
IMS Collections
Advances in Modern Statistical Theory and Applications: A Festschrift in honor of
Morris L. Eaton
Vol. 10 (2013) 1–24
c© Institute of Mathematical Statistics, 2013
DOI: 10.1214/12-IMSCOLL1001

Asymptotics of Maximum Likelihood

without the LLN or CLT or Sample Size

Going to Infinity

Charles J. Geyer

University of Minnesota

Abstract: If the log likelihood is approximately quadratic with constant Hes-
sian, then the maximum likelihood estimator (MLE) is approximately normally
distributed. No other assumptions are required. We do not need independent
and identically distributed data. We do not need the law of large numbers
(LLN) or the central limit theorem (CLT). We do not need sample size going
to infinity or anything going to infinity.

Presented here is a combination of Le Cam style theory involving local
asymptotic normality (LAN) and local asymptotic mixed normality (LAMN)
and Cramér style theory involving derivatives and Fisher information. The
main tool is convergence in law of the log likelihood function and its derivatives
considered as random elements of a Polish space of continuous functions with
the metric of uniform convergence on compact sets. We obtain results for both
one-step-Newton estimators and Newton-iterated-to-convergence estimators.

1. Introduction

The asymptotics of maximum likelihood is beautiful theory. If you can calculate
two derivatives of the log likelihood, you can find the maximum likelihood estimate
(MLE) and its asymptotic normal distribution.

But why does this work? And when does it work? The literature contains many
different treatments, many theorems with long lists of assumptions, each slightly
different from the others, and long messy calculations in their proofs. But they give
no insight because neither assumptions nor calculations are sharp. The beauty of
the theory is hidden by the mess.

In this article we explore an elegant theory of the asymptotics of likelihood
inference inspired by the work of Lucien Le Cam, presented in full generality in
Le Cam (1986) and in somewhat simplified form in Le Cam and Yang (2000). Most
statisticians find even the simplified version abstract and difficult. Here we attempt
to bring this theory down to a level most statisticians can understand. We take
from Le Cam two simple ideas.

• If the log likelihood is approximately quadratic with constant Hessian, then
the MLE is approximately normal. This is the theory of locally asymptotically
normal (LAN) and locally asymptotically mixed normal (LAMN) models.

School of Statistics University of Minnesota, Minneapolis, MN 55455, e-mail: geyer@umn.edu
AMS 2000 subject classifications: Primary 62F12, 60F05; secondary 62F40
Keywords and phrases: locally asymptotically normal, maximum likelihood, Newton’s method,

no-n asymptotics, parametric bootstrap, quadraticity

1

http://www.imstat.org/publications/imscollections.htm
http://www.imstat.org
http://dx.doi.org/10.1214/12-IMSCOLL1001
mailto:geyer@umn.edu


2 C. J. Geyer

• Asymptotic theory does not need n going to infinity. We can dispense with
sequences of models, and instead compare the actual model for the actual
data to an LAN or LAMN model.

Although these ideas are not new, being “well known” to a handful of theoreti-
cians, they are not widely understood. When I tell typical statisticians that the
asymptotics of maximum likelihood have nothing to do with the law of large num-
bers (LLN) or the central limit theorem (CLT) but rather with how close the log
likelihood is to quadratic, I usually get blank stares. That’s not what they learned
in their theory class. Worse, many statisticians have come to the conclusion that
since the “n goes to infinity” story makes no sense, asymptotics are bunk. It is a
shame that so many statisticians are so confused about a crucial aspect of statistics.

1.1. Local Asymptotic Normality

Chapter 6 of Le Cam and Yang (2000) presents the theory of local asymptotically
normal (LAN) and locally asymptotically mixed normal (LAMN) sequences of mod-
els. This theory has no assumption of independent and identically distributed data
(nor even stationarity and weak dependence). The n indexing an LAN or LAMN
sequence of models is just an index that need not have anything to do with sample
size or anything analogous to sample size. Thus the LLN and the CLT do not apply,
and asymptotic normality must arise from some other source.

Surprising to those who haven’t seen it before, asymptotic normality arises from
the log likelihood being asymptotically quadratic. A statistical model with exactly
quadratic log likelihood

(1) l(θ) = U + Z ′θ − 1
2θ

′Kθ, θ ∈ R
p

where U is a random scalar, Z is a random p vector, and K is a random p × p
symmetric matrix, has observed Fisher information K and maximum likelihood
estimator (MLE)

(2) θ̂ = K−1Z

(if K is positive definite). If K is constant, then the distribution of the MLE is

(3) θ̂ ∼ N (θ,K−1),

the right hand side being the multivariate normal distribution with mean vector
θ and variance matrix K−1 (Corollary 2 below). If K is random, but invariant in
law, meaning its distribution does not depend on the parameter θ, then (3) holds
conditional on K (Theorem 1 below).

The essence of likelihood asymptotics consists of the idea that if the log likelihood
is only approximately of the form (1) with K invariant in law, then (3) holds
approximately too. All likelihood asymptotics that produce conclusions resembling
(3) are formalizations of this idea. The idea may be lost in messy proofs, but it’s
what really makes likelihood inference work the way it does.

1.2. “No n” Asymptotics

By “no n asymptotics” we mean asymptotics done without reference to any se-
quence of statistical models. There is no n going to infinity. This is not a new idea,
as the following quotation from Le Cam (1986, p. xiv) shows.
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From time to time results are stated as limit theorems obtainable as something called n
“tends to infinity.” This is especially so in Chapter 7 [Some Limit Theorems] where the results
are just limit theorems. Otherwise we have made a special effort to state the results in such
a way that they could eventually be transformed into approximation results. Indeed, limit
theorems “as n tends to infinity” are logically devoid of content about what happens at any
particular n. All they can do is suggest certain approaches whose performance must then be
checked on the case at hand. Unfortunately the approximation bounds we could get were too
often too crude and cumbersome to be of any practical use. Thus we have let n tend to infinity,
but we urge the reader to think of the material in approximation terms, especially in subjects
such as ones described in Chapter 11 [Asymptotic Normality—Global].

Le Cam’s point that asymptotics “are logically devoid of content about what
happens at any particular n” refers to the fact that convergence of a sequence tells
us nothing about any initial segment of the sequence. An estimator θ̂n that is equal
to 42 for all n < 1010 and equal to the MLE thereafter is asymptotically equivalent
to the MLE. Strictly speaking, asymptotics—at least the usual story about n going
to infinity—does not distinguish between these estimators and says you might just
as well use one as the other.

The story about n going to infinity is even less plausible in spatial statistics
and statistical genetics where every component of the data may be correlated with
every other component. Suppose we have data on school districts of Minnesota. How
does Minnesota go to infinity? By invasion of surrounding states and provinces of
Canada, not to mention Lake Superior, and eventually by rocket ships to outer
space? How silly does the n goes to infinity story have to be before it provokes
laughter instead of reverence?

Having once seen the absurdity of the n goes to infinity story in any context, it
becomes hard to maintain its illusion of appropriateness in any other context. A
convert to the “no n” view always thinks n = 1. You always have one “data set,”
which comprises the data for an analysis. And it isn’t going to infinity or anywhere
else.

