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On the Non-Optimality of Optimal

Procedures
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Abstract: This paper discusses some subtle, and largely overlooked, differ-
ences between conceptual and mathematical optimization goals in statistics,
and illustrates them by examples.
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1. Introduction

First, we shall identify those parts of statistics that rely in a crucial fashion on opti-
mization. The most conspicuous among them are: classical mathematical statistics,
decision theory, and Bayesian statistics.

Classical mathematical statistics was created by R. A. Fisher [9], in a paper
concerned with estimation, and by J. Neyman and E. S. Pearson [32], in a paper
concerned with testing. It was brought to completion by E. L. Lehmann in his
lecture notes (1949, 1950); those notes later grew into two books [30, 31]. Around
the same time when Lehmann produced his lecture notes, A. Wald [38] expanded
the scope of mathematical statistics by creating statistical decision theory.
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The central concerns of classical mathematical statistics were efficiency in esti-
mation (i.e. minimum variance), and power in testing problems, both being opti-
mality concerns. Decision theory confirmed the central interest in optimality, but
shifted the emphasis to admissibility and minimaxity.

A heavy slant towards optimality, of a different origin, holds also for Bayesian
statistics. For a given model, consisting of a prior distribution and a family of con-
ditional distributions, the Bayes formula by definition gives the “best” procedure;
it is admissible in decision theoretic terminology.

The above-mentioned three areas of statistics appear to be the only ones where
optimality is central to the theory. Elsewhere, optimality seems to provide mere ic-
ing on the cake. Note that the papers of Fisher and of Neyman-Pearson imprinted
subsequent generations of statisticians with an (often uncritical) love of optimality.
By 1960, as a young mathematical statistician you would not dare submit a new
procedure to a reputable journal, unless you could prove some optimality prop-
erty. (Later, there was a reversal, and too many statistical algorithms may have
slipped through the editorial gates with enthusiastic but inadequately substanti-
ated claims.)

2. On Optimization and Models

Mathematical optimization always operates on some model. Models are simplified
approximations to the truth; the hope is that optimality at the model translates
into approximate optimality at the true situation. In the sciences, the main purpose
of models is different: they are to assist our conceptual understanding, and to help
with communication of ideas.

In traditional statistics there is no methodology for assessing the adequacy of a
model. At best, traditional statistics can reject a model through a goodness-of-fit
test — and Bayesian statistics cannot even do that. A non-rejected model is not
necessarily adequate, and even more embarrassing, a rejected model sometimes may
provide a perfectly adequate approximation.

3. Classical Mathematical Statistics and Decision Theory

Classical mathematical statistics provides a clean theory under very restrictive as-
sumptions, such as restricting the underlying models to exponential families, or the
procedures to unbiasedness or invariance.

Decision theory clarified the classical views and reduced the dependence on re-
strictions. It also opened new areas, in particular optimal design theory (Kiefer
[26]). But on the whole, decision theory was less successful than originally hoped.
The two principal success stories are the Stein estimates (James and Stein [25]),
relating to admissibility, and robustness (Huber [16]), relating to minimaxity.

4. Tukey’s 1962 Paper

In his long 1962 paper “The Future of Data Analysis”, while ostensibly talking
about his personal predilections, Tukey actually redefined the field of statistics.
Tukey’s central theme was his emphasis on judgment (Section 7). At the same time,
he played down the importance of mathematical rigor and optimality (Sections
5 and 6). Possibly the most important issue worked out in his long and multi-
faceted paper was that there is more to theoretical statistics than mathematical
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statistics. This reminds one of Clausewitz [3, 4], who castigated the theorists of
military strategy of his time because they “considered only factors that could be
mathematically calculated”.

In his paper, Tukey eschewed models. Why? Perhaps because in traditional sta-
tistics models erroneously are considered as substitutes for the truth, rather than
as simplified approximations. Note in particular his quote of Martin Wilk at the
end of Section 4: “The hallmark of good science is that it uses models and ‘theory’
but never believes them”.

Tukey of course was not the first to question the role of models and of optimality.
Statistical methods based on ranks and nonparametrics had become popular pre-
cisely because they avoided dependence on uncertain models and were valid under
weaker assumptions, even if they lacked the flexibility and wide applicability of the
parametric approaches.

