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Asymptotic theory of the spatial median

Jyrki Möttönen1,∗ , Klaus Nordhausen2,3 and Hannu Oja2

University of Helsinki, University of Tampere and Tampere University Hospital

Abstract: In this paper we review, prove and collect the results on the lim-
iting behavior of the regular spatial median and its affine equivariant mod-
ification, the transformation retransformation spatial median. Estimation of
the limiting covariance matrix of the spatial median is discussed as well. Some
algorithms for the computation of the regular spatial median and its different
modifications are described. The theory is illustrated with two examples.

1. Introduction

For a set of p-variate data points y1, . . . ,yn, there are several versions of multivari-
ate median and related multivariate sign test proposed and studied in the literature.
For some reviews, see Small [23], Chaudhuri and Sengupta [6] and Niinimaa and
Oja [17]. The so called spatial median which minimizes the sum

∑n
i=1 |yi−µ| with

a Euclidean norm | · | has a very long history, Gini and Galvani [8] and Haldane [10]
for example have independently considered the spatial median as a generalization
of the univariate median. Gover [9] used the term mediancenter. Brown [3] has de-
veloped many of the properties of the spatial median. This minimization problem is
also sometimes known as the Fermat-Weber location problem, see Vardi and Zhang
[25]. Taking the gradient of the objective function, one sees that if µ̂ solves the
equation

∑n
i=1{U(yi − µ̂)} = 0 with spatial sign U(y) = |y|−1y, then µ̂ is the

observed spatial median. The spatial sign test for H0 : µ = 0 based on the sum of
spatial signs,

∑n
i=1 U(yi) was considered by Möttönen and Oja [14], for example.

The spatial median is unique, if the dimension of the data cloud is greater than
one, see Milasevic and Ducharme [13]. The so called Weiszfeld algorithm for the
computation of the spatial median has a simple iteration step, namely μ ← μ
+{∑n

i=1 |yi −µ|−1}−1
∑n

i=1{U(yi − µ)}. The algorithm may fail sometimes, how-
ever, but a slightly modified algorithm which converges quickly and monotonically
is described by Vardi and Zhang [25].

One drawback of the spatial median (the spatial sign test) is the lack of equiv-
ariance (invariance) under affine transformations of the data. The performance of
the spatial median as well as the spatial sign test then may be poor compared to
affine equivariant and invariant procedures if there is a significant deviance from
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a spherical symmetry. Chakraborty et al. [4] proposed and investigated an affine
equivariant modification of the spatial median constructed using an adaptive trans-
formation and retransformation (TR) procedure. An affine invariant modification
of the spatial sign test was also proposed. Randles [19] used Tyler’s transforma-
tion [24] to construct an affine invariant modification of the spatial sign test. Later
Hettmansperger and Randles [19] proposed an equivariant modification of the spa-
tial median, again based on Tyler’s transformation; this estimate is known as the
Hettmansperger–Randles (HR) estimate.

In this paper we review and collect the results on the limiting behavior of the
regular spatial median and its affine equivariant modification, the transformation
retransformation spatial median. In Section 2 some auxiliary results and tools for
asymptotic studies are given. Asymptotic theory for the regular spatial median is
reviewed in Section 3. Estimation of the limiting covariance matrix of the spatial
median is discussed in Section 4. Section 5 considers the transformation retransfor-
mation spatial median. The paper ends with some discussion on the algorithms for
the computation of the spatial median in Section 6 and two examples in Section
7. Many of the results can be collected from Arcones [1], Bai et al. [2], Brown [3],
Chakraborty et al.[4], Chaudhuri [5], Möttönen et al. [14] and Rao [20]. See also
Nevalainen et al. [16] for the spatial median in the case of cluster correlated data.
For the proofs in this paper it is crucial that the dimension p > 1. For the properties
of the univariate median, see Section 2.3 in Serfling [22], for example.

