
IMS Collections
Advances in Modern Statistical Theory and Applications: A Festschrift in honor of
Morris L. Eaton
Vol. 10 (2013) 63–82
c© Institute of Mathematical Statistics, 2013
DOI: 10.1214/12-IMSCOLL1204

The Origins of de Finetti’s Critique
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Abstract: Bruno de Finetti was one of the most convinced advocates of
finitely additive probabilities. The present work describes the intellectual pro-
cess that led him to support that stance and provides a detailed account both
of the first paper by de Finetti on the subject and of the ensuing correspon-
dence with Maurice Fréchet. Moreover, the analysis is supplemented by a useful
picture of de Finetti’s interactions with the international scientific community
at that time, when he elaborated his subjectivistic conception of probability.

1. Introduction

Finitely additive probabilities are indissolubly linked to the name of Bruno de Finetti
(1906-1985). Indeed, he has been one of the most convinced advocates of finite addi-
tivity, since he started working on the mathematical formulation that he proposed,
in 1930, for his subjectivistic conception of probability. Most of the recent contri-
butions to this topic in the literature rely on (English translations of) late works by
de Finetti, instead of considering his early papers containing a wealth of fresh and
original ideas. A typical feature of de Finetti’s late works is that they generally aim
at providing critical syntheses of his original way of thinking about crucial prob-
lems concerning: Probability, Induction, Statistics, Insurance, Economics, Politics,
to say nothing of the philosophical debate at large. Hence, in these writings he
makes limited use of mathematical formalism, omits precise references of an histor-
ical nature, whilst he often jumps at the chance of both controversial amusing hints
and sharp provocative cues. Nevertheless, late works share with the early ones the
feature of being faultless from the point of view of logical and conceptual accuracy.
It is not, then, surprising that, as far as finite additivity is concerned, essays on
de Finetti’s work often reduce the topic either to an intellectual activity or, at best,
to an issue of a mere mathematical taste. In the latter case, special attention is
given to connections and consequences of a formal nature. So, they generally fail to
shed some light on the intellectual efforts that led him to share that seemingly sin-
gular position. In fact, the authentic motivations supporting de Finetti’s stance in
probability can be found in his early works. These, among other things, are tersely
written and contain accurate formulations of theorems thus allowing one a more
sound understanding of his innovations.
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The main purpose of the present work is to discuss the first paper that, at the
best of this author’s knowledge, de Finetti devoted to the analysis of the effects of
considering as admissible finitely additive laws. See de Finetti (1930f). The title of
the paper, “Sui passaggi al limite nel calcolo delle probabilità”, could be translated
into “On the limit processes in the calculus of probability” and evokes the continuity
property of countably additive laws. Its content is carefully described and critically
annotated in Section 4. This follows a discussion, in Section 2, on the development of
de Finetti’s ideas and achievements in probability theory between 1927, the year of
his graduation, and 1930, the year of the publication of “Sui passaggi ...”. For a more
comprehensive illustration of de Finetti’s work, see Cifarelli and Regazzini (1996).
Section 3 provides a concise description of the mathematical theory of probability
deduced from de Finetti’s coherence principle. See de Finetti (1931c).

The present author is unaware of how “Sui passaggi ...” was received by the
Italian scientific community. However, the fact that it was not published in the
journal Rendiconti della Reale Accademia dei Lincei might conceal a cold reac-
tion by the most influential Italian probabilist of the time, namely Francesco Paolo
Cantelli (1875-1966). It is well-known that Cantelli was not enthusiastic about non
countably additive probabilities. See Cantelli (1917) and Cantelli (1935a,b, 1936).
A public reaction on the spur of the moment came from the famous French mathe-
matician Maurice Fréchet (1878-1973) who initiated an interesting correspondence
with de Finetti gathered into four published notes. See de Finetti (1930a,e), Fréchet
(1930b,c). The reading of this correspondence provides a vivid insight into the
stances of the two “competitors” that reflect two different ways of thinking still of
great interest. Then, this correspondence is reported and annotated in the present
paper as well. See Section 5.

I am delighted I am given the chance to write this work in honor of Joe Eaton
who devoted a distinguished part of his scientific research to the foundations of
probability and statistics.

2. De Finetti and other probabilists at the end of the twenties

De Finetti started coping with the fundamental task of formulating a satisfactory
and general theory of probability right after his graduation. Almost in the same
period he initiated his studies on the sequences of exchangeable events and on func-
tions with independent, stationary increments (f.i.s.i., for short). But, whilst his
investigations on these specific topics proceeded rapidly – cf., e.g., Regazzini (2007)
and Bassetti and Regazzini (2008) – the research on the foundations of probabil-
ity appeared somewhat bristling with difficulties. The major challenge arose from
the mathematical formulation of the subjectivistic conception of probability as ex-
pounded, from a philosophical viewpoint, in de Finetti (1931a), an essay that had
already been drawn up at the beginning of 1930. That time lag did not restrain
him from reaching considerable achievements, but led him to a retrospective crit-
ical reflection on some of his own results, that he had obtained within the realm
of countably additive probabilities. This happened during the second half of 1929,
when he reached the conclusion that such a condition is not necessary in order that
a function on a class of events can be viewed as a probability. Indeed the presenta-
tions, at the R. Accademia dei Lincei, of de Finetti (1929b) and de Finetti (1929a)
are the 7th of October and the 1st of December, respectively. The precise deduc-
tion of the characterizing properties of a probability law, from the subjectivistic
standpoint, were announced in both the replies to Fréchet. See de Finetti (1930a,e)
and de Finetti (1931c) for the final version.
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It is worth providing some further insight into this story. By assuming the con-
tinuity of the law of a f.i.s.i. based on Gaussian finite–dimensional distributions
(de Finetti, 1929c) de Finetti had stated that almost every trajectory turns out to
be nowhere differentiable: a result today ascribed to Paley, Wiener and Zygmund
(1933). Subsequently, he had shown that the probability distribution (p.d.) of Xt

is continuous, for each t > 0, whenever (Xt)t≥0 is a continuous f.i.s.i. (de Finetti,
1929b). A first clear statement of his concerns about the suitability of an analysis
confined to considering random functions governed by countably additive laws can
be found in de Finetti (1929a) where he deals with the problem of determining the
p.d. of the integral, on [0, t], of a f.i.s.i.. See next Section 4. It is in this last essay
that he announces the preparation of Sui Passaggi, with the purpose of investigat-
ing the issue from a more general viewpoint. It seems fair to say that Sui Passaggi
marks a turning point in de Finetti’s mathematical treatment of probability. After
hinting at the possible effects of such an afterthought on his own work, we linger
on describing the boundary conditions within which it matured.

