ → π and Hn′′ →w H.

Because πn′ is bounded and Hn′ is tight, we can extract a further subsequence
n′′ such that πn′′ → π∗ and Hn′′ →w H∗ for some π∗ and H∗. By the closedness of
B under the weak topology, H∗ ∈ B (note that (1−x, 1] is an open subset of [0, 1]).
By the forward side, Fπn′′ ,Hn′′ →w Fπ∗,H∗ . Thus Fπ∗,H∗ = Fπ,H . By identifiability
in the class FB, π∗ = π and H∗ = H, and hence πn′′ → π and Hn′′ →w H. This
completes the proof.

2.3. Mixtures of beta densities

The shape of p-value densities under alternatives has similarities with the beta
density be(x; a, b) = (1/B(a, b))xa−1(1 − x)b−1, 0 < x < 1, for a < 1 and b ≥ 1.
Indeed, for the exponential model λe−λz, z > 0, with parameter λ and hypotheses
H0 : λ = λ0 against H : λ > λ0, it follows from elementary calculations that the
p-value density is exactly beta(a, 1) for some a < 1. Mixtures of beta (a, b) with
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a < 1 and b ≥ 1 make up a considerably large class still preserving the shape of the
p-value density, and hence can be considered as a model for p-value densities under
the alternative. The following result shows that many similar-shaped densities can
be pointwise represented as a mixture of beta (a, 1), a much narrower class.

Recall that a function ϕ on [0,∞] is called completely monotone if it has deriv-
atives ϕ(n) of all orders and (−1)nϕ(n)(z) ≥ 0 for all z ≥ 0 and n = 1, 2, . . ..

Proposition 7. If a density h(x) on (0, 1) with c.d.f. H can be represented as
h(x) =

∫ 1

0
axa−1dG(a) for all 0 < x < 1, then H(e−y) is a completely monotone

function of y on [0,∞).
Conversely, if h(x) is decreasing and H(e−y) is completely monotone, then

h(x) =
∫ ∞
0

axa−1dG(a) for some probability measure G on (0,∞) with
∫

a2dG(a) ≤∫
a dG(a).

Proof. If h(x) is a mixture of be(a, 1), we have that

H(x) =
∫ 1

0

xadG(a) =
∫ 1

0

e−a log x−1
dG(a).

Thus H(x) is the Laplace transform of G at the point log x−1. Put y = log x−1 so
that x = e−y and H(e−y) =

∫ 1

0
e−aydG(a), the Laplace transform of the probability

measure G. Hence it is completely monotone by Theorem 1 of Section XIII.4 of
Feller (1971).

To prove the converse, applying the same theorem and using the fact that H(1) =
1, we obtain the representation that H(e−y) =

∫ ∞
0

e−aydG(a) for some probability
measure G on (0,∞). Thus H(x) =

∫ ∞
0

xadG(a), and so h(x) =
∫ ∞
0

axa−1dG(a).
Now, as h is decreasing, 0 ≥ h′(x) =

∫
a(a − 1)xa−2dG(a). The result now follows

by letting x → 1.

Observe that
∫

a2 dG(a) ≤
∫

a dG(a) holds if G is concentrated on (0, 1], but it
is not necessary.

Remark 1. By a similar argument, if a density h(x) on (0, 1) can be represented
as h(x) =

∫ ∞
1

b(1 − x)b−1dG(b) for all 0 < x < 1, then the function H̄(1 − e−y) is
completely monotone as a function of y, where H̄(x) = 1 − H(x).

Conversely, if H̄(1 − e−y) is completely monotone in y and h(x) is decreasing,
then h(x) =

∫ ∞
0

b(1 − x)b−1dG(b) for some probability measure G on (0,∞) with∫
bdG(b) ≤

∫
b2dG(b).

Proposition 8. Let H1 stand for the class of decreasing densities h such that
H(e−y) is completely monotone and H2 stand for the class of decreasing densities
h such that H̄(1 − e−y) is completely monotone. A density h(x) on (0, 1) can be
represented as a mixture of be(a, b) if h(x) is a convex combination of densities of
the form ch1(x)h2(x) where h1 ∈ H1 and h2 ∈ H2.

Proof. Clearly it suffices to assume that h(x) = ch1(x)h2(x), where h1(x) =∫ ∞
0

axa−1dG1(a), h2(x) =
∫ ∞
0

b(1 − x)b−1dG2(b) and

c−1 =
∫ ∞

0

∫ ∞

0

abB(a, b)dG1(a)dG2(b).

Now defining dG(a, b) = cabB(a, b)dG1(a)dG2(b), we may write h(x) =∫
be(x; a, b)dG(a, b). The total mass of G is given by∫ ∞

0

∫ ∞

0

cabB(a, b)dG1(a)dG2(b) = cc−1 = 1,
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so that G is also a probability measure. This completes the proof.