But the problems with models and optimality go deeper. They have less to do
with the idealized models per se, but more with the procedures optimized for them.

5. Pitfalls of Optimality

There are four basic pitfalls, into which mathematically optimal procedures can be
trapped:

(i) the Fuzzy Concepts Syndrome:
sloppy translation of concepts into mathematics,

(ii) the Straitjacket Syndrome:
overly restrictive side conditions,

(iii) the Scapegoat Syndrome:
confuse the model with the truth,

(iv) the Souped-Up Car Syndrome:
optimize speed and produce a delicate gas-guzzler.

These pitfalls affect distinct, very different aspects of statistics, namely: (i) con-
cepts, (ii) procedures, (iii) models, and (iv) target functions. The list of course is
not exhaustive. The pitfalls shall be discussed with the help of ten examples:

Classical:

(1) superefficiency
(2) unbiasedness, equivariance
(3) efficiency at the model

Robustness:

(4) asymptotics for finite ε
(5) finite n, finite ε
(6) asymptotics for infinitesimal ε
(7) optimal breakdown point

Design:

(8) optimal designs
(9) regression design and breakdown

Bayesian statistics:

(10) Bayesian robustness
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6. Examples from Classical Statistics

The three “classical” examples (1)-(3) neatly illustrate the first three pitfalls.

6.1. The Fuzzy Concepts Syndrome

Problems caused by the Fuzzy Concepts Syndrome mostly are relics from earlier
development stages of statistical theories. In a conference on Directions for Mathe-
matical Statistics, I had argued (Huber [22]): “In statistics as well as in any other
field of applied mathematics [. . . ] one can usually distinguish (at least) three phases
in the development of a problem. In Phase One, there is a vague awareness of an
area of open problems, one develops ad hoc solutions to poorly posed questions, and
one gropes for the proper concepts. In Phase Two, the right concepts are found [. . . ].
In Phase Three, the theory begins to have a life of its own, [. . . ] and its boundaries
of validity are explored by leading it ad absurdum; in short, it is squeezed dry.”
In the 1970s there had been widespread anxiety about the future of mathematical
statistics. As a deeper reason for this anxiety I had proposed the diagnosis that too
many of the then current activities belonged to the later stages of Phase Three.

In the groping phase, somewhat reckless heuristics can be beneficial. The con-
cepts inevitably are fuzzy, and correspondingly, they are translated into mathe-
matics in a sloppy fashion. But recklessness, fuzziness and sloppiness should be
cut down at the latest at the beginning of the squeezing phase (the “consolidation
phase”, in Erich Lehmann’s terminology). Though, in the later phases it is tempt-
ing to concentrate on the mathematical formalism and to neglect a re-examination
of its conceptual origins. And admittedly, even in the mathematical formalism,
any attempts to eliminate sloppiness in its entirety will lead to an admirable, but
non-teachable theory, as already Whitehead and Russell with their monumental
Principia Mathematica [39] have demonstrated.

In mathematical statistics, asymptotics is exceptionally prone to sloppiness. De-
tails notoriously are not adequately elaborated. Indeed, the expression “asymptotic
theory” itself is used misleadingly. In standard mathematical usage asymptotic the-
ory ordinarily is concerned with asymptotic expansions. Statistics knows such ex-
pansions too (e.g. Edgeworth expansions), but mostly, “asymptotic theory” denotes
what more properly should be called “limiting theory”. A few examples follow.

• Remainder terms? With asymptotic expansions, the first neglected term gives
an indication of the size of the error. In statistics, asymptotic results hardly
ever are complemented by remainder terms, however crude. That is, whatever
the actual sample size is, we never know whether an asymptotic result is
applicable.

• What kind of asymptotics is appropriate? In regression, for example, we have
n observations and p parameters. Should the asymptotics be for p fixed, n →
∞, or for p/n → 0, or for what?

• Order of quantifiers and limits? Usually, one settles on an order that makes
proofs easy.

Example 1. Perhaps the most illuminating case of the Fuzzy Concepts Syndrome
has to do with superefficiency. There is a famous pathological example due to
Hodges (see LeCam [28]). Assume that the observations (x1, . . . , xn) are i.i.d. nor-



Non-Optimality of Optimal Procedures 35

mal N (θ, 1). Estimate θ by

Tn = x̄, if |x̄| ≥ n−1/4,

Tn = x̄/2, if |x̄| < n−1/4.