But how do “no n asymptotics” work? It is not clear (to me) what Le Cam meant
by “eventually transformed into approximation results” because he used a conver-
gence structure (Le Cam and Yang, 2000, Chapter 6, Definitions 1, 2, and 3) so
weak that, although topological (Beattie and Butzmann, 2002, Proposition 1.7.15),
it seems not metrizable. So at this point I part company with Le Cam and present
my own take on “no n asymptotics” (although our Section 2 follows Le Cam closely,
our Section 3 and Appendix B seem new). It has the following simple logic.

• All assumptions are packed into a single convergence in law statement involv-
ing the log likelihood.

• The conclusion is a convergence in law statement about an estimator.
• Hence delta and epsilon arguments using metrics for convergence in law can
replace sequential arguments.

One source of this scheme is Geyer (1994), which did not use the whole scheme,
but which in hindsight should have. The conclusion of Lemma 4.1 in that article is
a “single convergence in law statement about the log likelihood” that incorporates
most of the assumptions in that article. It is a forerunner of our treatment here.

At this point we introduce a caveat. By “no n” asymptotics we do not mean the
letter n is not allowed to appear anywhere, nor do we mean that sequences are not
allowed to be used. We mean that we do not use sequences associated with a story
about the index n being sample size or anything analogous to sample size.

We do use sequences as a purely technical tool in discussing continuity. To prove a
function f : U → V between metric spaces with metrics dU and dV continuous, one
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can show that for every x ∈ U and every ε > 0 there exists a δ, which may depend
on x and ε, such that dV

(
f(x), f(y)

)
< ε, whenever dU (x, y) < δ. Alternatively, one

can show that f(xn) → f(x), whenever xn → x. The mathematical content is the
same either way.

In particular, it is more convenient to use sequences in discussing convergence of
probability measures on Polish spaces. The space of all probability measures on a
Polish space is itself a metric space (Billingsley, 1999, p. 72). Hence delta-epsilon
arguments can be used to discuss convergence, but nearly the whole probability
literature on convergence of probability measures uses sequences rather than delta-
epsilon arguments, so it is easier to cite the literature if we use sequences. The
mathematical content is the same either way.

The point is that we do not reify n as sample size. So perhaps a longer name
such as “n not reified as sample size” asymptotics would be better than the shorter
“no n” asymptotics, but we will continue with the shorter name.

What is important is “quadraticity.” If the log likelihood for the actual model
for the actual data is nearly quadratic, then the MLE has the familiar properties
discussed in Section 1.1, but no story about sample size going to infinity will make
the actual log likelihood more quadratic than it actually is or the actual MLE more
nearly normal.

I concede that metrics for convergence in law are unwieldy and might also give
“approximation bounds . . . too crude and cumbersome to be of any practical use.”
But, unlike Le Cam, I am not bothered by this because of my familiarity with
computer intensive statistical methods.

1.3. Asymptotics is Only a Heuristic

(This slogan means what Le Cam meant by “all they can do is suggest certain
approaches”.) We know that asymptotics often works well in practical problems be-
cause we can check the asymptotics by computer simulation (perhaps what Le Cam
meant by “checked on the case at hand”), but conventional theory doesn’t tell us
why asymptotics works when it does. It only tells us that asymptotics works for
sufficiently large n, perhaps astronomically larger than the actual n of the actual
data. So that leaves a theoretical puzzle.

• Asymptotics often works.
• But it doesn’t work for the reasons given in proofs.
• It works for reasons too complicated for theory to handle.

I am not sure about “too complicated . . . to handle.” Perhaps a computer-assisted
proof could give “approximation bounds . . . of practical use,” what Le Cam wanted
but could not devise. But when I think how much computer time a computer-
assisted proof might take and consider alternative ways to spend the computer
time, I do not see how approximation bounds could be as useful as a parametric
bootstrap, much less a double parametric bootstrap (since we are interested in
likelihood theory for parametric models we consider only the parametric bootstrap).

A good approximation bound, even if such could be found, would only indicate
whether the asymptotics work or don’t work, but a bootstrap of approximately
pivotal quantities derived from the asymptotics not only diagnoses any failure of
the asymptotics but also provides a correction, so the bootstrap may work when
asymptotics fails. And the double bootstrap diagnoses any failure of the single
bootstrap and provides further correction, so the double bootstrap may work when
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the single bootstrap fails (Beran, 1987, 1988; Geyer, 1991; Hall, 1992; Newton and
Geyer, 1994).

With ubiquitous fast computing, there is no excuse for not using the bootstrap
to improve the accuracy of asymptotics in every serious application. Thus we arrive
at the following attitude about asymptotics

• Asymptotics is only a heuristic. It provides no guarantees.
• If worried about the asymptotics, bootstrap!
• If worried about the bootstrap, iterate the bootstrap!

However, the only justification of the bootstrap is asymptotic. So this leaves us
in a quandary of circularity.

• The bootstrap is only a heuristic. It provides no guarantees.
• All justification for the bootstrap is asymptotic!
• In order for the bootstrap to work well, one must bootstrap approximately
asymptotically pivotal quantities!

(the “approximately” recognizes that something less than perfectly pivotal, for
example merely variance stabilized, is still worth using).

In practice, this “circularity” does not hamper analysis. In order to devise good
estimates one uses the asymptotics heuristic (choosing the MLE perhaps). In or-
der to devise “approximately asymptotically pivotal quantities” one again uses the
asymptotics heuristic (choosing log likelihood ratios perhaps). But when one cal-
culates probabilities for tests and confidence intervals by simulation, the calcula-
tion can be made arbitrarily accurate for any given θ. Thus the traditional role of
asymptotics, approximating Pθ, is not needed when we bootstrap. We only need
asymptotics to deal with the dependence of Pθ on θ. Generally, this dependence
never goes entirely away, no matter how many times the bootstrap is iterated, but
it does decrease (Beran, 1987, 1988; Hall, 1992).

The parametric bootstrap simulates multiple data sets y∗1 , . . ., y
∗
n from Pθ̂(y),

where y is the real data and θ̂ some estimator. The double parametric bootstrap
simulates multiple data sets from each Pθ̂(y∗

i )
. Its work load can be reduced by using

importance sampling (Newton and Geyer, 1994). Assuming θ �→ Pθ is continuous,
these simulations tell everything about the model for θ in the region filled out by
the θ̂(y∗i ). But nothing prevents one from simulating from θ in a bigger region if
one wants to.

The parametric bootstrap is very different from the nonparametric bootstrap in
this respect. The nonparametric bootstrap is inherently an asymptotic (large n)
methodology because resampling the data, which in effect substitutes the empirical
distribution of the data for the true unknown distribution, only “works” when the
empirical distribution is close to the true distribution, which is when the sample size
is very large. When the parametric bootstrap simulates a distribution Pθ it does so
with error that does not depend on sample size but only on how long we run the
computer. When a double parametric bootstrap simulates Pθ for many different θ
values, we learn about Pθ for these θ values and nearby θ values. If these θ values
are densely spread over a region, we learn about Pθ for all θ in the region. So long
as the true unknown θ value lies in that region, we approximate the true unknown
distribution with accuracy that does not depend on sample size. Thus if one does
enough simulation, the parametric bootstrap can be made to work for small sample
sizes in a way the nonparametric bootstrap cannot. Since this is not a paper about
the bootstrap, we will say no more on the subject.
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Nevertheless, asymptotics often does “work” and permits simpler calculations
while providing more insight. In such cases, the bootstrap when used as a diagnostic
(Geyer, 1991) proves its own pointlessness. A single bootstrap often shows that it
cannot improve the answer provided by asymptotics, and a double bootstrap often
shows that it cannot improve the answer provided by the single bootstrap.