2. Auxiliary results

Let y �= 0 and µ be any p-vectors, p > 1. Write also r = |y| and u = |y|−1y.
Then accuracies of different (constant, linear and quadratic) approximations of

function µ→ |y − µ| around the origin are given by

(A1) ||y − µ| − |y|| ≤ |µ|,
(A2) ||y − µ| − |y|+ u′µ| ≤ 2r−1|µ|2 and
(A3)

∣∣|y − µ| − |y|+ u′µ− µ′(2r)−1[Ip − uu′]µ
∣∣ ≤ C1r

−1−δ|µ|2+δ for all 0<δ<1,

where C1 does not depend on y or µ.

Similarly, the accuracies of constant and linear approximations of unit vector
|y − µ|−1(y − µ) around the origin are given by

(B1)
∣∣∣ y−µ
|y−µ| − y

|y|
∣∣∣ ≤ 2r−1|µ| and

(B2)
∣∣∣ y−µ
|y−µ| − y

|y| − 1
r [Ip − uu′]µ

∣∣∣ ≤ C2r
−1−δ|µ|1+δ for all 0 < δ < 1,

where C2 does not depend on y or µ.

For these and similar results, see Arcones [1] and Bai et al. [2].

Lemma 1. Assume that the density function f(y) of the p-variate continuous
random vector y is bounded. If p > 1 then E{|y|−α} exists for all 0 ≤ α < 2.

The following key result for convex processes is Lemma 4.2 in Davis et al. [7]
and Theorem 1 in Arcones [1].

Theorem 1. Let Gn(µ), µ ∈ R
p, be a sequence of convex stochastic processes, and

let G(µ) be a convex (limit) process in the sense that the finite dimensional distri-
butions of Gn(µ) converge to those of G(µ). Let µ̂, µ̂1, µ̂2, . . . be random variables
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such that

G(µ̂) = inf
µ

G(µ) and Gn(µ̂n) = inf
µ

Gn(µ), n = 1, 2, . . .

Then µ̂n →d µ̂.

3. Spatial median

Let y be a p-variate random vector with cdf F , p > 1. The spatial median of F
minimizes the objective function

D(µ) = E{|y − µ| − |y|}.
Note that no moment assumptions are needed in the definition as ||y−µ|−|y|| ≤ |µ|
but for the asymptotic theory we assume that

(C1) The p-variate density function f of y is continuous and bounded.
(C2) The spatial median of the distribution of y is zero and unique.

We next define vector and matrix valued functions

U(y) =
y

|y| , A(y) =
1

|y|
[
Ip − yy′

|y|2
]
, and B(y) =

yy′

|y|2

for y �= 0 and, by convention, U(0) = 0 and A(0) = B(0) = 0. We write also
A = E {A(y)} and B = E {B(y)} .

The expectation definingB clearly exists and is bounded (|B(y)|2 = tr(B(y)′B(y))
= 1). Our assumption implies that E(|y|−1) < ∞ and therefore also A exists and
is bounded. Auxiliary result (A3) in Section 2 then implies

Lemma 2. Under assumptions (C1) and (C2), D(µ) = 1
2µ

′Aµ+ o(|µ|2).
See also Lemma 19 in Arcones [1].
Let Y = (y1, . . . ,yn)

′ be a random sample from a p-variate distribution F . Write

Dn(µ) = ave{|yi − µ| − |yi|}.
The function Dn(µ) as well as D(µ) are convex and bounded. Boundedness follows
from (A1). The sample spatial median µ̂ is defined as

µ̂ = µ̂(Y) = argmin Dn(µ).

The estimate µ̂ is unique if the observations do not fall on a line. Under assumption
(C1) µ̂ is unique with probability one. As D(µ) is the limiting process of Dn(µ),
Theorem 1 implies that µ̂→P 0.

The statistic Tn = T(Y) = ave {U(yi)} is the spatial sign test statistic for
testing the null hypothesis that the spatial median is zero. As µ is assumed to be
a zero vector, the multivariate central limit theorem implies that

Lemma 3.
√
nTn →d Np(0,B).