As to the Italian scientific community, it has been already mentioned that Can-
telli claimed to be unconditionally in favor of countable additivity. As an example,
in his celebrated paper on the strong law of large numbers – see Cantelli (1917) – he
had declared “Such an assumption plainly cannot raise objections from a theoretical
viewpoint, and corresponds to the feeling that probability, viewed from an empirical
angle, arouses in us”. He made no mention of the fundamental problem of the exis-
tence of a countably additive extension of sequences of assigned finite–dimensional
laws of (X1, . . . , Xn), for n = 1, 2, . . ., to obtain a probability law for (Xn)n≥1. See
also Seneta (1992) and Regazzini (2005). We do not know whether he ignored or
not the existence of such a problem that was completely solved later by Kolmogorov
(Kolmogorov, 1933). In fact, it was only in 1932 that Cantelli proposed a measure–
theoretic approach with an explicit view to proving existence of extensions like the
previous one. See, in particular, Ottaviani (1939), which includes one of the main
achievements within the so–called Cantelli abstract theory of probability. As far as
the issue of interpreting the meaning of probability is concerned, Cantelli swung
between an empirical interpretation and a bent for finding conceptual connections
between his abstract theory and the classical Laplace definition. It is certain that
he had no sympathy for subjectivistic interpretations.

As regards his interactions with the broader international scientific community,
de Finetti has been keeping up correspondences with some of the foreign foremost
scholars such as Fréchet, Lévy, Khinchin and Kolmogorov since the end of the 20’s.
It is well–known, for example, that Alexandr Y. Khinchin (1894–1959) took in-
terest in the study of sequences of exchangeable events during and after the 8th
International Congress of Mathematicians held in Bologna, 3–10 September, 1928.
See Khinchin (1932a,b). Andrei N. Kolmogorov (1903-1987), following the theory
devised by de Finetti in ’29, obtained the renowned representation of the charac-
teristic function of X1, when (Xt)t≥0 is a f.i.s.i. and X1 has finite variance. The
starting point for this research is in de Finetti (1930c), whereas the Kolmogorov
contribution is contained in Kolmogorov (1932a,b). Also the generalization due to
Khinchin of the Kolmogorov statement can be viewed, unlike that given by Lévy, as
a by–product of the de Finetti approach to functions with independent increments.
See Khinchin (1937) and Lévy (1934). In the period 1929-1930, de Finetti focused
on a paper by Kolmogorov concerning the representation of associative means. See
Kolmogorov (1930) and de Finetti (1931b). Both Fréchet and Evgeny E. Slutsky
(1880–1948) were mentioned by de Finetti for contributions to stochastic conver-
gence: the former for the study of convergence of random elements in abstract spaces
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(see de Finetti, 1930e), the latter for the use of the term stochastic that de Finetti
adopted to designate convergence in probability (see de Finetti, 1930f). As to Paul
Lévy (1886–1971), it is well–known that he conceived and developed his funda-
mental contribution to f.i.s.i.’s independently of both de Finetti and Kolmogorov.
See Lévy (1970). On de Finetti’s side, Lévy’s Calcul des Probabilités (1925) and
Castelnuovo’s Calcolo delle Probabilità e Applicazioni (1919) were the sole existing
reference books at the end of the twenties, gathering the essentials of the theory
and calculus of probability in a systematic way. Like Cantelli, Lévy was inclined
to restrict probability laws to countably additive functions on events, and tried to
justify his position in the final part of the book.

As to the meaning and the interpretation of the concept of probability, the span
of time we are dealing with overlaps with the success of the so–called empirical
conceptions, according to which probability is related to frequency. This position
was defended, in those years, by great scientists like Guido Castelnuovo (1865–
1952) and Richard von Mises (1883–1953). See, for example, von Mises (1928). De
Finetti had found the empirical arguments incomplete and inadequate since the very
beginning of his own approaching the probabilistic studies. Unsatisfied, he followed
a different path that led him to the formulation of a radically subjectivistic theory,
with the consequence that countable additivity is not necessary in order that a set
function may be considered a probability. A brief description of de Finetti’s theory
will be sketched in the next section. We conclude the present one with a digression
about the spread of basic elementary concepts in the literature of the day, by means
of an example. The research into the subject has been suggested by the reading of
Sui Passaggi and regards, in particular, definition and properties of convergence in
probability.

In Section 8 of that paper, de Finetti reminds the reader of a definition given
in de Finetti (1929a) – the definition of convergence in probability of sequences of
random numbers – and proves that convergence in probability entails convergence
in distribution. It will be explained, in Section 4, why he had been led to deal with
this arrangement of topics. Here we want to comment on the fact that in neither
of the two papers does he mention any reference and he proposes to designate
the concept by the locution convergenza stocasticamente uniforme (stochastically
uniform convergence). Combining this circumstance with the fact that de Finetti
was used to carefully mention references, including those having little bearing on
the development of his own research, one is led to conclude that the concept of
convergence in probability was not yet a part of the probabilistic literature at the
time. This may seem amazing. It is worth recalling that the topic of convergence of
sequences of random numbers had generated heated controversies, not yet dulled
at the end of the twenties. A significant part of the contention can be traced back
to Cantelli’s determination in claiming his priority, over Emile Borel (1871–1956),
for the formulation of the strong law of large numbers. See, for example, Seneta
(1992) and references therein. Stimulated by the draft of the present paper, we
have thoroughly examined the literature of that time and we have got to the con-
clusion that de Finetti was probably the first to consider sequences having a ran-
dom number as a limit. Moreover, one should acknowledge his priority in proving
that convergence in probability is stronger than convergence in distribution. The
statement on page 25 of Seneta (1992), according to which “Cantelli (1916) had
anticipated Slutsky (1925) in introducing a random variable (rather than just a con-
stant) as a limit ... of convergence in probability”, does not seem correct. Indeed,
on the one hand, Cantelli (1916) deals with constant limits only –see also Cantelli
(1935a) – and, on the other hand, Slutsky (1925) considers only sequences of the
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type (Xn−mn)n≥1 converging to zero for some sequence (mn)n≥1 of real numbers
(stochastische Asymptote). A more delicate analysis must be devoted to the Fréchet
work on convergence of random sequences. It is Fréchet himself who gave notice,
in his comments on Sui Passaggi that were presented on the 3rd of July 1930 at
the Reale Istituto Lombardo, of a work of his having some points of contact with
de Finetti’s paper. He did not mention the title of his article, which was referred
to as a summary of his recent courses, and announced it was going to appear in
the (Italian) statistics journal Metron. Indeed, it was published in the last issue of
that year. See Fréchet (1930b) and Fréchet (1930a). In the meantime, de Finetti
had come by the Fréchet paper: this is witnessed by the fact he touches upon it in
his reply to the Fréchet first group of comments on Sui Passaggi. De Finetti con-
fines himself to saying that, apart from what is consequence of the assumption of
countable additivity, he has particularly appreciated the study of the convergence
of sequences of random elements taking values in abstract metric spaces. See the
last part of Fréchet (1930a). The first sections contain accurate descriptions of the
concepts of convergence in probability and of almost sure convergence for sequences
of random numbers. As to the former, the definition is obviously the very same as
that previously proposed, under different name, by de Finetti. Moreover, also the
Fréchet work contains a proof of the fact that convergence in probability entails
convergence in distribution. The funny thing is that he omits giving precise refer-
ences to the points of contact with Sui Passaggi. In fact, he just mentions works
by Slutsky, Dell’Agnola and de Finetti, without specifying either titles or other
bibliographical data. He justifies these omissions by writing that “... nous n’avons
pu consulter assez librement et complètement les publications de M. Slutsky ...
Par contre les mémoires de M.M. Dell’Agnola et de Finetti ne nous paraissent pas
consacrés aux mêmes questions que celles qui ont été traitées ici.” Such a comment
is not appropriate either for Dell’Agnola (1929) or for Sui Passaggi. But, while the
former will be mentioned in Chapter 5 of Fréchet (1937), de Finetti’s contribution
will be ignored even on that occasion, in spite of the anything but negligible over-
lapping. So, de Finetti was probably the first to introduce a general definition of
convergence in probability and to study its connections with convergence in law,
but Fréchet was closely following him on this path. Situations of this type are not
infrequent in de Finetti’s scientific production. Other noteworthy examples are rep-
resented by: (i) the concept of infinitely divisible law, introduced to encapsulate the
characterizing feature of the law of X1 in a stochastic f.i.s.i. (Xt)t≥0 (see de Finetti
(1929c, 1930c)); (ii) the completion of the continuity theorem for characteristic
functions, to provide the first proof of the renowned representation theorem for
exchangeable events (see de Finetti (1930b)); (iii) the extension of the Kolmogorov
theorem for associative means (see de Finetti (1931b)); (iv) the anticipation of the
so–called Kendall’s τ coefficient, in a general study on correlation and concordance
(see de Finetti (1937)); (v) a pioneering use, almost contemporaneously with Lévy,
of the notions of martingale, stopping time and optional sampling, to reformulate
the Lundberg–Cramér theory of risk, without coining any new locution to designate
them (see de Finetti (1939)). The recurrence of these circumstances is the result of
a combination of his special mathematical inventiveness with the fact that, as he
wrote himself, “he was interested in mathematics meant as a tool for applications
... and for the investigation of conceptual and critical issues ..., rather than as for-
malism or as an abstract subject, axiomatized and withdrawn in itself.” See Page
XVIII of de Finetti (1981). This attitude prevented him from isolating results that
were merely proved with a view to the solution of a more general problem. It also
made it difficult to acknowledge the paternity of a number of scientific innovations.
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3. De Finetti’s coherence principle