Then Tn is consistent for all θ, with asymptotic variance n−1 for θ �= 0, but 1
4n−1

for θ = 0. That is, the estimate Tn is efficient everywhere, but superefficient at
0. See Lehmann ([31], p. 405–408) for a discussion of various responses to the
unpleasantness caused by Hodges’ example.

Informally, asymptotic efficiency means that in large samples the variance of the
estimate approaches the information bound, and this for all θ. Everyday language
is notoriously ambiguous about the order of the quantifiers. For example we may
spell out asymptotic efficiency as:

(1) (∀ε > 0) (∀θ) (∃n0) (∀n > n0) {Tn is ε-efficent},

where we define ε-efficiency by, say,

(2) {Tn is ε-efficent} =
{
Eθ

(
n(Tn − θ)2

)
< 1/I(θ) + ε

}
.

But then, for any fixed n, Tn might be arbitrarily bad for some θ. Therefore, since we
do not know the true value of θ, we never will know whether an estimate satisfying
(1) is any good, however large n is. In other words: while the definition of asymptotic
efficiency may be technically in order, it is conceptually inacceptable.

On closer inspection we conclude that the order of quantifiers in (1) does not
correspond to our intuitive concept of asymptotic efficiency. An improved version
is obtained by interchanging the second and third quantifiers:

(3) (∀ε > 0) (∃n0) (∀θ) (∀n > n0) {Tn is ε-efficent}.

It turns out that this version excludes superefficiency.
But version (3) still is negligent. Conceptually, unbounded loss functions are un-

satisfactory. Technically, the awkward fact is that for very long-tailed distributions,
the expectation in (2) may fail to be finite for all n and all “reasonable” estimators
(i.e. for all estimators Tn whose value is contained in the convex hull of the observa-
tions, cf. Huber [20], p. 1047), while the limiting distribution exists and has a finite
variance. To obtain a definition of asymptotic efficiency working more generally we
might rewrite (3) to

(4) (∀c > 0)(∀ε > 0)(∃n0)(∀θ)(∀n > n0)
{
Eθ

(([√
n(Tn − θ)

]+c

−c

)2)
< 1/I(θ) + ε

}
.

Here, [x]ba = max(a, min(b, x)). Of course, (4) is not yet the final word; for example,
we might want to replace the global uniform bound by a local one.

In my opinion Hodges’ example should not be considered as a local improvement
of the standard estimate, comparable to the James-Stein estimate, but rather as
an ingenious spotlight on a conceptual inadequacy of the traditional formalization
of asymptotic efficiency. This interpretation is not new. In particular, the crucial
technical result, namely that one-sided locally uniform bounds suffice to prevent
superefficiency, had been published in an abstract more than 40 years ago (Huber
[18]). But I never had found a congenial outlet for the philosophical side of the
result; it took the present symposium to provide one.



36 Peter J. Huber

6.2. The Straitjacket Syndrome

Example 2. Classical examples of the Straitjacket Syndrome, that is of overly
restrictive side conditions on the procedures, are well known and do not need a
detailed discussion. One is furnished by unbiasedness: unbiased estimates may not
exist, or they may be nonsensical, cf. Lehmann ([31], p. 114). Other examples
occur with invariance (more properly: equivariance): equivariant estimates may be
inadmissible (Stein estimation).

6.3. The Scapegoat Syndrome

This subsection is concerned with excessive reliance on idealized models. The word
“scapegoat” refers to the pious belief that the gods of statistics will accept the
model as a substitute for the real thing.

As statisticians, we should always remember that models are simplified approxi-
mations to the truth, not the truth itself. Sometimes they are not even that, namely
when they are chosen for ease of handling rather than for adequacy of represen-
tation; typical examples are conjugate priors in Bayesian statistics. The following
eye-opening example gave rise to robustness theory.

Example 3. In 1914, Eddington had advocated the use of mean absolute devia-
tions, against root-mean-square (RMS) deviations, as estimates of scale. Fisher [8]
objected and showed that for normal errors RMS deviations are 12% more efficient.
Tukey [36] then pointed out that for the contaminated normal error model

(5) F (x) = (1 − ε)Φ(x/σ) + εΦ(x/(3σ))

mean absolute deviations are more efficient for all 0.002 < ε < 0.5.
The unfortunate fact is that errors in real data typically are better approximated

by a contamination model with a contamination rate (“gross error rate”) in the
range 0.01 < ε < 0.1, than by the normal model.