The approximation (A3) in Section 1 implies that∣∣∣∣∣
n∑

i=1

{|yi − n−1/2µ| − |yi|} − 1√
n

n∑
i=1

y′
i

|yi|µ− µ′ 1
n

n∑
i=1

[
1

2|yi|
[
Ip − yiy

′
i

|yi|2
]]

µ

∣∣∣∣∣
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≤ C1

n(2+δ)/2

n∑
i=1

|µ|2+δ

r1+δ
i

→P 0, for all µ,

and we get

Lemma 4. Under assumptions (C1) and (C2),

nDn(n
−1/2µ)−

(√
nTn − 1

2
Aµ

)′
µ →P 0.

Now apply Theorem 1 with Gn(µ) = nDn(n
−1/2µ) and G(µ) =

(
z− 1

2Aµ
)′
µ

where z ∼ Np(0,B). We then obtain (A is positive definite)

Theorem 2. Under assumptions (C1) and (C2),
√
nµ̂ →d Np(0,A

−1BA−1).

It is well known that, if E(yi) = 0 and the second moments exist, also
√
nȳ→d

Np(0,Σ) where Σ is the covariance matrix of yi. The asymptotic relative effi-
ciency of the spatial median with respect to the sample mean is then given by
det (Σ)/det

(
A−1BA−1

)
. The spatial median has good efficiency properties even

in the multivariate normal model. Möttönen et al [15] for example calculated the
asymptotic relative efficiencies e(p, ν) of the multivariate spatial median with re-
spect to the mean vector in the p-variate tν,p distribution case (t∞,p is the p-variate
normal distribution). In the 3-variate and 10-variate cases, for example, the asymp-
totic relative efficiencies are

e(3, 3) = 2.162, e(3, 10) = 1.009, e(3,∞) = 0.849,
e(10, 3) = 2.422, e(10, 10) = 1.131, e(10,∞) = 0.951.

4. Estimation of the covariance matrix of the spatial median

For a practical use of the normal approximation of the distribution of µ̂ one natu-
rally needs an estimate for the asymptotic covariance matrix A−1BA−1. We esti-
mate A and B separately. Recall that we assume that the true value µ = 0. Write,
as before,

A(y) =
1

|y|
(
Ip − yy′

|y|2
)

and B(y) =
yy′

|y|2 .

Then write Â = A(Y) = ave {A(yi − µ̂)} and B̂ = B(Y) = ave {B(yi − µ̂)} .
We will show that, under our assumptions, Â and B̂ converge in probability to the
population values A = E {A(yi)} and B = E {B(yi)} , respectively:
Theorem 3. Under assumptions (C1) and (C2), Â→P A and B̂→P B.

Proof We thus assume that the true spatial median µ = 0. By Theorem 2,√
nµ̂ = Op(1). Write Ã = ave {A(yi)} and B̃ = ave {B(yi)} . Then by the law of

large numbers Ã→P A and B̃→P B. Our auxiliary result (B1) implies that∣∣∣∣ (y − µ)(y − µ)′

|y − µ|2 − yy′

|y|2
∣∣∣∣ ≤ 4

|µ|
|y| , ∀ y �= 0,µ,

and therefore by Slutsky’s theorem |B̂− B̃| ≤ 1
n

∑n
i=1{4|µ̂|/|yi|} →P 0. As B̃→P

B, also B̂→P B.
We now prove that Â→P A. We play with three positive constants, “large” δ1,

“small” δ2 and “small” δ3. For a moment, we assume that |µ̂| < δ1/
√
n. (This is true
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with a probability that can be made close to one with large δ1.) Next we write I1i =

I
{
|yi − µ̂| < δ2√

n

}
, I2i = I

{
δ2√
n
≤ |yi − µ̂| < δ3

}
and I3i = I { |yi − µ̂| ≥ δ3} .