Since asymptotics is “only a heuristic,” the only interesting question is what
form of asymptotics provides the most useful heuristic and does so in the simplest
fashion. This article is my attempt at an answer.

1.4. An Example from Spatial Statistics

Geyer and Møller (1994) give a method of simulating spatial point processes and
doing maximum likelihood estimation. In their example, a Strauss process (Strauss,
1975), they noted that the asymptotic distribution of the MLE appeared to be very
close to normal, although the best asymptotic results they were able to find in
the literature (Jensen, 1991, 1993) only applied to Strauss processes with very
weak dependence, hence very close to a Poisson process (Geyer and Møller, 1994,
Discussion), which unfortunately did not include their example.

From a “no n” point of view, this example is trivial. A Strauss process is a two-
parameter full exponential family. In the canonical parameterization, which Geyer
and Møller (1994) were using, the random part of the log likelihood is linear in
the parameter, hence the Hessian is nonrandom. Hence, according to the theory
developed here, the MLE will be approximately normal so long as the Hessian is
approximately constant over the region of parameter values containing most of the
sampling distribution of the MLE.

Geyer and Møller (1994) did not then understand the “no n” view and made no
attempt at such verification (although it would have been easy). Direct verification
of quadraticity is actually unnecessary here, because the curved part of the log
likelihood (in the canonical parameterization) of an exponential family is propor-
tional to the cumulant generating function of the canonical statistic, so the family
is nearly LAN precisely when the distribution of the canonical statistic is nearly
normal, which Geyer and Møller (1994) did investigate (their Figure 2).

Thus there is no need for any discussion of anything going to infinity. The asymp-
totics here, properly understood, are quite simple. As we used to say back in the
sixties, the “n goes to infinity” story is part of the problem not part of the solution.

Although the exponential family aspect makes things especially simple, the same
sort of thing is true in general. When the Hessian is random, it is enough that it
be nearly invariant in law.

1.5. An Example from Statistical Genetics

Fisher (1918) proposed a model for quantitative genetics that has been widely used
in animal breeding and other areas of biology and indirectly led to modern regression
and analysis of variance. The data Y are multivariate normal, measurements of some
quantitative trait on individuals, decomposed as

Y = μ+B + E

where μ is an unknown scalar parameter, where B and E are independent multivari-
ate normal, N (0, σ2A) and N (0, τ2I), respectively, where σ2 and τ2 are unknown
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parameters called the additive genetic and environmental variance, respectively, A
is a known matrix called the numerator relationship matrix in the animal breeding
literature (Henderson, 1976), and I is the identity matrix. The matrix A is deter-
mined solely by the relatedness of the individuals (relative to a known pedigree).
Every element of A is nonzero if every individual is related to every other, and this
implies all components of Y are correlated.

In modern terminology, this is a mixed model with fixed effect vector μ and
variance components σ2 and τ2, but if the pedigree is haphazard so A has no regular
structure, there is no scope for telling “n goes to infinity” stories like Miller (1977)
does for mixed models for simple designed experiments. Our “no n” asymptotics
do apply. The log likelihood may be nearly quadratic, in which case we have the
“usual” asymptotics.

The supplementary web site http://purl.umn.edu/92198 at the University of
Minnesota Digital Conservancy gives details of two examples with 500 and 2000
individuals. An interesting aspect of our approach is that its intimate connection
with Newton’s method (Section 3.5 and Appendix B) forced us to find a good
starting point for Newton’s method (a technology transfer from spatial statistics)
and investigate its quality. Thus our theory helped improve methodology.

Readers wanting extensive detail must visit the web site. The short summary is
that the example with 500 individuals is not quite in asymptopia, the parametric
bootstrap being needed for bias correction in constructing a confidence interval
for logit heritability (log σ2 − log τ2). But when this example was redone with
2000 individuals, the bias problem went away and the bootstrap could not improve
asymptotics.

1.6. Our Regularity Conditions

Famously, Le Cam, although spending much effort on likelihood, did not like max-
imum likelihood. Le Cam (1990) gives many examples of the failure of maximum
likelihood. Some are genuine examples of bad behavior of the MLE. Others can
be seen as problems with the “n goes to infinity” story as much as with maxi-
mum likelihood. I have always thought that article failed to mention Le Cam’s
main reason for dislike of maximum likelihood: his enthusiasm for weakest possible
regularity conditions. He preferred conditions so weak that nothing can be proved
about the MLE and other estimators must be used instead (Le Cam and Yang,
2000, Section 6.3).

His approach does allow the “usual asymptotics of maximum likelihood” to be
carried over to quite pathological models (Le Cam and Yang, 2000, Example 7.1)
but only by replacing the MLE with a different estimator. The problem with this
approach (as I see it) is that the resulting theory no longer describes the MLE,
hence is no longer useful to applied statisticians. (Of course, it would be useful if
applied statisticians used such pathological models and such estimators. As far as
I know, they don’t.)

Thus we stick with old-fashioned regularity conditions involving derivatives of
the log likelihood that go back to Cramér (1946, Chapters 32 and 33). We shall
investigate the consequences of being “nearly” LAMN in the sense that the log
likelihood and its first two derivatives are near those of an LAMN model. These
conditions are about the weakest that still permit treatment of Newton’s method,
so our theorems apply to the way maximum likelihood is done in practice. Our
approach has the additional benefit of making our theory no stranger than it has
to be in the eyes of a typical statistician.

http://purl.umn.edu/92198
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2. Models with Quadratic Log Likelihood

2.1. Log Likelihood

The log likelihood for a parametric family of probability distributions having den-
sities fθ, θ ∈ Θ with respect to a measure λ is a random function l defined by

(4) l(θ) = u(X) + log fθ(X), θ ∈ Θ,

where X is the random data for the problem and u is any real valued function on
the sample space that does not depend on the parameter θ. In this article, we are
only interested families of almost surely positive densities so the argument of the
logarithm in (4) is never zero and the log likelihood is well defined. This means all
the distributions in the family are absolutely continuous with respect to each other.

Then for any bounded random variable g(X) and any parameter values θ and
θ + δ we can write

Eθ+δ{g(X)} =

∫
g(x)fθ+δ(x)λ(dx)

=

∫
g(x)

fθ+δ(x)

fθ(x)
fθ(x)λ(dx)

=

∫
g(x)el(θ+δ)−l(θ)fθ(x)λ(dx)

= Eθ

{
g(X)el(θ+δ)−l(θ)

}

(5)

The assumption of almost surely positive densities is crucial. Without it, the second
line might not make sense because of division by zero.

2.2. Quadratic Log Likelihood

Suppose the log likelihood is defined by (1). The random variables U , Z, and K
are, of course, functions of the data for the model, although the notation does not
indicate this explicitly.