2.4. Dirichlet mixture prior

Tang et al. [13] proposed a Dirichlet process prior (Ferguson [5]) for the mixing
distribution G. The parameters of a Dirichlet process DP(G0, τ) are the center
measure G0 = E(G), and the precision parameter τ > 0. The center measure G0

is the subjective guess about G, while τ controls the concentration of DP(G0, τ)
around G0.

The equivalent hierarchical representation in terms of latent variable (ai, bi),

Xi|ai, bi ∼ π + (1 − π)be(xi|ai, bi),
(ai, bi)|G i.i.d.∼ G,
G ∼ DP(G0, τ),

is extremely useful in developing the relevant MCMC algorithms for the computa-
tion of posterior. Tang et al. [13] used the reparameterization a = exp(−|La|) and
b = exp(|Lb|), and specified G0(a, b) = N(La|0, σ2

a)N(Lb|0, σ2
b ). Actually, any base

measure with full support on (0, 1) × (1,∞) will lead to a Dirichlet process with
large support.

3. Asymptotic properties of posterior

Consider a prior Π for H and independently a prior μ for π with full support on
[0, 1]. Let the true value of π and h be, respectively, π0 and h0 where 0 < π0 < 1.

Theorem 1 (General consistency). If h0 belongs to the L1-support of Π in the
sense that Π(‖h−h0‖1 < ε) > 0 for all ε > 0, then for every ε > 0, Pr(sup{|F (x)−
F0(x)| : 0 ≤ x ≤ 1} < ε|X1, . . . , Xm) → 1 a.s.

Proof. For any sequence Fn such that Fn(x) → F0(x) for all x, continuity of F0 and
Polya’s theorem imply that supx |Fn(x)−F0(x)| → 0. Thus given ε > 0, we can find
a weak neighborhood W of F0 such that F ∈ W implies supx |F (x) − F0(x)| < ε.
Thus it suffices to prove that for any weak neighborhood W of F0,

Pr{|π − π0| < ε, F ∈ W|X1, . . . , Xm} → 1 a.s. as m → ∞.

By Schwartz’s theorem for weak consistency (see Theorem 4.4.2 of Ghosh and
Ramamoorthi [8]), it suffices to show that for every ε > 0,

(μ × Π)
{

(π, h) :
∫

fπ0,h0 log
fπ0,h0

fπ,h
< ε

}
> 0.

Now fπ,h ≥ π, so fπ0,h0/fπ,h ≤ π−1fπ0,h0 , which is integrable, and the integral
π−1 is bounded by a constant when π lies in a neighborhood of π0. So by Lemma
7 of Ghosal and van der Vaart [7] or Theorem 5 of Wong and Shen [15]

∫
fπ0,h0 log

fπ0,h0

fπ,h
≤ Ad2

H(fπ0,h0 , fπ,h) log+

1
d2

H(fπ0,h0 , fπ,h)
,

where dH stands for the Hellinger distance. Also, as d2
H(f, g) ≤ ‖f − g‖1, it suffices

to show that L1-neighborhoods of fπ0,h0 gets positive probabilities under μ × Π.
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Now,
∫ 1

0

|[π + (1 − π)h(x)] − [π0 + (1 − π0)h0(x)]|dx

≤ |π − π0| +
∫ 1

0

|(1 − π) − (1 − π0)|h(x)dx

+(1 − π0)
∫ 1

0

|h(x) − h0(x)|dx

≤ 2|π − π0| + ‖h − h0‖1.

Since μ gives positive probabilities to neighborhoods of π0 and Π gives positive
probabilities to L1-neighborhoods of h0, the condition of prior positivity holds.

In view of Proposition 3, the following “upper semi-consistency” (a form of a
one-sided consistency) may be concluded.

Corollary 1. Under the conditions of Theorem 1, we have that for any ε > 0,
Pr(π < π0 + ε|X1, . . . , Xn) → 1 a.s. and that the posterior mean π̂m satisfies
lim supm→∞ π̂m ≤ π0 a.s.

Unfortunately, the above corollary has limited significance since typically one
would not like to underestimate the true π (and the pFDR) while overestimation is
less serious. In order to ensure that the convergence takes place, we need to enforce
additional restriction on the support of the prior to ensure continuity of π(F ) with
respect to the weak topology on the restricted space.

Corollary 2. Assume that Π is supported in B ∩ D and that h0 belongs to the
L1-support of Π. Then for any ε > 0, Pr(|π − π0| < ε|X1, . . . , Xn) → 1 a.s. and
that π̂m → π0 a.s.