Then

Ã− Â =
1

n

n∑
i=1

(A(yi)−A(yi − µ̂))

=
1

n

n∑
i=1

(I1i · [A(yi)−A(yi − µ̂)]) +
1

n

n∑
i=1

(I2i · [A(yi)−A(yi − µ̂)])

+
1

n

n∑
i=1

(I3i · [A(yi)−A(yi − µ̂)]) .

The first average is zero with probability

P (I11 = . . . = I1n = 0) ≥
(
1− δp2cpM

np/2

)n

≥
(
1− δ22cpM

n

)n

→ e−cpMδ22 ,

where M = supy f(y) < ∞ and cp is the volume of the p-variate unit ball. (The
first average is thus zero with a probability that can be made close to one with
small choices of δ2 > 0.) For the second average, one gets

1

n

n∑
i=1

|I2i · [A(yi)−A(yi − µ̂)]| ≤ 1

n

n∑
i=1

6I2i|µ̂|
|yi − µ̂||yi| ≤

1

n

n∑
i=1

6I2iδ1
δ2|yi|

which converges to a constant which can be made as close to zero as one wishes
with small δ3 > 0. Finally, also the third average

1

n

n∑
i=1

|I3i · [A(yi)−A(yi − µ̂)]| ≤ 1

n

n∑
i=1

6I3i|µ̂|
|yi − µ̂||yi| ≤

1

n
√
n

n∑
i=1

6I3iδ1
δ3|yi|

converges to zero in probability for all choices of δ1 and δ3, and the proof follows.�

Theorems 2 and 3 thus suggest that the distribution of µ̂ can be approximated

by Np

(
µ, 1

nÂ
−1B̂Â−1

)
. Approximate 95 % confidence ellipsoids for µ are given

by
{
µ : n(µ− µ̂)′ÂB̂−1Â(µ− µ̂) ≤ χ2

p,.95

}
, where χ2

p,.95 is the 95 % quantile of

a chi square distribution with p degrees of freedom. Also, by Slutsky’s theorem,
under the null hypothesis H0 : µ = 0 the squared version of the test statistic
Q2 = nT′

nB̂
−1Tn →d χ2

p.

5. Transformation retransformation spatial median

Shifting the data cloud, naturally shifts the spatial median by the same constant,
that is, µ̂(1na

′ + Y) = a + µ̂(Y), It is also easy to see that rotating the data
cloud also rotates the spatial median correspondingly, that is, µ̂(YO′) = Oµ̂(Y),
for all orthogonal p× p matrices O. Unfortunately, the estimate is not equivariant
under heterogeneous rescaling of the components, and therefore not fully affine
equivariant.
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A fully affine equivariant version of the spatial median can be found using the
so called transformation retransformation estimation technique. First, a positive
definite p× p scatter matrix S = S(Y) is a matrix valued sample statistic which is
affine equivariant in the sense

S(1na
′ +YB′) = BS(Y)B′

for all p-vectors a and all nonsingular p × p matrices B. Let S−1/2 be any matrix
which satisfies S−1/2S(S−1/2)′ = Ip. The procedure is then as follows.

1. Take any scatter matrix S = S(Y).
2. Transform the data matrix: Y(S−1/2)′.
3. Find the spatial median for the standardized data matrix µ̂(Y(S−1/2)′).
4. Retransform the estimate: µ̃(Y) = S1/2µ̂(Y(S−1/2)′).

This median µ̃(Y) utilizing “data driven” transformation S−1/2 is known as the
transformation retransformation (TR) spatial median. (See Chakraborty et al. [4]
for other type of data driven transformations.) Then the affine equivariance follows:

Theorem 4. Let S = S(Y) be any scatter matrix. Then the transformation retrans-
formation spatial median µ̃(Y) = S1/2µ̂(Y(S−1/2)′) is affine equivariant, that is,
µ̃(1na

′ +YB′) = a+Bµ̃(Y).