The constant term U in (1) analogous to the term u(X) in (4) is of no importance.
We are mainly interested in log likelihood ratios

(6) l(θ + δ)− l(θ) = (Z −Kθ)′δ − 1
2δ

′Kδ,

in which U does not appear.

Theorem 1 (LAMN). Suppose (1) is the log likelihood of a probability model, then

(a) K is almost surely positive semi-definite.

Also, the following two conditions are equivalent (each implies the other).

(b) The conditional distribution of Z given K for parameter value θ is N (Kθ,K).
(c) The distribution of K does not depend on the parameter θ.

Any model satisfying the conditions of the theorem is said to be LAMN (locally
asymptotically mixed normal). Strictly speaking, “locally asymptotically” refers to
sequences converging to such a model, such as those discussed in Section 3, but
“MN” by itself is too short to make a good acronym and LAMN is standard in the
literature.
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Our theorem is much simpler than traditional LAMN theorems (Le Cam and
Yang, 2000, Lemmas 6.1 and 6.3) because ours is not asymptotic and the traditional
ones are. But the ideas are the same.

Proof. The special case of (5) where g is identically equal to one with (6) plugged
in gives

(7) 1 = Eθ+δ(1) = Eθ

{
e(Z−Kθ)′δ− 1

2 δ
′Kδ

}
Averaging (7) and (7) with δ replaced by −δ gives

(8) Eθ

{
cosh[(Z −Kθ)′δ] exp[− 1

2δ
′Kδ]

}
= 1.

Now plug in sδ for δ in (8), where s is scalar, and use the fact that the hyperbolic
cosine is always greater than one giving

1 = Eθ

{
cosh[s(Z −Kθ)′δ] exp[− 1

2s
2δ′Kδ]

}
≥ Eθ

{
exp[− 1

2s
2δ′Kδ]I(−∞,−ε)(δ

′Kδ)
}

≥ exp( 12s
2ε)Pθ

{
δ′Kδ < −ε

}
For any ε > 0, the first term on the right hand side goes to infinity as s → ∞.
Hence the second term on the right hand side must be zero. Thus

Pθ{δ′Kδ < −ε} = 0, ε > 0

and continuity of probability implies the equality holds for ε = 0 as well. This
proves (a).

Replace g(X) in (5) by h(K) where h is any bounded measurable function giving

(9) Eθ+δ{h(K)} = Eθ

{
h(K)e(Z−Kθ)′δ− 1

2 δ
′Kδ

}
.

Assume (b). Then the moment generating function of Z given K for the param-
eter θ is

(10) Eθ

{
eZ

′δ
∣∣ K}

= eθ
′Kδ+

1
2 δ

′Kδ

and this implies

(11) Eθ

{
e(Z−Kθ)′δ− 1

2 δ
′Kδ

∣∣ K}
= 1.

Plugging (11) into (9) and using the iterated expectation theorem we get

Eθ+δ{h(K)} = Eθ

{
h(K)Eθ

{
e(Z−Kθ)′δ− 1

2 δ
′Kδ

∣∣ K}}
= Eθ{h(K)}

which, h being arbitrary, implies (c). This proves (b) implies (c).
Now drop the assumption of (b) and assume (c), which implies the left hand side

of (9) does not depend on δ, hence

(12) Eθ{h(K)} = Eθ

{
h(K)e(Z−Kθ)′δ− 1

2 δ
′Kδ

}
.

By the definition of conditional expectation (12) holding for all bounded measurable
functions h implies (11) and hence (10), which implies (b). This proves (c) implies
(b).
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Corollary 2 (LAN). Suppose (1) is the log likelihood of an identifiable probability
model and K is constant, then

(a) K is positive definite.

Moreover,

(b) The distribution of Z for the parameter value θ is N (Kθ,K).

Any model satisfying the conditions of the corollary is said to be LAN (locally
asymptotically normal). Strictly speaking, as we said about LAMN, the “locally
asymptotically” refers to sequences converging to such a model, but we also use it
for the model itself.

Proof. The theorem applied to the case of constant K gives (a) and (b) with “pos-
itive definite” in (a) replaced by “positive semi-definite.” So we only need to prove
that identifiability implies positive definiteness.

If K were not positive definite, there would be a nonzero δ such that δ′Kδ = 0,
but this would imply Kδ = 0 and the distribution of Z for the parameter value
θ + δ would be N (Kθ,K). Hence the model would not be identifiable (since Z
is a sufficient statistic, if the distribution of Z is not identifiable, neither is the
model).

We cannot prove the analogous property, K almost surely positive definite, for
LAMN. So we will henceforth assume it. (That this doesn’t follow from identifia-
bility is more a defect in the notion of identifiability than in LAMN models.)

2.3. Examples and Non-Examples

The theorem provides many examples of LAMN. Let K have any distribution that
is almost surely positive-definite-valued, a Wishart distribution, for example. Then
let Z | K be N (Kθ,K).

The corollary provides a more restricted range of examples of LAN. They are
the multivariate normal location models with nonsingular variance matrix that does
not depend on the parameter.

A non-example is the AR(1) autoregressive model with known innovation vari-
ance and unknown autoregressive parameter. Let X0 have any distribution not
depending on the parameter θ, and recursively define

(13) Xn = θXn−1 + Zn

where the Zi are independent and identically N (0, 1) distributed. The log likelihood
is

ln(θ) = − 1
2

n∑
i=1

(Xi − θXi−1)
2

which is clearly quadratic with Hessian −Kn = −∑n
i=1 X

2
i−1. From (13)

Eθ(X
2
n|X0) = θ2Eθ(X

2
n−1|X0) + 1

and from this we can derive

Eθ(Kn|X0) =
n− 1

1− θ2
+

[
X2

0 − 1

1− θ2

]
1− θ2(n−1)

1− θ2
, θ �= 1,

which is enough to show that the distribution of Kn depends on θ so this model is
not LAMN (in the “no n” sense we are using the term in this article, although it
is LAN in the limit as n → ∞ for some values of θ).
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3. Likelihood Approximation

It is plausible that a model that is “nearly” LAN has an MLE that is “nearly” nor-
mally distributed and a model that is “nearly” LAMN has an MLE that is “nearly”
conditionally normally distributed. In order to make these vague statements math-
ematically precise, we need to define what we mean by “nearly” and explore its
mathematical consequences.

3.1. Convergence in Law in Polish Spaces

Since log likelihoods are random functions, it makes sense to measure how close
one is to another in the sense of convergence in law. In order to do that, we need
a theory of convergence in law for function-valued random variables. We use the
simplest such theory: convergence in law for random variables taking values in a
Polish space (complete separable metric space). Billingsley (1999, first edition 1968)
has the theory we will need. Other sources are Fristedt and Gray (1997) and Shorack
(2000).

A sequence of random elements Xn of a Polish space S converges in law to
another random element X of S if E{f(Xn)} → E{f(X)}, for every bounded
continuous function f : S → R. This convergence is denoted

Xn
L−→ X

and is also called weak convergence, a term from functional analysis, and (when the
Polish space is Rp) convergence in distribution.