The main lesson to be learnt from the Eddington–Fisher–Tukey example is that
the standard normal error model may be quite accurate, especially in the center
of the distribution. The problem is that the tail behavior of real data, to which
the traditional estimates are highly sensitive, usually is rather indeterminate and
difficult to model. The mistake of Fisher (and others) had been to treat the standard
model as the exact truth.

We note a few conclusions from such examples:

• Optimality results put in evidence what can (and what cannot) be achieved
in an ideal world.

• Notoriously, optimal procedures are unstable under small deviations from the
ideal situation.

• The task thus is to find procedures that achieve near optimality under the
ideal situation, but that are more stable under small deviation.

In 1964, I had begun to implement a program suggested by this under the name
of robustness. The guiding ideas were:

– Keep the optimality criterion (asymptotic variance, . . . ).
– Formalize small deviations (ε-contamination, . . . ).
– Find best sub-optimal procedures (best in a minimax sense).
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The robustness notion I had adopted corresponds to Tukey’s 1960 version.
Though, this is not the unique interpretation of robustness occurring in the lit-
erature. In the 1970’s, under Tukey’s influence, there was a semantic shift, adopted
by many, namely that the purpose of robustness was to provide procedures with a
strong performance for a widest possible selection of heavy-tailed distribution.

But I still prefer the original 1960 version. In particular, I hold that robust-
ness should be classified with parametric procedures, and that local stability in a
neighborhood of the parametric model is the basic, overriding requirement.

7. Problems with Optimality in Robustness

Robustness had been designed to safeguard against pitfalls of optimal procedures.
But optimal robustness is vulnerable to the very same pitfalls, and there are even a
few new variants. The conceptual problem mentioned below in Example 4, and its
solution described in Example 5, both have received less resonance in the robustness
literature than they would have deserved. While the influence function without
doubt is the most useful heuristic tool of robustness, one ought to be aware that
optimality results based on it are no better than heuristic (Example 6).

7.1. Asymptotic Robustness for Finite ε > 0

Example 4. In the decision theoretic formalization of my 1964 paper I had imposed
an unpleasant restriction on Nature by allowing only symmetric contaminations.
The reason for this was that asymmetric contamination causes a bias term of the
order O(1). Asymptotically, this bias then would overpower the random variability
of the estimates (which typically is of the order O(n−1/2)). Automatically, this
would have led to the relatively inefficient sample median as the asymptotically
optimal estimate. On the other hand, for the sample sizes and contamination rates of
practical interest, the random variability usually is more important. Simultaneously,
the symmetry assumption had permitted to extend the parameterization to the
entire ε-neighborhood and thereby had made it possible to maintain a standard
point-estimation approach.

The assumption of exact symmetry is repugnant, it violates the very spirit of
robustness. Though, restrictions on the distributions are much less serious strait-
jackets than restrictions on the procedures (such as unbiasedness). The reason is
that after performing optimization under symmetry restrictions, one merely has to
check that the resulting asymptotically “optimal” estimate remains nearly optimal
under more realistic asymmetric contaminations, see Huber ([23], Section 4.9).

Curiously, people have worried (and still continue to worry!) much more about
the symmetry straitjacket than about a conceptually much more serious problem.
That problem is that 1% contamination has entirely different effects in samples
of size 10 or 1000. Thus, asymptotic optimality theory need not be relevant at all
for modest sample sizes and contamination rates, where the expected number of
contaminants is small and may fall below 1. Fortunately, this question could be
settled through an exact finite sample theory – see the following example. This
theory also put to rest the problem of asymmetric contamination.

7.2. Finite Sample Robustness for Finite ε > 0

Example 5. To resolve the just mentioned conceptual problem, one needs a finite
sample robustness theory valid for finite ε > 0. Rigorous such theories were devel-
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oped early on, see Huber [17] for tests and Huber [19] for estimation. The latter
covers the same ground as the original asymptotic robustness theory, namely single
parameter equivariant robust estimation. Gratifyingly, it leads to procedures that
are qualitatively and even quantitatively comparable to the M -estimators obtained
with the asymptotic approach.