The proof easily follows from the facts that the regular spatial median is shift
and orthogonally equivariant and that (S(1na

′ + YB′))−1/2 = O(S(Y))−1/2 for
some orthogonal matrix O.

In the following we assume (without loss of generality) that the population value
of S is Ip, and that S = S(Y) is a root-n consistent estimate of Ip. We write
Δ =

√
n(S−1/2 − I) = Op(1) and Y∗ = Y(S−1/2)′. Then we have the following

result for the test statistic.

Lemma 5. Let Y be a random sample from a symmetric distribution satisfying
(C1) and (C2). (By a symmetry we mean that −yi and yi have the same distri-
bution.) Assume also that scatter matrix S = S(Y) satisfies

√
n(S − Ip) = Op(1).

Then
√
n(T(Y∗)−T(Y))→P 0.

Proof Our assumptions imply that also Δ =
√
n(S−1/2 − Ip) = Op(1). Thus

S−1/2 = Ip + n−1/2Δ where Δ is bounded in probability. Using auxiliary result
(B2) in Section 2 we obtain

1√
n

n∑
i=1

U(S−1/2yi)− 1√
n

n∑
i=1

Ui =
1

n

n∑
i=1

(Δ−U′
iΔUi)Ui + oP (1)

where Ui = U(yi), i = 1, . . . , n. For |Δ| < M , the second term in the expan-
sion converges uniformly in probability to zero due to its linearity with respect to
the elements of Δ and due to the symmetry of the distribution of Ui. (E(Ui) =
E(U′

iΔUiUi) = 0) . Therefore n−1/2
∑n

i=1 U(S−1/2yi)−n−1/2
∑n

i=1 Ui →P 0 and
the proof follows. �

We also have to show that A(Y∗) and A(Y) both converge to A, and similarly
with B(Y∗) and B(Y):

Lemma 6. Let Y be a random sample from a distribution satisfying (C1) and
(C2). Assume also that scatter matrix S = S(Y) satisfies

√
n(S − Ip) = Op(1).

A(Y∗)−A(Y)→P 0 and B(Y∗)−B(Y)→P 0.



188 J. Möttönen, K. Nordhausen and H. Oja

Proof Again S−1/2 = Ip + n−1/2Δ where Δ = Op(1). Suppose that Δ ≤ M .
(P (Δ ≤M)→ 1 as M →∞.) Write y∗

i = (Ip − n−1/2Δ)yi. Then∣∣∣∣y∗
i y

∗
i
′

|y∗
i |2
− yiy

′
i

|yi|2
∣∣∣∣ ≤ 1√

n
|Δ| and

∣∣∣∣ 1

|y∗
i |
− 1

|yi|
∣∣∣∣ ≤ |Ip − (Ip − n−1/2Δ)−1|

|yi| .

The first inequality gives |B(Y∗)−B(Y)| ≤ 1√
n
|Δ| → 0. The two inequalities

together imply that∣∣∣∣ 1

|yi|
(
Ip − yiy

′
i

|yi|2
)
− 1

|y∗
i |

(
Ip − y∗

i y
∗
i
′

|y∗
i |2

)∣∣∣∣ ≤ 1

|yi|
(
3M√
n

+ o(n−1/2)

)
.

Then |A(Y∗)−A(Y)| ≤ 1
n

∑n
i=1

[
1

|yi|
(

3M√
n
+ o(n−1/2)

)]
→P 0. �

Using Lemmas 5 and 6 and the auxiliary results in Section 2 we then get

Theorem 5. Let Y be a random sample from a symmetric distribution satisfying
(C1) and (C2). Assume also that scatter matrix S = S(Y) satisfies

√
n(S − Ip) =

Op(1). Then
√
nµ̃(Y) and

√
nµ̂(Y) have the same limiting distribution.