Further, for any 0 < α < 1 and ε > 0,

Pr
{∣∣∣∣ πα

F (α)
− π0α

F0(α)

∣∣∣∣ < ε
∣∣X1, . . . , Xn

}
→ 1 a.s.

and the above convergence is uniform for α lying in compact subsets of (0, 1].

Proof. The proof of the first assertion follows from Theorem 1 and Proposition 6.
The second assertion follows from the first because πn → π0 and Fn(α) → F0(α)

implies that πnα/Fn(α) → π0α/F0(α), whenever 0 < F0(α) < 1, and this holds
whenever 0 < α < 1. In fact, the convergence is uniform over compact subsets of
(0, 1], because F0(α) remains uniformly bounded below there.

Now we consider a concrete prior obtained from a Dirichlet mixture of betas: Let
h(x) =

∫
be(x; a, b)dG(a, b), where G ∼ DP(τ, G0) and G0 is a probability measure

on (0, 1) × (1 + ε,∞) with full support. The lower bound b ≥ 1 + ε ensures that

H̄(1 − x) =
∫ 1

1−x

1
B(a, b)

ya−1(1 − y)b−1dy

≤
∫ 1

1−x

b(1 − y)b−1dy = xb ≤ x1+ε

since be(a, b) is stochastically dominated by be(1, b) (by the MLR property of beta
distribution) and taking mixtures preserves bounds for the probability of a given
set. This ensures that any H in the support of the prior lies in B. This leads to the
following consistency result for a Dirichlet mixture of beta prior.
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Theorem 2 (Full L1-support of beta mixture prior). For any true h0 ∈ B∩D
lying in the L1-closure of the above beta mixtures, consistency of pFDR holds for the
Dirichlet mixture of beta prior if the center measure G0 has support [0, 1]×[1+ε,∞).

Proof. First let h0(x) = hQ0(x) =
∫

be(x; a, b)dQ0(a, b). Given ε > 0, find η > 0
and M < ∞ such that Q0{a < η or b > M} < ε. Let Q∗

0 be Q0 restricted and
re-normalized to [η, 1] × [1, M ]. Then by Lemma A.3 of Ghosal and van der Vaart
(2001), it follows that ‖hQ0 − hQ∗

0
‖1 < 2ε. Thus it suffices to assume that Q0 is

supported over [η, 1]×[1+ε, M ] for some η > 0 and M < ∞. Now if Qn is a sequence
converging weakly to Q0, we may also assume that Qn{a < η or b > M} < ε for
all n and so that ‖hQn − hQ∗

n
‖1 < 2ε and Q∗

n converges weakly to Q0. For any
0 < x < 1, the beta kernel is a bounded continuous function on [η, 1)× (1, M ], and
hence hQ∗

n
(x) → hQ0(x). Scheffe’s theorem then implies that ‖hQ∗

n
− hQ0‖1 → 0.

Thus, given any ε > 0, if Q lies in a sufficiently small weak neighborhood of Q0,
then ‖hQ − hQ0‖1 < ε. As the center measure G0 has support [0, 1] × [1 + ε,∞],
the corresponding Dirichlet process has full weak support. Thus h0 belongs to the
L1-support of the prior, and hence consistency holds by Corollary 2.

Now more generally, if h0 can be approximated by beta mixtures in the L1-sense,
then also h0 lies in the L1-support as the support is a closed set. Hence consistency
is obtained.

Remark 2. Proposition 8 gives a sufficient condition for h0 to be in the L1-closure
of beta mixtures.

Remark 3. By Fubini’s theorem, the result continues to hold even if τ is given a
prior and G0 contains hyperparameters.

4. Conclusion

A mixture of beta densities be(a, b) with a < 1 and b > 1 forms a rich class of
densities with shapes like a reflected J. It is shown that, under various natural sce-
narios, such densities are appropriate for modeling the density of p-values arising
from alternative hypotheses. We have also shown that if for any c.d.f. H, H(e−y)
is a completely monotone function of y, then the corresponding density H is repre-
sentable exactly as a mixture of the above mentioned beta densities. The mixture
model is especially useful for Bayesian inference, where priors can be induced upon
the mixture densities through a Dirichlet process prior on the mixing distribution.
When hypotheses are randomly assigned as null or alternative with a specific prob-
ability, then the p-value distribution is a mixture of a uniform component and a
mixture of beta densities of the type mentioned above. By applying the general the-
ory of posterior consistency for density estimation, we have shown that the posterior
distribution for estimating the density of p-values is consistent at the true density
if it is of the given form and the prior on the mixing distribution has every distrib-
ution in its weak support. Under some further conditions which essentially separate
mixtures of beta densities from the uniform, it follows that posterior consistency for
density estimation leads to consistency in estimating positive false discovery rates
for multiple hypotheses testing. This property gives asymptotic justification of a
recently proposed Bayesian method of estimating positive false discovery rates by
the same set of authors.
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