Responding to Fréchet’s second series of remarks, de Finetti claims that the most
significant point of the question on additivity lies in the need of proofs for the
properties (of probability) that one wishes to affirm. See de Finetti (1930a). For
those who, like us, are accustomed to affirm those properties by means of ax-
ioms, de Finetti’s recommendation might appear as the fruit of an outdated way
of thinking. However, it is plain to see that it represents the most reasonable way
to settle the dispute constructively. Then, he asks every author to provide a proof
of one’s own, consistent with a well-specified conceptual starting point. For a com-
plete understanding of the coming sections, it is useful to recall the solution to
which de Finetti himself always made reference, starting from the end of 1929. See
de Finetti (1930d) and de Finetti (1931c).

He maintains probability assessments definitely have a subjectivistic source, but
one can conceive the following ideal experiment to check on the closeness of a real–
valued function P , defined on a class E of events, to one’s authentic opinions on
the uncertainty of the elements of E . One ought to think of {P (E) : E ∈ E } as
a system of unit prices to have bets on the events included in E . More precisely,
if one is willing to accept bets of any amount (either positive or negative) at the
unit prices fixed by the above system, then P represents the desired quantification
of one’s judgments. De Finetti assumes an ounce of rationality, in the sense that P
is required to ensure that there is no choice of c1, . . . , cn in R and of E1, . . . , En in
E such that sup

∑n
k=1 ck{P (Ek)−1Ek

} < 0, where sup is taken with respect to all
the elements (elementary events) of the partition of the sure event Ω generated by
{E1, . . . , En}, and 1E denotes the indicator function of the event E. Indeed, with
this notation,

∑n
k=1 ck{P (Ek) − 1Ek

} represents the gain from a combination of
bets of amount c1, . . . , cn on E1, . . . , En, respectively. These remarks led de Finetti
to restrict the class of admissible probability laws, on E , to those which obey the
coherence principle, i.e.:

For all finite subsets {Ei : i ∈ I} of E and {ci : i ∈ I} of R, P satisfies

(1) sup
∑
i∈I

ci{P (Ei)− 1Ei} ≥ 0

with sup taken with respect to all elementary events relative to {Ei : i ∈ I}.
Any P satisfying this property is said to be a probability on E .
Existence of at least one probability law on E is proved in de Finetti (1930d).

It is of great interest the fact that coherence is well-defined, independently of the
structure of E . Moreover, as proved in de Finetti (1930d), any probability on E
admits a coherent extension to any larger class of events.

As to the properties that one wishes to affirm, with a view to the calculus of
probabilities, it is easy to prove that coherence entails:

(π1) If Ω ∈ E , then P (Ω) = 1
(π2) P (E) ≥ 0 for every E in E
(π1) If E1, E2 and E1 ∪ E2 are in E , with E1 ∩ E2 = ∅, then

P (E1 ∪ E2) = P (E1) + P (E2).

Moreover: If E is an algebra, then (π1), (π2) and (π3) are also sufficient in order
that P : E → R can be considered a probability. See de Finetti (1931c).
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That is de Finetti’s proof that countable additivity is not necessary for a function
to be a probability on an algebra of events.

It would be misleading to consider countable families of bets with the purpose
of extending additivity to countable families of pairwise disjoint events. Indeed, if
one proceeds in this direction, it would be necessary to introduce extra–conditions,
completely extraneous to the common interpretation of the term probability, in
order to give a precise and unambiguous meaning to the gain.

To conclude, we mention a couple of facts that are of importance for understand-
ing a few of the coming examples. Let (Pn)n≥1 be a sequence of probabilities on E
and let L := {E ∈ E : limn→∞ Pn(E) exists} �= ∅. Then Q(E) := limn→∞ Pn(E)
is a probability on L . It should be noted that Q is not necessarily countably addi-
tive even if each Pn is countably additive. The second fact to be considered herein is
concerned with the general theory of stochastic processes. De Finetti has frequently
referred to it, even if tacitly, in his already mentioned papers on random functions.
Only at the end of the last century it was noticed and encapsulated into a theorem
by Lester E. Dubins (1920–2010). See Dubins (1999). Define two (real–valued) ran-
dom functions on [0,+∞) to be cousins if the family J of finite–dimensional p.d.’s
of one of the functions is the same as the J of the other random function. Dubins
proves that each random function, in particular the Brownian motion, has a cousin
almost all of whose paths are polynomials, another cousin almost all of whose paths
are step functions (on each bounded time–interval, they only have a finite number
of values, each assumed on a finite union of intervals) that are continuous on the
right (on the left), and a fourth cousin almost all of whose paths are continuous,
piecewise–linear functions. Hence, in the next sections there will be no contradic-
tion when, referring to de Finetti, continuous random functions will be considered
with independent and stationary increments, different from the Brownian motion.