This finite sample approach to robustness does not make any symmetry as-
sumptions and thus also avoids the other objections that have been raised against
asymptotic robustness theory. In particular, by aiming not for point estimates, but
for minimax interval estimates, it bypasses the parameterization and asymmetry
problems. Despite its conceptual importance, the finite sample theory has attained
much less visibility than its asymptotic and infinitesimal cousins. I suspect the rea-
son is that the approach through an unconventional version of interval estimates
did not fit into established patterns of thought. In the following I shall sketch the
main ideas and results; for technical details see Huber [19].

Just as in the original asymptotic theory, we consider the one-parameter location
problem and assume that the error distribution is contained in an ε-neigborhood
of the standard normal distribution. The optimally robust finite sample estimator
turns out to be an M -estimate T defined by

(6)
∑

ψ(xi − T ) = 0,

where ψ(x) = [x]k−k = max(−k, min(k, x)) for some k > 0. But instead of minimiz-
ing the maximal asymptotic variance, this estimator is optimal in the sense that it
minimizes the value α for which one can guarantee

(7) P {T < θ − a} ≤ α, P {T > θ + a} ≤ α

for all θ and all distributions in the ε-neighborhood.
We have three free parameters, n, ε and a. Interestingly, the characteristic pa-

rameter k of the ψ-function depends only on ε and a, but not on the sample size
n. In (7), instead of minimizing α for fixed a, we might alternatively minimize a
for fixed α. The asymptotic theory can be linked to these exact finite sample op-
timality results in several different fashions. In particular, if we let n → ∞, but
keep both α and k fixed, then a and ε of the optimally robust estimates go to 0
at the rate O(n−1/2). Conceptually, ε-neighborhoods shrinking at a rate O(n−1/2)
make eminent sense, since the standard goodness-of-fit tests are just able to detect
deviations of this order. Larger deviations should be taken care of by diagnostics
and modeling, while smaller ones are difficult to detect and should be covered (in
the insurance sense) by robustness.

7.3. Asymptotic Robustness for Infinitesimal ε

Example 6. Parametric families more general than location and scale are beyond
the scope of the above approaches to robustness. Hampel proposed to attack them
via gross error sensitivity: minimize asymptotic variance at the model, subject to
a bound on the influence function (see Hampel [13], and Hampel et al. [15]). This
approach is infinitesimal in nature and stays strictly at the parametric model. In
essence, it is concerned only with the limiting case ε = 0.

Heuristically, it combines two desirable properties of robust estimates: good effi-
ciency at the model, and low gross error sensitivity. However, a bound on the latter
at the model does not guarantee robustness (local stability in a neighborhood of the
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model), there are counter examples with L-estimates, see Huber ([23], Section 3.5).
Thus, the conceptual basis of this approach is weak. Even if it should yield robust
procedures, we have no guarantee that they are approximately optimal for non-
zero ε, and we thus have to pray to the statistical gods that they will accept an
infinitesimal scapegoat. As a minimum, one ought to check the breakdown point of
procedures constructed by this method.

There is a conceptually more satisfactory, but technically more complicated al-
ternative approach via shrinking neighborhoods: while n → ∞, let ε → 0 at the rate
O(n−1/2). This particular asymptotic theory had been motivated by the finite sam-
ple approach of Example 5. It was introduced by C. Huber-Carol in her thesis [24]
and later exploited by Rieder in several papers, culminating in his book [33]. The
limiting results are comparable to those obtained with the infinitesimal approach,
and like these, in the location parameter case they agree with those obtained in
Example 4.

The principal heuristic appeal of the shrinking neighborhood approach is that in
the location case it yields a sequence of estimates that have a well-defined optimality
property for each n. We therefore can hope that in the general case it yields a
sequence of estimates that are approximately optimal for non-zero ε. But to be
honest, we have no way to check whether the heuristic arguments reliably carry
beyond the location case. That is, we may run into a fifth pitfall: overly optimistic
heuristics.