The theory of convergence in law in Polish spaces is often considered an advanced
topic, but our use of it here involves only

• the mapping theorem (Billingsley, 1999, Theorem 2.7)
• the Portmanteau theorem (Billingsley, 1999, Theorem 2.1)
• Slutsky’s theorem (Billingsley, 1999, Theorem 3.1)
• Prohorov’s theorem (Billingsley, 1999, Theorems 5.1 and 5.2)
• the subsequence principle (Billingsley, 1999, Theorem 2.6)

which should be in the toolkit of every theoretical statistician. They are no more
difficult to use on random elements of Polish spaces than on random vectors. The
last three of these are only used in Appendix C where we compare our theory to
conventional theory. Only the mapping and Portmanteau theorems are needed to
understand the main text.

3.2. The Polish Spaces C(W ) and C2(W )

Let W be an open subset of Rp and let C(W ) denote the space of all continuous
real-valued functions on W . The topology of uniform convergence on compact sets
for C(W ) defines fn → f if

sup
x∈B

|fn(x)− f(x)| → 0, for every compact subset B of W.

The topology of continuous convergence for C(W ) defines fn → f if

fn(xn) → f(x), whenever xn → x.
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Kuratowski (1966, Section 20, VIII, Theorem 2) shows these two topologies for
C(W ) coincide. Bourbaki (1998, Ch. 10, Sec. 3.3, Corollary, part (b)) shows that
C(W ) is a Polish space.

Let C2(W ) denote the space of all twice continuously differentiable functions
W → R with the topology of uniform convergence on compact sets (or continuous
convergence) of the functions and their first and second partial derivatives. Then
C2(W ) is isomorphic to a subspace of C(W )1+p+p×p, in fact a closed subspace
because uniform convergence of derivatives implies sequences can be differentiated
term by term. Hence C2(W ) is a Polish space, (Fristedt and Gray, 1997, Proposi-
tions 2 and 3 of Section 18.1).

We will consider an almost surely twice continuously differentiable log likelihood
whose parameter space is all of Rp to be a random element of C2(Rp) and will
restrict ourselves to such log likelihoods (for measurability issues, see Appendix A).
We find a way to work around the assumption that the parameter space be all of
R

p in Section 3.6.

3.3. Sequences of Statistical Models

In order to discuss convergence we use sequences of models, but merely as technical
tools. The n indexing a sequence need have nothing to do with sample size, and
models in the sequence need have nothing to do with each other except that they
all have the same parameter space, which is R

p. As we said in Section 1.2, we
could eliminate sequences from the discussion if we wanted to. The models have log
likelihoods ln and true parameter values ψn.

Merely for comparison with conventional theory (Appendix C) we also introduce
a “rate” τn. In conventional asymptotic theory τn =

√
n plays an important role,

so we put it in our treatment too. In the “no n” view, however, where the models
in the sequence have “nothing to do with each other” there is no role for τn to play,
and we set τn = 1 for all n.

Define random functions qn by

(14) qn(δ) = ln(ψn + τ−1
n δ)− ln(ψn), δ ∈ R

p.

These are also log likelihoods, but we have changed the parameter from θ to δ, so
the true value of the parameter δ is zero, and subtracted a term not containing δ,
so qn(0) = 0.

Our key assumption is

(15) qn
L−→ q, in C2(Rp)

where q is the log likelihood of an LAMN model

(16) q(δ) = δ′Z − 1
2δ

′Kδ, δ ∈ R
p,

there being no constant term in (16) because qn(0) = 0 for all n implies q(0) = 0. A
consequence of LAMN is that eq(δ) is for each δ a probability density with respect
to the measure governing the law of q, which is the measure in the LAMN model
for δ = 0 because eq(0) = 1. This implies

(17) E
{
eq(δ)

}
= 1, δ ∈ R

p.

Please note that, despite our assuming LAMN with “N” standing for normal,
we can say we are not actually assuming asymptotic normality. Asymptotic (con-
ditional) normality comes from the equivalence of the two conditions in the LAMN



Maximum Likelihood 13

theorem (Theorem 1). We can say that we are assuming condition (c) of the theo-
rem and getting condition (b) as a consequence. Normality arises here from the log
likelihood being quadratic and its Hessian being invariant in law. Normality is not
assumed, and the CLT plays no role.

3.4. Contiguity

In Le Cam’s theory, property (17) is exceedingly important, what is referred to
as contiguity of the sequence of probability measures having parameter values
ψn + τ−1

n δ to the sequence having parameter values ψn (Le Cam and Yang, 2000,
Theorem 1 of Chapter 3).

Contiguity (17) does not follow from the convergence in law (15) by itself. From
that we can only conclude by Fatou’s lemma for convergence in law (Billingsley,
1999, Theorem 3.4)

(18) E
{
eq(δ)

} ≤ 1, δ ∈ R
p.

That we have the equality (17) rather than the inequality (18) is the contiguity
property. In our “no n” theory (17) arises naturally. We always have it because
“improper” asymptotic models (having densities that don’t integrate to one) make
no sense.

3.5. One Step of Newton’s Method

Our presentation is closely tied to Newton’s method. This is a minor theme in
conventional theory (one-step Newton updates of root-n-consistent estimators are
asymptotically equivalent to the MLE), but we make it a major theme, bringing
our theory closer to actual applications. We consider two kinds of estimator: one-
step-Newton estimators, like those in conventional theory, and Newton-iterated-
to-convergence estimators (Appendix B), what in applications are usually deemed
MLE.

To treat these estimators we need to consider not only the log likelihood but also
the starting point for Newton’s method. The one-step Newton map G is defined for
an objective function q and a current iterate δ by

(19) G(q, δ) = δ +
(−∇2q(δ)

)−1∇q(δ)

when −∇2q(δ) is positive definite (otherwise Newton’s method makes no sense as
an attempt at maximization). In order to deal with this possible failure of Newton’s
method, we allow δ and G(q, δ) to have the value NaO (not an object), which, like
NaN (not a number) in computer arithmetic, propagates through all operations.
Addition of a new isolated point to a Polish space produces another Polish space.

Lemma 3. If q is strictly concave quadratic and δ �= NaO, then G(q, δ) is the
unique point where q achieves its maximum.

Proof. Suppose

(20) q(δ) = u+ z′δ − 1
2δ

′Kδ,

where K is positive definite, so

∇q(δ) = z −Kδ

∇2q(δ) = −K
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Then
G(q, δ) = δ +K−1(z −Kδ) = K−1z,

which is the solution to ∇q(δ) = 0, and hence by strict concavity, the unique global
maximizer of q.

Lemma 4. The Newton map G is continuous at points (q, δ) such that q is strictly
concave quadratic.

Proof. Suppose δn → δ and qn → q with q given by (20). If δ = NaO the conclusion
is trivial. Otherwise, because convergence in C2(Rp) implies continuous convergence
of first and second derivatives

−∇2qn(δn) → −∇2q(δ) = K,

which is positive definite, so G(qn, δn) �= NaO for sufficiently large n, and

∇qn(δn) → ∇q(δ) = z −Kδ,

so
G(qn, δn) → G(q, δ) = K−1z.