4. Presentation and critical comment of Sui Passaggi

The paper we are now going to analyze consists of nine sections. The first three are
devoted to the explanation of some elementary facts concerning p.d. functions: these
provide simple illustrations of how certain conclusions, valid for countably additive
probabilities, do not generally hold for finitely additive probabilities. Sections 4 to
8 deal with convergence of sequences of random variables and include interesting ,
and somewhat amazing, remarks about the Cantelli strong law of large numbers.
Finally, in Section 9, de Finetti goes back over the problem that had led him to the
reflection developed in the previous sections: Is the p.d. of the integral of a random
function equal to the limit of the laws of the integral sums?

4.1. Discussion of Sections 1–3

De Finetti starts with the p.d. function of a random number X, defined as

F (x) = P{X < x} (x ∈ R)

and lingers on the correct interpretation of the discontinuity points of F , within a
finitely additive framework. In order to avoid unnecessary complications, think of
P as a probability on 2Ω, Ω being a set and X a real–valued function defined on Ω.
See the previous section for the definition and the existence of a probability on 2Ω,
and for de Finetti’s attitude with respect to the general theory of probability at
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the end of 1929, when he was writing Sui Passaggi. In particular, he was perfectly
aware of the existence of probabilities P such that P (D) = 1 and P ({x}) = 0 for
some countable D ⊂ Ω and for every x in D. Since this will occur quite often in
discussing de Finetti’s paper, we now indicate a way to obtain probabilities of that
type.

Example 1. Let D be a countably infinite subset of Ω, say D = {x1, x2, . . .}, and
let Pn be a probability on 2Ω defined by

Pn(A) :=
�(A ∩Dn)

n
(A ⊂ Ω)

with Dn := {x1, . . . , xn}. Write L := {A ⊂ Ω : limn→∞ �(A ∩Dn)/n exists} and
set P (A) := limn→∞ Pn(A) for every A in L . As recalled in the previous section,
P is a probability on L and, then, it admits a coherent extension γ on 2Ω such
that γ({xk}) = 0 and γ(D) = 1.

We are in a position to discuss the main issue of the present section, i.e. the cor-
rect interpretation of discontinuity for a p.d. function, within the frame established
in Section 3. Under the ordinary condition of countable additivity, for any d of such
type one would get F (d − 0) = F (d) = P{X < d} < F (d + 0) = P{X ≤ d} and,
consequently, F (d+ 0)− F (d− 0) would represent the probability concentrated in
{d}. This statement is not necessarily true if P is just finitely additive: in this case,
one can only say that the following chain of inequalities holds true:

(2) F (d− 0) ≤ P{X < d} ≤ P{X ≤ d} ≤ F (d+ 0)

along with F (d− 0) < F (d+ 0) if d is a discontinuity point.
What de Finetti points out as a frequent mistake – in which, as recalled in

Section 2, he himself had been trapped – the fact that many authors resorted to
passages to the limit without preventive proof of the necessity of any condition
justifying the limit processes along monotone sequences of events. Assuming either
of the equalities F (d−0) = P{X < d}, F (d+0) = P{X ≤ d} might be an instance
of that mistake, as displayed in the following example drawn from Sui Passaggi.

Example 2. Let Ω = R and (xn)n≥1 be a sequence with xn+1 < xn, for every n,
and xn ↓ 0. Define D and γ as in the previous Example 1, and the random number
X by X(ω) = ω for every ω in Ω = R. Then, the p.d. function F of X satisfies
F (x) = 1 − P{X ≥ x} = 1 for every x > 0, and F (x) = P{X ≤ x} = 0 for every
x ≤ 0. So, the jump (= 1) of F at d = 0 does not represent a mass concentrated in
{0}.

This example shows that the inequality to the right of (2) cannot be replaced by
equality, excepting special cases. To see that an analogous remark can be made for
the inequality to the left, it is enough to consider the case of a sequence (yn)n≥1

with yn < yn+1 for every n and yn ↑ 0. Now, replacing P with a probability Q
for which Q({yk}) = 0 for every k and Q({y1, y2, . . . , }) = 1, the consequent p.d.
function G of X satisfies G(x) = 0 for x < 0 and G(0) = 1 = P{X < 0}. It should
also be noted that H := pF +(1− p)G is a p.d. function for each p in [0, 1], and for
every p in (0, 1) inequalities under discussion hold on both sides of (2) when F is
replaced by H and P by pP + (1− p)Q. It is also straightforward to find variants
exhibiting concentrated masses, which satisfy

P{X = d} < F (d+ 0)− F (d− 0).
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As to the behavior of a p.d. function F at −∞ (+∞, respectively), what can be
said, in general terms, is that limx→−∞ F (x) ≥ 0 (limx→+∞ F (x) ≤ 1, respectively),
strict inequalities being possible,

4.2. Discussion of Sections 4–9

In Sections 4–6, de Finetti discusses an important case in which, on the basis of
the tacit assumption of continuity for probabilities, authors of the time were led
to endow strong laws of large numbers with a meaning more general than one’s
due. De Finetti focuses on Cantelli’s proof of the convergence of the frequency of
success relative to n trials, in a sequence of Bernoulli trials, as n goes to infinity.
To tackle the problem in the usual terms, define Ω to be the set of all sequences
d := (dn)n≥1, each dn being 0 or 1. Then, for each n define the n–th projection
pn(d) := dn (d ∈ Ω), and set

fn(d) =
1

n

n∑
j=1

pj(d).

Then, fn represents the frequency of 1 in the first n trials. Let P be any probability
on 2Ω such that

P ({d ∈ Ω : p1(d) = e1, . . . , pn(d) = en}) = p
∑n

i=1 ei(1− p)n−
∑n

i=1 ei

where (e1, . . . , en) is any point in {0, 1}n, with n = 1, 2, . . ., p some fixed point in
[0, 1], and provided that 00 = 1. Under these conditions, which imply that (pn)n≥1

is a Bernoulli sequence, Cantelli had proved that, for every ε, δ > 0, there is n0 =
n0(ε, δ) such that

(3) inf
m≥1

P

({
max

n≤k≤n+m
|fk − p| ≤ ε

})
≥ 1− δ

holds for any n ≥ n0.
It must be said that assessments of P for which

inf
m≥1

P

({
max

n≤k≤n+m
|fk − p| ≤ ε

})
= P

({
max
k≥n

|fk − p| ≤ ε

})
,

obtained by interchanging limm→∞ with P , are consistent with the Bernoulli as-
sumptions even in the frame of de Finetti’s theory, but they are not the sole. In
particular, there are assessments for which one cannot say that (fn)n≥1 converges
to p with probability one, even though (3) is obviously valid. In Section 5 de Finetti
illustrates the situation by means of the following interesting example.