7.4. Optimal Breakdown Point

Hampel, at that time a student of Erich Lehmann, in his Ph.D. thesis (1968) had in-
troduced the breakdown point by giving it an asymptotic definition. Conceptually,
this may have been misleading, since the notion is most useful in small sample situ-
ations, see Donoho and Huber [6]. With large samples and high contamination rates
you may have enough data to interpret the information contained in the contami-
nation part. Therefore, rather than blindly using high breakdown point procedures,
you may spend your efforts more profitably on an investigation of mixture models.

Example 7. All standard regression estimates, including the one based on least
absolute deviations (the L1-estimate, which generalizes the highly robust sample
median), are sensitive to observations sitting at influential positions (“leverage
points”). A single bad observation at an extreme leverage point may cause break-
down. Clearly, a higher breakdown point would be desirable. How large can it be
made, and how large should it be? Via projection pursuit methods it is indeed
possible to approach a breakdown point of 1/2 in large samples, provided the data
are in general position (i.e., under the idealized, uncorrupted model no p rows of
the n-by-p design matrix are linearly dependent, and thus any p observations give
a unique determination of θ). This is a result of considerable theoretical interest.

Unfortunately, all estimators that try to optimize the breakdown point seem
to run into the Souped-up Car Syndrome. The first among them was the LMS-
estimate (Hampel [14], Rousseeuw [34]).

The LMS- (Least Median of Squares) estimate of θ modifies the least squares
approach by minimizing the median instead of the mean of the squared residuals:

(8) median
{
(yi − xT

i θ)2
}

.

If the data points are in general position, its breakdown point is ([n/2] − p+2)/n →
1/2. But it has the following specific drawbacks:
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– Its efficiency is low: the dispersion of the estimate decreases at the rate n−1/3,
instead of n−1/2.

– Its computational complexity increases exponentially with p.
– What if the points are not in general position?

My conclusion is that an asymptotic theory for large p and n does not make much
sense under such circumstances, and a small sample theory is not available.

S-estimates were introduced by Rousseeuw and Yohai [34] to overcome some of
these shortcomings. They estimate θ by minimizing a suitable robust M -estimate
of the scale of the residuals. Under suitable regularity conditions their breakdown
point also approaches 1/2 in large samples, and they reach a high efficiency at
the ideal model, with a dispersion converging at the rate n−1/2. Unfortunately, S-
estimators suffer from a serious flaw which probably cannot be removed, namely
that uniqueness and continuity can only be proved under certain conditions, see
Davies ([5], Section 1.6).

Moreover, Davies (ibid.) points out that all known high breakdown point esti-
mators of regression are inherently unstable. Paradoxically, it thus seems that in
order to achieve an optimal regression breakdown point we may have to sacrifice
robustness.

8. Design Issues

8.1. Optimal Designs

Example 8. Assume that the task is to fit the best possible straight line to data
originating from an exactly linear function. Then the optimal regression design puts
all observations on the extreme points of the segment where observations can be
made.

However, a possibly more realistic version of this task is to fit the best straight
line to an approximately linear function. In either case, one would want to make
something like the expectation of the integrated mean square error as small as
possible. Of course, usually one does not know much about the small deviations
from linearity one might have to cope with (and does not care about them, so long
as they are small). Already Box and Draper ([2], p. 622) had recognized the crux
of the situation and had pointed out: “The optimal design in typical situations in
which both variance and bias occur is very nearly the same as would be obtained
if variance were ignored completely and the experiment designed so as to minimize
bias alone.”

In other words, the “naive” design, which distributes the observations evenly
over the accessible segment, in such a situation should be very nearly optimal,
since it minimizes the integrated squared bias of the fit. Apart from that, it has an
advantage over the optimal design since its redundancy allows to check the linearity
assumption.

These aspects have been made precise in a minimax sense by Huber [21]. The
most surprising fact emerging from this study was: there is a range where the
deviation from linearity is slight enough to stay below statistical detectability, yet
large enough so that the “naive” design will outperform the “optimal” design and
give a better linear approximation to the true function. Even though the effects are
much less dramatic than in Example 3, we evidently have run here into another
example of the Scapegoat Syndrome.
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Fig 1. Optimal design fit (based on the theoretically optimal design) and best linear fit (minimizing
the integrated squared error), to a not-quite linear function. Observational errors are neglected in
this figure.

8.2. Regression Design and Breakdown

Example 9. In higher dimensions, generalizing the preceding example, an optimal
linear regression design would place an equal number of m observations onto each of
the (p+1) corners of a p-dimensional simplex. Technically, such a design is optimal,
but again, it lacks redundance.