Theorem 5. Let δ̃n be a sequence of random elements of Rd and qn a sequence of
log likelihoods having parameter space R

d and true parameter value zero. Suppose

(21)
(
qn, δ̃n

) L−→ (q, δ̃)

where q is the log likelihood of an LAMN model (16), and define δ̂n = G(qn, δ̃n)
where G is given by (19). Then

−∇2qn(δ̃n)
L−→ K(22a)

−∇2qn(δ̂n)
L−→ K(22b)

δ̂n
L−→ K−1Z(22c) (−∇2qn(δ̂n)

)1/2
δ̂n

L−→ N (0, I)(22d)

where the matrix square root in (22d) is the symmetric square root when the matrix
is positive definite and NaO otherwise. Moreover, (21), (22a), (22b), (22c), and
(22d) hold jointly.

The convergence in law (21) takes place in C2(Rp) × R
p, the product of Polish

spaces being a Polish space (Billingsley, 1999, Appendix M6). In (22d) I is the p×p
identity matrix. Since the random variables on the right hand sides of all these limits
are never NaO, the left hand sides are NaO with probability converging to zero.

Some would rewrite (22d) as

(23) θ̂n ≈ N
(
ψn,

(−∇2ln(θ̂n)
)−1

)
,

where the double wiggle means “approximately distributed” or something of the
sort and where we have shifted back to the original parameterization

θ̃n = ψn + τ−1
n δ̃n

θ̂n = ψn + τ−1
n δ̂n

= G(ln, θ̃n)
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Strictly speaking, (23) is mathematical nonsense, having no mathematical content
except by allusion to (22d), but it is similar to

(24) θ̂n ≈ N
(
ψ, In(θ̂n)

−1
)

familiar from conventional treatments of the asymptotics of maximum likelihood,
where ψ is the true parameter value and In(θ) is expected Fisher information for
sample size n.

Proof. We claim the map

(25)

(
q
δ

)
�→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

q
δ

∇2q(δ)
∇2q

(
G(q, δ)

)
G(q, δ)(

−∇2q
(
G(q, δ)

))1/2

G(q, δ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is continuous on C2(Rd) × R
2 at points where q is strictly concave quadratic. By

definition of product topology, (25) is continuous if each component is continuous.
The first two components are also continuous by definition of product topology, the
fifth by Lemmas 3 and 4, then the third and fourth by continuous convergence, and
the sixth by matrix multiplication being a continuous operation, and matrix square
root being a continuous operation on the set of positive definite matrices (Horn and
Johnson, 1985, Problem 7.2.18) and continuous convergence.

Now all of the assertions of the theorem follow from the mapping theorem
(Billingsley, 1999, Theorem 2.7), the only non-obvious limit being (22d), which is
clearly K−1/2Z. Since Z is N (0,K) given K by q being LAMN with true parameter
value zero, K−1/2Z is N (0, I) conditional on K. Since the conditional distribution
does not depend on K, it is also the unconditional distribution.

Corollary 6. If K = −∇2q(δ) in the theorem is constant, then (22c) can be re-
placed by

(26) δ̂n
L−→ N (0,K−1)

The proof is obvious. Some would rewrite (26) as

(27) θ̂n ≈ N (
ψn, (τ

2
nK)−1

)
,

from which we see that K plays the role of expected Fisher information for sample
size one and τ2nK plays the role of expected Fisher information for sample size n,
though K isn’t the expectation of anything in our setup.

3.6. Bounding the Approximation

Suppose we wish to use (22d) to produce a confidence region. Another application
of the mapping theorem gives

δ̂′n
(−∇2qn(δ̂n)

)
δ̂n

L−→ chi2(p),
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where the right hand side denotes a chi-square random variable with p degrees of
freedom. If κ is the upper α quantile of this distribution, then by the Portmanteau
theorem (Billingsley, 1999, Theorem 2.1)

lim inf
n→∞ Pr

{
δ̂′n

(−∇2qn(δ̂n)
)
δ̂n < κ

}
≥ 1− α

and, mapped to the original parameterization, this tells us that

{
θ ∈ R

p : (θ̂n − θ)′
(−∇2ln(θ̂n)

)
(θ̂n − θ) < κ

}

is a 1− α asymptotic confidence region for the true unknown parameter value ψn.
So far so conventional, but now we want to do a finer analysis using the joint

convergence of θ̃n and θ̂n. For any open set W we get

(28) lim inf
n→∞ Pr

{
δ̂′n

(−∇2qn(δ̂n)
)
δ̂n < κ and δ̃n ∈ W and δ̂n ∈ W

}

≥ 1− α− Pr(δ̃ /∈ W or δ̂ /∈ W )

(using Bonferroni on the right hand side), and now we note that we only evaluate

∇qn and ∇2qn at δ̃n and δ̂n, and hence for this statement to hold we only need the
convergence in law (21) relative to W , that is, for (28) to hold we only need (21)
to hold in C2(W )×W .

This section is our counterpart of the conventional “regularity condition” that
the true parameter value be an interior point of the parameter space. But here we
see that if θ̃n is a very bad estimator of ψn, then W may need to be very large in
order to have Pr(δ̃ /∈ W or δ̂ /∈ W ) very small. The conventional regularity condition
vastly oversimplifies what is really needed.

4. Discussion

It has not escaped our notice that the “no n” view advocated here leaves no place
for a lot of established statistical theory: Edgeworth expansions, rates of conver-
gence, the Bayes information criterion (BIC), and the subsampling bootstrap, to
mention just a few. Can all of this useful theory be replaced by some “no n” analog?
Only time will tell. Our goal is merely to explicate this “no n” view of maximum
likelihood. We are not advocating political correctness in asymptotics.

It does seem obvious that “no n” asymptotics based on LAN and LAMN theory
says nothing about situations where no likelihood is specified (as in quasilikelihood,
estimating equations, and much of nonparametrics and robustness) or where the
likelihood is incorrectly specified or where the likelihood is correctly specified but
the parameter is infinite-dimensional (as in nonparametric maximum likelihood).
Thus it is unclear how this “no n” view can be extended to these areas.

Another classical result that does not transfer to the “no n” world view is the
asymptotic efficiency of maximum likelihood. In an LAN model, it is true that the
MLE is the best equivariant-in-law estimator (van der Vaart, 2000, Proposition 8.4),
but James-Stein estimators (James and Stein, 1961) show that the MLE is not the
best estimator (where “best” means minimum mean squared error). The “no n”
view has no room for other interpretations: if one likes James-Stein estimators, then
one cannot also consider the MLE asymptotically efficient (because LAN models are
already in asymptopia). The argument leading to Le Cam’s almost sure convolution
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theorem (van der Vaart, 2000, Section 8.6) cannot be transferred to the “no n” world
(because it would have to prove the MLE as good as James-Stein estimators in LAN
models, and it isn’t).

The application described in Section 1.4 convinced us of the usefulness of this “no
n” view in spatial statistics, statistical genetics, and other areas where complicated
dependence makes difficult the invention of reasonable “n goes to infinity” stories,
much less the proving of anything about them. But having seen the usefulness of the
“no n” view in any context, one wants to use it in every context. Having understood
the power of “quadraticity” as an explanatory tool,” many opportunities to use it
arise. When a user asks whether n is “large enough” when the log likelihood is
nowhere near quadratic, now the answer is “obviously not.” When a user asks
whether there is a need to reparameterize when the Wald confidence regions go
outside the parameter space, now the answer is “obviously.”