Proof Write again S−1/2 = Ip+n−1/2Δ, and y∗
i = (Ip−n−1/2Δ)yi, i = 1, . . . , n,

and Y∗ = (y∗
1, . . . ,y

∗
n)

′. Then our auxiliary results imply that that∣∣∣∣∣
n∑

i=1

{|y∗
i − n−1/2µ| − |y∗

i |} −
1√
n

n∑
i=1

y∗
i
′

|y∗
i |
µ− µ′ 1

n

n∑
i=1

[
1

2|y∗
i |

[
Ip − y∗

i y
∗
i
′

|y∗
i |2

]]
µ

∣∣∣∣∣
≤ C1

n(2+δ)/2

n∑
i=1

|µ|2+δ|(Ip − n−1/2Δ)−1|1+δ

|y∗
i |1+δ

→P 0

Thus Lemmas 5 and 6 together with Theorem 1 imply that
√
nµ̂(Y∗) and

√
nµ̂(Y)

have the same limiting distribution. As
√
nµ̃(Y) = S1/2

√
nµ̂(Y∗), the result follows

from Slutsky’s theorem. �

Based on the results above, the distribution of µ̃ can in the symmetric case be

approximated by Np

(
µ, Ĉov(µ̃)

)
, where Ĉov(µ̃) = 1

nS
1/2Â−1

S B̂SÂ
−1
S (S1/2)′ with

ÂS = ave
{

1
|ei|2

(
Ip − eie

′
i

|ei|2
)}

and B̂S = ave
{

eie
′
i

|ei|2
}

calculated from the standard-

ized residuals ei = S−1/2(yi − µ̃), i = 1, . . . , n.
The stochastic convergence and the limiting normality of the spatial median did

not require any moment assumptions. Therefore, for the transformation, a scatter
matrix with weak assumptions should be used as well. It is an appealing idea to
link also the spatial median with the Tyler’s transformation. This was proposed by
Hettmansperger and Randles [11]:

Definition 1. Let µ̂ be a p-vector and S > 0 a symmetric p× p matrix, and define
êi = S−1/2(yi − µ̂), i = 1, . . . , n. The Hettmansperger–Randles (HR) estimate of
location and scatter are the values of µ̂ and S which simultaneously satisfy

ave {U(êi)} = 0 and p ave {U(êi)U(êi)
′} = Ip.
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Note that the HR estimate is not a TR estimate as the location vector and scatter
matrix are in fact estimated simultaneously. This pair of estimates was first men-
tioned in Tyler [24]. Hettmansperger and Randles [11] developed the properties of
these estimates. They showed that the HR estimate has a bounded influence func-
tion and a positive breakdown point. The distribution of the HR location estimate
can be approximated by

Np

(
0,

1

np
S1/2Â−2

S S1/2

)
where ÂS = ave(A(S−1/2(yi − µ̂))) and S is Tyler’s scatter matrix.

6. Computation of the spatial median

The spatial median can often be computed using the following two steps:

Step 1: ei ← yi − µ, i = 1, . . . , n

Step 2: µ← µ +
(∑n

i=1 |ei|−1
)−1 ∑n

i=1 U(ei)

provided an initial estimate for µ.
The above algorithm may fail in case of ties or when an estimate falls on a data

point. Assume then that the distinct data points are y1, . . . ,ym with multiplicities
w1, . . . , wm (w1 + . . .+wm = n). The algorithm by Vardi and Zhang [25] then uses
the steps:

Step 1: ei ← yi − µ, i = 1, . . . ,m
Step 2: c← (

∑
ei=0 wi)/|

∑
ei �=0 wiU(ei)|

Step 3: µ← µ + max (0, 1− c)
(∑

ei �=0 wi|ei|−1
)−1 ∑

ei �=0 wiU(ei)

Furthermore many other approaches can be used to solve this non-smooth opti-
mization problem. For example Hössjer and Croux [12] suggest a steepest descent
algorithm combined with stephalving and discuss also some other algorithms. We
prefer however the above algorithm since it seems efficient and can be easily com-
bined with the HR approach with the following steps:

Step 1: ei ← S−1/2(yi − µ), i = 1, . . . , n

Step 2: µ← µ +
[∑n

i=1{|ei|−1}]−1
S1/2

∑n
i=1{U(ei)}

Step 3: S ← (p/n) S1/2
∑n

i=1{U(ei)U(ei)
′} S1/2.