For such a design the best possible breakdown point is

(9) ε∗ = 
m/2� /(m(p + 1)) ≈ 1/(2(p + 1)).

This breakdown point is attained by the L1-estimate (calculate the median at each
corner). The so-called high-breakdown point LMS- and S-estimates cannot do any
better.

But already an arbitrarily small jittering of the design points will bring them
into general position. Then the breakdown point of LMS and S is close to 1/2.
How can this happen?

On closer inspection we see that the high breakdown point of LMS- and S-
estimates is achieved by extrapolation: at each corner, you put more faith in the
value extrapolated from the mp observations clustering near the far-away other p
corners, than in the m local values. The fitted hyperplane thus not only loses effi-
ciency, but becomes sensitive to small errors affecting a majority of the observations,
such as rounding.

The conclusion is that high breakdown point regression is not necessarily robust.
We have a clear case of the Souped-up Car Syndrome: both extremes, optimal
design and optimal breakdown point, lead to estimates with undesirable properties,
and a compromise is called for. A quantitative, design-dependent theory of robust
regression would seem to be needed. The customary assumption underlying all high
breakdown point regression theories in the published literature, namely that the
regression carrier is a random sample from a suitable multi-dimensional continuous
distribution, in my opinion is much too narrowly conceived.
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9. Bayesian Statistics

Example 10. What is Bayesian robustness? Bayesian statistcs has a built-in prob-
lem with the Scapegoat Syndrome, that is, with over-reliance on the model; this
problem becomes acute in connection with robustness. By definition, Bayes proce-
dures are optimal for the chosen model, consisting of a prior α(θ) and a family of
conditional densities f(x, θ). Instability, and conversely robustness, thus are prop-
erties of the model. This was emphasized in 1978 by George Box in an illuminating,
facetious but profound oral interchange with John Tukey at an ARO meeting on
Robustness in Statistics (Launer and Wilkinson, [27]). Box maintained that, after
all, he had invented the term (see Box [1]), and that he could define it as he pleased,
and that in his opinion robustness was to be achieved by choosing a proper model,
not by tampering with the data (by trimming or Winsorizing) as Tukey was wont
to do. He did not elaborate on how to choose such a model.

The philosophical problem of Bayesian statistics is that it is congenitally unable
to separate the model, the underlying true situation, and the statistical procedure.
It acts as if the model were exactly true, and it then uses the corresponding optimal
procedure. A fundamentalist Bayesian, for whom probabilities exist only in the
mind, will not be able to see that there is a problem of the Scapegoat type; it takes
a pragmatist like George Box to be aware of it.

I shall now attempt to sketch a way around this Bayesian Scapegoat Sydrome.
The central question is: what is a robust model? Ad hoc parametric supermodels,
which sometimes are advertised as the Bayesian approach to robustness, do not
guarantee robustness. There are no reliable guidelines to select such models, and
the resulting procedures may suffer from instabilities.

If we proceed pragmatically, then, as a minimum requirement, the statistical
conclusions from the model ought to be insensitive to occasional outliers. Sensitivity
studies à la Berger, that is: admit that the specifications are inaccurate and find
the range of implied conclusions (see Wolpert [40], p. 212), may reveal the presence
of outliers: if there are outliers, small changes in the tails of the model f(x, θ)
can produce large effects. Also, they may reveal conflicts between the prior and
the observational evidence: if the observational evidence points to a θ far from
the center of the prior, small changes in the tails of the latter can produce large
effects. Thus, if a sensitivity analysis shows that the range of implied conclusions
is narrow, any model in the uncertainty range will do. If not, we better choose a
robust model. But then, why not choose a robust model right away? Unfortunately,
sensitivity studies do not help us find a robust model.

The following is a proposal for an informal portmanteau definition of robustness,
covering both Bayesian and non-Bayesian statistics:

Uncertain parts of the evidence should never have overriding influence on the
final conclusions.

This is supposed to apply not only to questionable data (outliers), but also to
uncertainties in the model densities f(x, θ) and to uncertainties in the prior α(θ),
and even to vagueness in the specification of the target loss function.