We imagine some readers wondering whether our ideas are mere “generalized
abstract nonsense.” Are we not essentially assuming what we are trying to prove?
Where are all the deltas and epsilons and inequality bashing that one expects in
“real” real analysis? We believe such “inequality bashing” should be kept separate
from the main argument, because it needlessly restricts the scope of the theory.
Le Cam thought the same, keeping separate the arguments of Chapters 6 and 7 in
Le Cam and Yang (2000).

For readers who want to see that kind of argument, we have provided Lemma 10
in Appendix C that says our “key assumption” (15) is weaker than the “usual
regularity conditions” for maximum likelihood (Ferguson, 1996, Chapter 18) in all
respects except the requirement that the parameter space be all of Rp, which we
worked around in Section 3.6. A similar lemma using a different Polish space with
weaker topology is Lemma 4.1 in Geyer (1994), where a “single convergence in
law statement about the log likelihood” (the conclusion of the lemma) is shown
to follow from complicated analytic regularity conditions (the hypotheses of the
lemma), modeled after Pollard (1984, pp. 138 ff.).

Despite all the theory we present, our message is very simple: if the log likeli-
hood is nearly quadratic with Hessian nearly equivariant in law, then the “usual”
asymptotics of maximum likelihood hold. The only point of all the theory is to show
that conventional theory, which does not support our message, can be replaced by
theory that does.

Appendix A: Measurability in C(W ) and C2(W )

Let W be an open subset of Rp, and let Bn be an increasing sequence of compact
subsets of W whose union is W . Then Rudin (1991, Example 1.44) gives an explicit
metric for the space C(W ) defined in section 3.2

(29) d(f, g) = max
n≥1

2−n‖f − g‖Bn

1 + ‖f − g‖Bn

where for any compact set B we define

‖f‖B = sup
x∈B

|f(x)|.

A map F : Ω → C(W ) is measurable if and only if its uncurried form (ω, θ) �→
F (ω)(θ) is Carathéodory, meaning

• ω �→ F (ω)(θ) is measurable for each fixed θ ∈ W and
• θ �→ F (ω)(θ) is continuous for each fixed ω ∈ Ω
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(Rudin, 1991, Example 1.44; Aliprantis and Border, 1999, Corollary 4.23 and Theo-
rem 4.54). The isomorphism between C2(W ) and a closed subspace of
C(W )1+p+p×p means a function from a measurable space to C2(W ) is measur-
able if and only if it and its first and second partial derivatives have Carathéodory
uncurried forms.

Appendix B: Newton Iterated to Convergence

In this appendix we consider Newton’s method iterated to convergence. Of course
Newton need not converge, so we have to deal with that issue. Define Newton
iterates

δ0 = δ

δn = G(q, δn−1), n > 0.

If the sequence {δn} converges, then we define

(30) G∞(q, δ) = lim
n→∞ δn

and otherwise we define G∞(q, δ) = NaO. This function G∞ is called the infinite-
step Newton map.

Lemma 7. If q is strictly concave quadratic and δ �= NaO, then G∞(q, δ) is the
unique point where q achieves its maximum.

Proof. By Lemma 3 the Newton sequence converges in one step in this case and
has the asserted properties.

Lemma 8. The infinite-step Newton map G∞ is continuous at points (q, δ) such
that q is strictly concave quadratic.

Proof. Suppose δ̃n → δ̃ and qn → q, and suppose q is strictly concave quadratic
given by (20). Let δ̂ = K−1z be the unique point at which q achieves its maximum,

and let B be a compact convex set sufficiently large so that it contains δ̂ and δ̃ in
its interior and

sup
δ∈∂B

q(δ) < q(δ̃),

where ∂B denotes the boundary of B. Let S be the unit sphere. Then

(δ, t) �→ t′
(−∇2qn(δ)−K

)
t

converges continuously to zero on B × S. Hence

(31a) sup
δ∈B
t∈S

∣∣t′(−∇2qn(δ)−K
)
t
∣∣ → 0.

Also

(31b) qn(δ̂)− sup
δ∈∂B

qn(δ) → q(δ̂)− sup
δ∈∂B

q(δ)

and

(31c) qn(δ̃n)− sup
δ∈∂B

qn(δ) → q(δ̃)− sup
δ∈∂B

q(δ)

and the limits in both (31b) and (31c) are positive.
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Choose N such that for all n ≥ N the left hand side of (31a) is strictly less than
one-third of the smallest eigenvalue of K and the left hand sides of both (31b) and
(31c) are positive. For n ≥ N , −∇2qn(δ) is positive definite for δ ∈ B, hence qn is

strictly concave on B. Let δ̂n denote the (unique by strict concavity) point at which

qn achieves its maximum over B. Since the left hand side of (31b) is positive, δ̂n
is in the interior of B and ∇qn(δ̂n) = 0. By Theorem 1 and Example 2 of Veselić

(2004) Newton’s method applied to qn starting at δ̃n converges to δ̂n for n ≥ N .
Consider the functions Hn and H defined by Hn(δ) = G(qn, δ) and H(δ) =

G(q, δ). Then for n ≥ N , we have δ̂n = Hn(δ̂n). By Lemma 4 Hn converges to H

uniformly on compact sets. By Lemma 3 δ̂ = H(δ) whenever δ �= NaO. Thus, if

W is a neighborhood of δ̂, then Hn maps B into W for sufficiently large n, which
implies δ̂n ∈ W for sufficiently large n, which implies δ̂n → δ̂.

Theorem 9. Theorem 5 holds with G replaced by G∞.

Just change the proof to use Lemmas 7 and 8 instead of Lemmas 3 and 4.
When Newton’s method converges, under these conditions (the Hessian is con-

tinuous but not necessarily Lipschitz), then its convergence is superlinear (Fletcher,
1987, Theorem 6.2.3). If the Hessian does happen to be Lipschitz, then Newton’s
method converges quadratically (Fletcher, 1987, Theorem 6.2.1).

It is clear from the proof of Lemma 8 that the argument of Section 3.6 carries over
to this situation. Now we evaluate ∇qn and ∇2qn at an infinite sequence of points,
but as the last paragraph of the proof makes clear, all but the first of these points lie
in an arbitrarily small neighborhood of δ̂n for sufficiently large n. There is “almost”
no difference between one-step Newton and Newton iterated to convergence.

Please note that this appendix is an endorsement of Newton’s method only for
objective functions that are “nearly” strictly concave quadratic so that Newton’s
method “nearly” converges in one step. If Newton’s method does not “nearly”
converge in one step, then one is crazy to use it and should instead use some form
of “safeguarding” such as line search (Fletcher, 1987, pp. 21–40) or trust regions
(Fletcher, 1987, Chapter 5).