Example 3. In the space Ω of all sequences d, each dn being 0 or 1, define Sn

to be the set of all sequences (e1, . . . , en−1, 1, 0, 0, . . .) obtained, for each n ≥ 2,
as (e1, . . . , en−1) varies in {0, 1}n−1. Moreover, set S1 := {1, 0, 0, . . .}. So Ω1 :=
∪n≥1Sn is the set of all sequences in Ω with a place occupied by 1 and followed by
an entire sequence of 0’s. Now, consider the sequence (Qn)n≥1 of probabilities on
2Ω defined by Q1(S1) = 1 and, for any n ≥ 2

Qn({e1, . . . , en−1, 1, 0, 0, . . .}) = p
∑n−1

i=1 ei(1− p)n−1−∑n−1
i=1 ei
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for any (e1, . . . , en−1) in {0, 1}n−1. Clearly Qn(Sn) = 1 for every n ≥ 1. Finally,
consider the probability γ of Example 1, with Ω = N := {1, 2, . . .} and, for any
subset A of Ω, set

Q(A) :=

∫
N

Qn(A) γ(dn)

the integral being meant in the sense of Riemann-Stieltjes as explained, for example,
in Rao and Rao (1983). It is easy to verify that Qn({p1 = e1, . . . , pN = eN}) =

p
∑N

i=1 ei(1− p)N−∑N
i=1 ei holds true for every n ≥ N + 1 and, since γ({N + 1, N +

2, . . .}) = 1 for every N , one gets

Q({p1 = e1, . . . , pN = eN}) =
∫
{n≥N+1}

Qn({p1 = e1, . . . , pN = eN}) γ(dn)

= p
∑N

i=1 ei(1− p)N−∑N
i=1 ei .

This is tantamount to saying that (pn)n≥1 is a Bernoulli sequence with respect to
Q. Then, (3) continues to be valid with Q in the place of P . Moreover, for each d
in Ω1 := ∪n≥1Sn one has

fn(d)→ 0 as n→∞.

Thus, since Q(Ω1) =
∫
N
Qn(∪k≥1Sk) γ(dn) ≥

∫
N
Qn(Sn) γ(dn) = 1, one sees that

(fn)n≥1 converges to zero almost surely, and not to p.

The phenomenon highlighted in the previous example can be explained in the
following terms. There is an instant n beyond which each trial turns into a failure
(= 0). One is not able to predict when such an instant happens but, according
to the definition of γ, n is viewed as immensely distant. Hence, the probability of
events which depend on any finite number of trials are not affected by the instant the
sequence becomes a sequences of 0’s. An analogous example has been provided, more
recently, by Ramakrishnan and Sudderth in Ramakrishnan and Sudderth (1988).
See also the instructive final Remarks therein, apropos of the common opinion on
finitely additive probabilities.

As pointed out by de Finetti himself, one can change the sequence of 0’s which,
in Example 3, follows the last 1, in such a way that (3) still continues to be valid
and, at the same time, fn converges or does not: in the former case, it converges
to a random variable with a prefixed p.d. function. For the sake of completeness,
de Finetti’s paper is here supplemented with a couple of additional examples of
that type.

Example 4. Let Ω be defined as in Example 3. Moreover, let (yn)n≥1 be the sequence
defined by

yj =

{
0 if j ∈ {(2n− 1)!, (2n− 1)! + 1, . . . , (2n)!− 1}
1 if j ∈ {(2n)!, (2n)! + 1, . . . , (2n+ 1)!− 1}

for n = 1, 2, . . .. Replace the sets S1, S2, . . . of Example 3 by

S∗
1 := {(1, y1, y2, . . .)}

and, for n ≥ 2,

S∗
n := {(e1, . . . , en−1, 1, y1, ys, . . .) : (e1, . . . , en−1) ∈ {0, 1}n−1}.
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Now, for each n, set

Nν := n+ (2ν)!− 1, Mν := n+ (2ν + 1)!− 1 (ν = 1, 2, . . .).

Then, for every sequence in S∗
n, one has

(4)

⎧⎨
⎩

fNν
=

{(2ν−1)!+n−1} fMν−1

n+(2ν)!−1 → 0 (ν →∞)

fMν =
{(2ν)!+n−1} fNν+2ν(2ν)!

n+(2ν+1)!−1 → 1 (ν →∞).

Define probabilities Q∗
1, Q

∗
2, . . . on 2Ω according to

Q∗
1({(1, y1, y2, . . .}) = 1

and, for n ≥ 2,

Q∗
n({e1, . . . , en−1, 1, y1, y2, . . .}) = p

∑n−1
i=1 ei(1− p)n−1−∑n−1

i=1 ei .

Then, set

Q∗(A) :=

∫
N

Q∗
n(A) γ(dn) (A ⊂ Ω).

It is easy to prove that (pn)n≥1 is a Bernoulli sequence even with respect to Q∗.
Hence, (3) is valid even with Q∗ in the place of Q. On the other hand, in view of (4),
for each sequence in Ω∗

1 one has lim inf fn = 0 < lim sup fn = 1, and Q(Ω∗
1) = 1.

Example 5. Maintain the meaning for Ω, γ and (fn)n≥1. Denote by C the subset
of Ω on which (fn)n≥1 converges and by H a prefixed p.d. function, supported by
[0, 1]. Finally, let σ be a σ–additive probability measure on B({0, 1}∞ ∩ C) such
that

σ({p1 = e1, . . . , pn = en}) =
∫
[0,1]

θ
∑n

i=1 ei(1− θ)n−
∑n

i=1 ei dH(θ)

for any (e1, . . . , en) ∈ {0, 1}n and n ≥ 1. Now, define

S∗∗
n := {(e1, . . . , en−1, 1, s) : (e1, . . . , en−1) ∈ {0, 1}n−1, s ∈ C} (n ≥ 2)

S∗∗
1 := {(1, s) : s ∈ C}

together with the probabilities

Q∗∗
1 ({1} ×A) := σ(A)

Q∗∗
n ({e1, . . . , en−1, 1} ×A) = βn−1({e1, . . . , en−1})σ(A)

for any A in B({0, 1}∞ ∩ C), (e1, . . . , en−1) ∈ {0, 1}n−1, n ≥ 2 and

βn−1({e1, . . . , en−1}) = p
∑n−1

i=1 ei(1− p)n−1−∑n−1
i=1 ei .

Finally,

Q∗∗(A) :=

∫
N

Q∗∗
n (A) γ(dn) (A ⊂ Ω).