There are actually two ways to implement the algorithm. The first one is just
to repeat these three steps 1, 2 and 3 until convergence. The second one is first
(i) to repeat steps 1 and 2 until convergence, and then (ii) repeat steps 1 and 3
until convergence. Finally (i) and (ii) are repeated until convergence. The second
version is sometimes considered faster and more stable, see Hettmansperger and
Randles[11] and the references therein.

Both versions of the algorithm are easy to implement and the computation is
fast even in high dimensions. Unfortunately, there is no proof for the convergence
of the algorithms so far, although in practice they always seem to work. There is no
proof for the existence or uniqueness of the HR estimate either. In practice, this is
not a problem, however. One can start with any initial root-n consistent estimates,
then repeat the above steps for location and scatter, and stop after k iterations.
If, in the spherical case around the origin, the initial location and shape estimates,
say µ̂ and S are root-n consistent, that is,

√
nµ̂ = OP (1) and

√
n(S− Ip) = OP (1)
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and tr(S) = p then the k-step estimate using the single loop version of the above
algorithm (obtained after k iterations) satisfies

√
nµ̂k =

(
1

p

)k√
nµ̂+

[
1−

(
1

p

)k
]

1

E(r−1
i )

p

p− 1

√
n ave{ui}+ oP (1)

and

√
n(Sk − Ip) =

(
2

p+ 2

)k√
n(S− Ip)

+

[
1−

(
2

p+ 2

)k
]
p+ 2

p

√
n (p · ave{uiu

′
i} − Ip) + oP (1).

Asymptotically, the k-step estimate behaves as a linear combination of the initial
pair of estimates and Hettmansperger–Randles estimate. The larger k, the more
similar is the distribution to that of the HR estimate. More work is needed, however,
to carefully consider the properties of this k-step HR-estimate.

7. Examples
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Fig 1. The sample mean vector, the spatial median and the HR location estimate with correspond-
ing bivariate 95% confidence ellipsoids for a simulated dataset from a non-spherical 3-variate t3
distribution.

In this section we compare the mean vector, the regular spatial median, and the
HR location estimate for simulated and real datasets. First, the simulated data with
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Fig 2. Salinity data with the sample mean vector, the spatial median and the HR location estimate
with corresponding bivariate 95% confidence ellipsoids. Two outliers are marked with a darker
colour.

sample size n = 200 was generated from a 3-variate spherical t distribution with 3
degrees of freedom. In the case of a spherical distribution, the regular spatial median
and the affine equivariant HR location estimate are behaving in a very similar way.
To illustrate the differences between these two estimates in a non-spherical case,
the third component was multiplied by 10. The three location estimates with their
bivariate 95% confidence ellipsoids are presented in Figure 1. The mean vector is
less accurate due to the heavy tails of the distribution. For non-spherical data, the
equivariant HR location estimate is more efficient than the spatial median as seen
in the Figure. If the measurement units for the components are the same, however,
as in the case of the repeated measures, and heterogeneous rescaling is not natural,
then of course the spatial median may be preferable.

To illustrate the robustness properties of the three estimates we consider the
three variables “Lagged Salinity”, “Trend” and “Discharge” in the Salinity dataset
discussed in Rousseeuw and Leroy [21]. There are two clearly visible outliers among
the 28 observations. As seen from Figure 2, the mean vector and the corresponding
confidence ellipsoid are clearly affected by these outliers. The HR estimate seems a
bit more accurate than the spatial median due to the different scales of the marginal
variables. Estimation of the spatial median and HR estimate and their covariances
is implemented in the R package MNM [18].
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