Appendix C: Comparison with Classical Theorems

This appendix compares our “regularity conditions” with the “usual regularity con-
ditions” for maximum likelihood. So we leave “no n” territory and return to the
conventional “n goes to infinity” story. We adopt “usual regularity conditions” sim-
ilar to those of (Ferguson, 1996, Chapter 18). Suppose we have independent and
identically distributed data X1, X2, . . ., Xn, so the log likelihood is the sum of
independent and identically distributed terms

ln(θ) =

n∑
i=1

hi(θ)

where

hi(θ) = log

(
fθ(Xi)

fψ(Xi)

)

and where ψ is the true parameter value. We assume

(a) the parameter space is all of Rp,
(b) hi is twice continuously differentiable,
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(c) There exists an integrable random variable M such that
∥∥∇2hi(θ)

∥∥ ≤ M, for all θ in some neighborhood of ψ,

(the norm here being the sup norm),
(d) the expected Fisher information matrix

K = −Eψ{∇2hi(ψ)}
is positive definite, and

(e) the identity
∫
fθ(x)λ(dx) = 1, can be differentiated under the integral sign

twice.

Lemma 10. Under assumptions (a) through (e) above, (15) holds with τn =
√
n.

Proof. Assumption (e) implies

varψ{∇hi(ψ)} = −Eψ{∇2hi(ψ)}
by differentiation under the integral sign (Ferguson, 1996, p. 120), assumption (d)
implies both sides are equal to the positive definite matrix K, and the central limit
theorem (CLT) and assumption (e) imply

(32) ∇qn(0) =
1√
n

n∑
i=1

∇hi(ψ)
L−→ N (0,K).

Define

rn(δ) = δ′∇qn(0)− 1

2
δ′Kδ

and its derivatives

∇rn(δ) = ∇qn(0)−Kδ

∇2rn(δ) = −K

We now show that

(33a) rn
L−→ q, in C2(Rp)

is a consequence of the mapping theorem (Billingsley, 1999, Theorem 2.7) and (32).
Define a function F : Rp → C2(Rp) by

F (z)(δ) = z′δ − 1
2δ

′Kδ

We claim that F is continuous, which says no more than that

zn → z and δn → δ

imply

z′nδn − 1
2δ

′
nKδn → z′δ − 1

2δ
′Kδ

zn −Kδn → z −Kδ

which are obvious (and that second derivatives converge, which is trivial). Then an
application of the mapping theorem in conjunction with (32) says

(33b) F
(∇qn(0)

) L−→ F (Y )
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where Y is a random vector that has the distribution on the right hand side of (32),
and that is the desired conclusion: (33a) in different notation.

Now we use Slutsky’s theorem (Billingsley, 1999, Theorem 3.1). This says that
if we can show

qn − rn
P−→ 0, in C2(Rp),

then we are done. Using the isomorphism of C2(Rp) to a subspace of C(Rp)1+p+p×p

and another application of Slutsky, it is enough to show the separate convergences

qn − rn
P−→ 0(34a)

∇qn −∇rn
P−→ 0(34b)

∇2qn −∇2rn
P−→ 0(34c)

which take place in C(Rp), in C(Rp)p, and in C(Rp)p×p, respectively. But these are
equivalent to

sup
δ∈B

|qn(δ)− rn(δ)| P−→ 0(35a)

sup
δ∈B

‖∇qn(δ)−∇rn(δ)‖ P−→ 0(35b)

sup
δ∈B

∥∥∇2qn(δ)−∇2rn(δ)
∥∥ P−→ 0(35c)

holding for every compact set B, which can be seen using the metric (29).

Let B(θ, ε) denote the closed ball in R
p centered at θ with radius ε. Then as-

sumption (c) can be stated more precisely as the existence of an ε > 0 and an
integrable random variable M such that

(36)
∥∥∇2hi(θ)

∥∥ ≤ M, θ ∈ B(ψ, ε).

Define

Hn(θ) = − 1

n

n∑
i=1

∇2hi(θ)

and

H(θ) = −Eψ{∇2hi(θ)}.

Theorem 16(a) in Ferguson (1996) says that

(37) sup
θ∈B(ψ,ε)

‖Hn(θ)−H(θ)‖ as−→ 0

and that H is continuous on B(ψ, ε), the latter assertion appearing in the proof
rather than in the theorem statement. Note that H(ψ) = K. Also note that

∇2qn(δ) = −Hn(ψ + n−1/2δ)

∇2rn(δ) = −H(ψ)
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Hence

sup
δ∈B(0,η)

∥∥∇2qn(δ)−∇2rn(δ)
∥∥ = sup

δ∈B(0,η)

∥∥∥Hn(ψ − n−1/2δ)−H(ψ)
∥∥∥

= sup
θ∈B(ψ,n−1/2η)

‖Hn(θ)−H(ψ)‖

≤ sup
θ∈B(ψ,n−1/2η)

‖Hn(θ)−H(θ)‖

+ sup
θ∈B(ψ,n−1/2η)

‖H(θ)−H(ψ)‖

and the first term on the right hand side is dominated by the left hand side of (37)
for n such that n−1/2η ≤ ε and hence converges in probability to zero by (37), and
the second term on the right hand side goes to zero by the continuity of H. Since
this argument works for arbitrarily large η, it proves (35c).

Now using some of the facts established above and the Maclaurin series

∇qn(δ) = ∇qn(0) +

∫ 1

0

∇2qn(sδ)δ ds

we get

∇qn(δ)−∇rn(δ) =

∫ 1

0

[
Hn(ψ + n−1/2sδ)−H(ψ)

]
δ ds.

So

sup
δ∈B(0,η)

‖∇qn(δ)−∇rn(δ)‖ ≤ sup
0≤s≤1

sup
δ∈B(0,η)

∥∥∥Hn(ψ + n−1/2sδ)−H(ψ)
∥∥∥ ‖δ‖

≤ sup
δ∈B(0,η)

∥∥∥Hn(ψ + n−1/2δ)−H(ψ)
∥∥∥ η

and we have already shown that the right hand side converges in probability to zero
for any fixed η, however large, and that proves (35b).

Similarly using the Maclaurin series

qn(δ) = δ′∇qn(0) +

∫ 1

0

δ′∇2qn(sδ)δ(1− s) ds

we get

qn(δ)− rn(δ) =

∫ 1

0

δ′
[
Hn(ψ + n−1/2sδ)−H(ψ)

]
δ(1− s) ds

and the argument proceeds similarly to the other two cases.

Lemma 11. The assumption (21) of Theorem 5 can be weakened to (15) and δ̃n
being tight if the last assertion of the theorem is weakened by replacing (21) with
(15).

Proof. The random sequences δ̃n and qn are marginally tight, either by assumption
or by the converse half of Prohorov’s theorem, hence jointly tight (Billingsley, 1999,
Problem 5.9). Hence by the direct half of Prohorov’s theorem there exist jointly
convergent subsequences. For every subsequence

(
qnk

, δ̃nk

)
there is a convergent

subsubsequence (21) with n replaced by nkl
. And this implies all the conclusions

of the theorem with n replaced by nkl
. But since the limits are the same for all

subsequences nk, it follows from the subsequence principle (Billingsley, 1999, The-
orem 2.6) that the conclusions hold as is with n rather than nkl

.
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The point of Lemma 11 is to justify Lemma 10 dealing only with qn instead
of both qn and δ̃n. In the conventional “n is sample size going to infinity” story,
Lemma 11 seems important, saying that it is enough that θ̃n be a τn-consistent
sequence of estimators. In the “no n” world, however, Lemma 11 loses significance
because τn-consistency is meaningless when n is not reified.
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