Once again, (pn)n≥1 turns out to be a Bernoulli sequence with respect to Q∗∗

and, then, (3) is valid with Q∗∗ in the place of Q. On the other hand, in view of
de Finetti’s theory of exchangeable sequences, Q∗∗(Ω∗∗

1 ) = 1 with Ω∗∗
1 = ∪n≥1S

∗∗
n ,

and (fn)n≥1 converges, on Ω∗∗
1 , to a random number whose p.d. function is H.
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The last two groups of examples have an important element in common. They
show that there are sequences of random numbers either converging almost surely
or oscillating almost surely, with p.d. functions converging weakly in both cases
to a p.d. function which differs from the p.d. function of the almost sure limit:
The former, in those examples, has a jump invariably equal to 1 at p, whereas
the latter can be let varying in the class of all p.d. functions. De Finetti explains
why he was interested in investigating into these phenomena in the last section of
Sui Passaggi. In the second half of 1929 he was about to deduce the p.d. of the
integral of a continuous stochastic f.i.s.i. as limit of the p.d. functions of integral
sums which converge pointwise to the integral of interest. At this point, he was
assailed by the doubt that such a line of reasoning could be in conflict with his way
of thinking of probability, in the sense that the argument could be valid for specific
extensions of a prefixed system of finite–dimensional laws, but not in general. The
above examples confirmed the reasonableness of his doubt. Here we faithfully follow
de Finetti (1929a) and provide the reader with some further insight on this aspect.

Let t → X(t) be a random function, for t ≥ 0, with continuous trajectories such
that X(0) ≡ c. See Section 3. Then, for each t > 0, one can write

∫ t

0

X(u) du = lim
n→∞

t

n

n∑
h=1

X

(
th

n

)

where, by the Brunacci–Abel identity,

Vn :=
t

n

n∑
h=1

X

(
th

n

)
= ct+

t

n

n∑
h=1

(n− h+ 1)

{
X

(
th

n

)
−X

(
t(h− 1)

n

)}
.

Then, if X is a f.i.s.i., as proved in de Finetti (1929c), the characteristic function

of the increment {X( thn ) − X( t(h−1)
n )} is given by φ( · )t/n, with φ( · ) being the

characteristic function of X(1). Then, for the characteristic function ΨVn of Vn one
gets

LogΨVn(ξ) = icξt+
t

n

n∑
h=1

Log φ

(
(n− h+ 1)

t

n
ξ

)
(ξ ∈ R)

where Log denotes the principal branch of the logarithm. Then, limn→∞ ΨVn
exists,

uniformly on compact intervals, and is given by

(5) exp

{
icξt+

1

ξ

∫ ξt

0

Log (φ(u)) du

}
.

After proving that such a limit is a characteristic function, de Finetti can assert
that Vn converges in distribution, but he cannot state that (5) is the characteristic

function of limn Vn =
∫ t

0
X(u) du. In fact, in Berti, Regazzini and Rigo (2007) it

is shown that, in the frame of de Finetti’s theory as summarized in Section 3,∫ 1

0
X(u) du can be given any p.d. when, for example, X has the finite–dimensional

distributions of the standard Brownian motion.
As a natural development of the previous remarks, de Finetti tries to find inter-

esting types of convergence of a sequence (Xn)n≥1 of random numbers to a random
number X, which entails weak convergence of the p.d. functions of the Xn’s to the
p.d. of X. It is apropos of this question that he introduced the general notion of
stochastic uniform convergence (namely convergence in probability) in de Finetti
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(1929a) and proved that it meets the above property, with respect to weak conver-
gence, in Section 8 of de Finetti (1930f). See the previous Section 2. Coming back to
the problem of the law of the integral of a random function, he concludes Sui Pas-
saggi touching on special cases in which one can verify that (Vn)n≥1 converges in

probability to
∫ t

0
X(u) du. This is the case when, for example, X is non–decreasing.

5. Ensuing correspondence between de Finetti and Fréchet

The correspondence consists of four short open letters published in Rendiconti del
Reale Istituto Lombardo di Scienze e Lettere and presented in two meetings of the
Istituto: The first and the second, by Fréchet and de Finetti respectively, were
presented on the 3rd of July 1930, whereas the third and the fourth, by Fréchet
and de Finetti respectively, on the 20th of November 1930.

In his first note, Fréchet begins by saying that Sui Passaggi is an interesting
paper, which has points of contact with topics he has been dealing with in his
recent courses (1929-1930). These were summarized in an article still in press at
the beginning of July: that is the paper Fréchet (1930a), mentioned in Section 2
and published in last issue of Metron of that very same year. Fréchet agrees with
de Finetti on the fact that countable additivity cannot be deduced from finite
additivity, and that the latter constitutes a principle generally accepted as a basis
for the theory and the calculus of probabilities. But he has a different opinion about
the admissibility of probabilities that are not countably additive. He explains this
attitude by referring to the alternative arisen to the founders of the modern theory
of measure. They, in spite of the awareness of the impossibility of the problem of
measure highlighted by the celebrated Vitali example (see Vitali (1905)), opted
for countable additivity restricted to suitable domains. Fréchet holds this way of
proceeding up as an example, and proposes introducing the idea of “événements
qui ont une probabilité déterminée et d’autres qui n’en auront pas”, provided that
the condition of countable additivity is admitted by definition. Then, he asserts
that in such a case, the events considered by de Finetti in his examples do not have
a “probabilité determinée”, and concludes that it is in this circumstance that the
solution to the questions raised by de Finetti must be sought.

In his answer, de Finetti respectfully tries to bring the debate down to the real
question: To decide if all finitely additive probabilities are admissible, or alter-
natively if it is necessary to restrict admissible probabilities to the laws that are
countably additive. He says he has the sense that several authors, dealing with this
subject, consider themselves free to decide according to what suits them best. As
an example of this attitude, he mentions the Fréchet evocation of an analogy with
the theory of measure. Taking his cue from this, de Finetti says he considers it un-
justified to make use of conventions to define concepts, like probability, that have
a proper meaning, even if possibly open to dispute. Then, the main issue does not
consist of making more or less arbitrary conventions on certain properties, but can
be traced back to proving that certain properties are necessary. As mentioned in
Section 3, de Finetti derived the necessity of finite additivity from a coherence prin-
ciple which, far from being merely conventional, corresponds to a prevailing rational
attitude. To say that an event E has probability p either has a more or less common
intuitive meaning, or is a perfectly useless sentence. In the first case, if we have a
countable family of mutually disjoint events (E1, E2, . . .), with P (En) = 0 for every
n, are we able to conclude that E := ∪n≥1En has probability 0, or, equivalently,
that E is invariably practically impossible? It is plain that this is not a convention
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matter, since the above conclusion has a real conceptual content. It can be false or
true, but this must be proved, not assumed by a convention. De Finetti admits a
quite serious difficulty in doing this, due to the lack, until then, of a general theory
of probability. He takes the advantage of this circumstance to announce that he
has completed a theory, which, starting from a method for assessing probabilities
[betting scheme, auth. note], allows one to impeccably deduce the mathematical
properties of probability. This is clearly a reference to the theory outlined in the
previous Section 3. He recalls that, within such a theory, countable additivity is
not a necessary requisite for admissibility and, then, all the examples given in Sui
Passaggi are perfectly justified and make sense. He concludes with a mention to
a couple of consequences, that he considers bizarre, of the adoption of countable
additivity as a compulsory principle for admissibility of probability laws. The first
consequence relates to the fact that such a principle would forbid one to think of
a sequence of mutually disjoint events, forming a partition of the sure event and
having probabilities of the same order of magnitude. In other words, that sequence
invariably ought to include a finite subset with respect to which the whole of the
remaining events would be negligible. The second bizarre consequence of assuming,
as a compulsory principle, countable additivity is that one cannot say that the weak
limit of a sequence of p.d. functions is always a p.d. function.

The “official” reply by Fréchet to the previous de Finetti’s arguments was sub-
mitted for publication on the 20th of November 1930. The abstract is categoric but
the content of the paper is kept to the point more than the first letter. As to the
abstract, he writes that de Finetti’s examples are inadmissible, on the basis of the
following facts: First, the probabilities of the events considered therein cannot be
expressed by real numbers. Second, the probability laws studied therein are incon-
sistent with empirical experience. Fréchet splits his criticism into four points, and
de Finetti answers them in the same order. The final part of this section is accord-
ingly organized into four subsections, each of which summarizes both the Fréchet
critical remark and the de Finetti answer pertaining to the point in title of the
subsection.

Point 1. Fréchet (F in the sequel) says that de Finetti (dF in the sequel) has
proved, by simple examples, that it is not possible to define a probability for all
the events while complying, at the same time, with the condition of countable
additivity for all classes of mutually disjoint events. Then, he insists on the point,
already mentioned in his first letter, that the question can be solved by introducing
suitable restrictions on the class of the events equipped with a probability, in such
a way that countable additivity is preserved.

dF replies that F has misunderstood his thought. Indeed, he maintains, on the
one hand, that it is always possible to comply with the principle of countable
additivity and that, on the other hand, all the laws that meet the principle of
coherence are admissible. The first part of this argument is not in contrast with
the Vitali theorem, which simply excludes that a countably additive law might
give equal probabilities to all superposable subsets of [0, 1]. Then, to overcome the
drawback, it is not necessary to restrict the class of the admissible events. Moreover,
such a strategy is not so much as sufficient. To see this, reconsider Example 1 with
Ω = (0, 1] and x1 = 1, x2 = 1/2, x3 = 1/3, ... and form the partition of (0, 1]
in the intervals given by (1/2, 1], (1/3, 1/2], ..., (1/(n + 1), 1/n], ... . Then, since
P ({x1, . . . , xn, . . .}) = 1, one gets P ((0, 1]) = 1, but P ((1/(n + 1), 1/n]) = 0 for
every n. In other words, the “drawback” of countable partitions of Ω, into elements
having zero probabilities, can occur even if these elements are intervals, which,
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according to F, constitute the most typical example of “probabilizable events”.
It is at this point that dF drops the artificial examples suggested by the theory
of measure, to explain how more concrete situations, pertaining to the study of
functions with random increments, are open to the same objections as those raised
in the previous more schematic examples. To this end, dF mentions two cases.
One of them involves the notion of conglomerability and, hence, goes beyond the
scope of the present paper. The original paper in which that phenomenon had
been noticed is de Finetti (1930g). The other case is concerned with the already
mentioned de Finetti’s theorem on the nowhere differentiability of the trajectories
of the Brownian motion. See Section 2. He expresses his regret that, in view of his
criticism on the role of countable additivity, the aforementioned theorem must be
reformulated in a weaker form, i.e.: Let ε and M be strictly positive numbers. Then,
the probability that [0, 1] includes any interval of length greater then ε, for which
one gets |X(t2)−X(t1)| < M(t2−t1), is zero. Since the usual formulation, obtained
as M →∞ and ε→ 0, would be very important, if valid in general, dF admits he
would be very happy of the existence of any reasonable argument that persuades
him to share the common idea that probability laws are continuous. He concludes
expressing his skepticism towards the solution devised by F: “Even supposing that
there are events for which the doubts about countable additivity turn out to be
groundless, how could I recognize them in practical situations of the same type as
that just now described.”

Point 2. This corresponds to the first point raised in the above-mentioned abstract.
F seems to admit that restricting the class of the “probabilizable events” does not
serve the purpose to explain the antinomy stressed by de Finetti’s examples. In
order to solve the issue, he proposes to consider probabilities expressed in terms
of actual infinitesimals, say ε. He supposes that, in such a way, one succeeds in
writing ε · ω = 1. dF observes that the adoption of “new numbers” of the type
of ε is not inconsistent with his own way of thinking. In fact, he recalls he has
already made use of those numbers in de Finetti (1928). But, unlike F, he gets
to the conclusion there is no contradiction between admissibility of infinitesimals
and finite additivity. Indeed, the probability of the union of any finite number of
infinitesimal events is infinitesimal and no limit process could lead to conclude that
the probability of the union of all the events is 1.

Point 3. It corresponds to the second point briefly described in the abstract. F
maintains that probabilities like those of Example 1 do not appear when probabil-
ities are based on frequencies. Moreover, he is skeptical about the success of dF’s
scientific plan, since none of the definitions of probability proposed until then had
met with general approval. So, he refers the reader to the final part of the Lévy
monograph Lévy (1925), where countable additivity is, according to his opinion,
justified. Apropos of the first assertion, he claims he is able to prove it in the fol-
lowing terms. Consider a random phenomenon with a countable set of elementary
possible outcomes, say a1, a2, . . ., and assume one can conceive an indefinitely ex-

tendable sequence of trials of that phenomenon. Let f
(n)
k = rk/n be the frequency

of ak in the first n trials. Then, all but a finite number of the f
(n)
k ’s are zero and

f
(n)
1 + f

(n)
2 + · · · = 1. It is palpably clear that such an equality will be valid for

any n. According to the empirical interpretation, as explained in Fréchet and Halb-

wachs (1924), f
(n)
k represents an “experimental measure” of a probability pk, for

every k, as n increases. F claims that these remarks are sufficient to conclude that
p1 + p2 + · · · = 1.
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In his reply, dF stresses once again that properties like countable additivity be
proved and not established in the form of conventions. Even if he admits the ex-
istence of the difficulties mentioned by F, he considers them more extrinsic rather
than intrinsic. He says that, to clear this hurdle, it would suffice that every author
would give his own proof, based on his own definition of probability. He acknowl-
edges that this is what F has tried to do, starting from his empirical interpretation
of probability. But, despite the inadequacy of the F proof, dF shows that the F ar-
gument, once made more precise, can become an excellent point in favor of the dF
thesis. As to the inadequacy, assuming that each pk is the (usual) limit, as n→∞,

of (f
(n)
k )n≥1, one can write 1 = limn→∞

∑
k f

(n)
k but, in general, the exchange of

lim with
∑

is not valid. Hence, one can just say, in general, that 1 ≥ ∑
k pk. In

the footnote (2) of page 256, dF notes that F had pointed out, in personal corre-
spondence, that he didn’t mean to speak of pk as a limit in a mathematical sense.
Once taken note of this detail, dF resorts to a different argument free from the crit-
icism of being just in an abstract mathematical form. He sets himself the objective

of studying the expected behavior of the f
(n)
k ’s, as n goes to infinity, to show that

there are probability laws with respect to which it would be illusory to expect that the

f
(n)
k ’s converge to numbers pk such that

∑
pk = 1. Therefore, in the same way, it

would be illusory to hope to prove that the property of countable additivity may be
derived, in general, from the analogous property valid for frequencies, understood
as empirical estimates of probabilities. Here is the example proposed by dF along
with a few further details.

Example 5.1. Let S be a countably infinite set, say S := {a1, . . . , an, . . .}, and
Ω = S∞. Define ξ1, ξ2, . . . to be the coordinate random variables of Ω. Now, for any
strictly positive integer N , set SN := {a1, . . . , aN} and, for every A ⊂ Sn, define

P
(n)
N (A) =

�(A ∩ Sn
N )

Nn
.

It is plain that (Sn, 2S
n

, P
(n)
N )n≥1 is a consistent system of probabilities. Then,

there exists a probability PN on (Ω, 2Ω) such that PN (A × S∞) = P
(n)
N (A) holds

true for every A ⊂ Sn, n = 1, 2, . . .. Finally, with the same γ as in Example 3, put

P (C) =

∫
N

PN (C) γ(dN) (C ⊂ Ω).

Hence, P is a probability on 2Ω such that P{ξn = ak} = 0 for every k and n.
Indeed, for every N ≥ k, one has

PN{ξn = ak} = P
(n)
N (Sn−1 × {ak}) = �((Sn−1 × {ak}) ∩ Sn

N )

Nn
=

Nn−1

Nn

and, then, P{ξn = ak} =
∫
{N≥k} N

−1 γ(dN) = 0. Moreover, for any n ≥ 2,

(6) P{ξ1 �= ξ2 �= · · · �= ξn} = 1

Indeed, if N > n, one gets

PN ({ξ1 �= ξ2 �= · · · �= ξn} × S∞) = P
(n)
N {ξ1 �= ξ2 �= · · · �= ξn}

=
N(N − 1) · · · (N − n+ 1)

Nn
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and, since

P{ξ1 �= ξ2 �= · · · �= ξn} =
∫
{N≥n}

N(N − 1) · · · (N − n+ 1)

Nn
γ(dN)

the equality in (6) follows. Now, if (pk)k≥1 is any sequence such that pk ≥ 0 for
every k and

∑
k pk = 1, there is k̄ such that pk̄ = max{p1, p2, . . .} > 0. Then,

there is a contradiction between the adoption of P as a probability on 2Ω and the

assumption that f
(n)
k :=

∑n
j=1 1{ak}(ξj)/n converges, in some sense, to pk for every

k, as n →∞. Indeed, with respect to P , for each n it is practically sure – in view

of (6) – that there are n indices, say k1, . . . , kn, for which f
(n)
ki

= 1/n (i = 1, . . . , n).
So, one gets

(7) P
{
f
(n)

k̄
≤ pk̄

M

}
= 1

for any M,n ∈ N and n > M/pk̄, thus contradicting any reasonable definition of

convergence of f
(n)

k̄
to pk̄, as n→∞.

The above example shows that the condition of countable additivity does not

follow from the fact that
∑

k f
(n)
k = 1 holds true in any case, combined with the

assumption that frequencies approach probabilities as n increases to infinity. Indeed,
(7) and the arbitrariness of (pk)k≥1 show, once again, the inadequacy of the use
of frequencies to prove countable additivity. The sense of this statement can be
strengthened even further when PN is defined to be the Kolmogorov extension of

the P
(n)
N ’s to the smallest σ–algebra containing all the sets ξ−1

m (A) for all m and all
A ⊂ S. It is easy to check that the ξn’s turn out to be independent and identically
distributed, with uniform distribution on SN , with respect to any extension of the

P
(n)
N ’s. Moreover, if PN corresponds to the Kolmogorov extension, then the strong

law of large numbers yields

PN

{
lim
n

f
(n)
k =

1

N
for k = 1, . . . , N, lim

n
f
(n)
k = 0 for k ≥ N + 1

}
= 1

and, with the same (pn)n≥1 as in Example 5.1 and for every M in N one obtains

P

{∑
k

limn→∞f
(n)
k ≤ 1

M

}
≥ P

{
limn→∞f

(n)
k ≤ pk

M
for every k

}

=

∫
N

PN

{
limn→∞f

(n)
k ≤ pk

M
for every k

}
γ(dN)

= 1.

Then, with respect to this particular P , we are practically sure that frequencies
converge and that the sum of the series is in [0, ε) for every ε > 0.

Point 4. The last objection raised by F is about a seeming slip made by dF, in
the previous part of the correspondence, apropos of the nature of the weak limit
of a sequence of p.d. functions. As already recalled in this very same section, dF
found it bizarre that, in the common approach based on countable additivity, such
limit was not necessarily a p.d. function. F maintains that this phenomenon is not
warded off by the adoption of dF point of view. In support of this statement, F
gives the example of the p.d. functions Fn(x) = (1(−n,n]/2 + 1(n,∞))(x), x ∈ R

and n = 1, 2, . . .. It is easy for dF to prove that the F argument is ineffective since
the function F ≡ 1/2, limit of (Fn)n≥1, can be viewed, within the finitely additive
frame, as a p.d. function.
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6. Final remarks

The paper we have annotated in the previous sections cannot be counted among
de Finetti’s most important works. Nonetheless, it represents a direct evidence of an
extremely interesting stage of his scientific career. It is the stage of the mathemati-
cal formulation of his subjectivistic conception of probability, and of the consequent
conclusion that the only general restriction on the class of the admissible proba-
bility laws is given by the coherence principle. Hence, probabilities on algebras of
events must be additive, but not necessarily countably additive. This, on the one
hand, led him to revise the value, in terms of their generality, of a few of his own
previous theorems that were proved, in part, under the assumption of continuity
of probability laws. His critique, on the other hand, did not even spare one of the
most renowned achievements of the theory of probability, i.e. the strong law of
large numbers. By resorting to enlightening examples, in Sui Passaggi he succeeds
in enhancing some crucial differences between the two viewpoints taken into con-
sideration therein. Besides, the discussion with Fréchet gives de Finetti a chance
to provide fresh and deep explanations about his stance. They continue to be of
great interest and useful since the arguments, still put up against the adoption of
de Finetti’s theory, do not basically differ from those used by Fréchet.
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Cantelli, F. P. (1917). Sulla probabilità come limite della frequenza. Atti Reale
Accademia Nazionale dei Lincei, Serie V, Rend. 26.

Cantelli, F. P. (1935a). Considérations sur la convergence dans le calcul des
probabilités. Annales de l’Institut Henri Poincaré 5 3–50.
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