How to implement such a loose definition? The first two of the above four re-
quirements are interconnected and tricky to separate: insensitivity to dubious data
features (gross errors), and insensitivity to uncertain model specifications. I claim
that the following implementation should do the job for both aspects: Choose a
model f(x, θ) within the uncertainty range, such that the conclusions are insensi-
tive to gross errors. This has to be made precise.
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The mode of the posterior density solves

(10) α′(θ)/α(θ) +
∑

f ′(xi, θ)/f(xi, θ) = 0,

where the prime denotes the derivative with respect to θ. For a flat prior, the mode
of the posterior coincides with the maximum likelihood estimate.

As Freedman [10] has expressed it, there is a “striking and mysterious fact”,
namely that asymptotically, Bayes and M.L. estimates behave similarly: they not
only have the same asymptotic distribution, but if the true underlying distribution
belongs to the parametric family, the Bayesian posterior distribution, centered at
the M.L. estimate and scaled by n−1/2, is asymptotically normal and coincides with
the asymptotic distribution of the M.L. estimate, centered at the true θ and also
scaled by n−1/2. See also LeCam [29]; the result apparently goes back to Bernstein
and von Mises.

Thus, if we are willing to adopt the infinitesimal approach via gross error sen-
sitivity (see Example 6), asymptotic robustness ideas should carry over from non-
Bayesian M -estimates. Though, Hampel’s approach through gross error sensitivity
does not apply without some caveats, since it does not automatically lead to ψ-
functions that are logarithmic derivatives of probability densities (which is a nec-
essary side condition in the Bayes context — another example of a straitjacket).
Finite ε-neighborhoods need somewhat more work. Assume that the M - and Bayes
estimates both are calculated on the basis of the least favorable density (instead
of the unknown true underlying distribution, which is supposed to lie anywhere in
the given ε-neighborhood). Then, the M - and Bayes estimates still have the same
asymptotically normal distribution, but the equivalence with the asymptotic pos-
terior is lost. Though, in the one-dimensional location case it can be shown that
the asymptotic variance of the posterior then lies between the asymptotic variance
of the M -estimate and the upper bound for that variance obtained from the least
favorable distribution (see [23], 2nd edition, Section 15.5). — As an amusing aside
on the subject of pitfalls, I might mention that the usual applications in economet-
rics of one the formulas relevant in this context (the so-called “sandwich formula”)
go so far beyond its original intention that they deserve an honorable mention in
the category of overly optimistic heuristics, see Freedman [11].

In short, the heuristic conclusion, deriving from hindsight based on non-Bayesian
robustness, thus is that f ′/f ought to be bounded. In (10) the prior acts very much
like a distinguished additional observation. Thus, in analogous fashion, also α′/α
ought to be bounded. In both cases, the bounds should be chosen as small as feasible.
Ordinarily, these bounds are minimized by the least informative distributions, with
Fisher information used as measure of information. Thus, a possible optimization
goal can be expressed:

A most robust Bayesian model can be found by choosing α and f to be least
informative within their respective (objective or subjective) uncertainty ranges.

For all practical purposes this is the same recipe as the one applying to the non-
Bayesian case. But like there, it is difficult to implement once one wants to go
beyond the location case. And if it is adopted overly literally, we might even get
trapped in one the pitfalls of optimality.

10. Concluding Remarks

In the 1970s statistical theory clearly had been in the third, consolidation or
“squeezing” phase of the development cycle. At present, we seem to have entered a
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new cycle and seem to be in the middle of a new “groping” phase, trying to get con-
ceptual and theoretical handles on challenging problems involving extremely large
and complexly structured data sets.

I hope that this time the laxness of the groping phase will be eliminated in time,
and will not be cemented into place during the consolidation phase. Perhaps it may
help to keep in mind the following aphorisms on optimality and optimization. They
are not new, they are re-iterating sentiments already expressed by Tukey in 1962.
Those sentiments subsequently had been studiously ignored by most statisticians.
I hope that this time they will fare better.

• Optimality results are important: they show what can (and what cannot) be
achieved under ideal conditions, and in particular they show whether a given
procedure still has worthwhile potential for improvement.

• Optimal procedures as a rule are too dangerous to be used in untempered
form.

• Beware of sloppy asymptotics.
• Never confuse the idealized model with the truth.
• Do not optimize one aspect to the detriment of others.
• There are no clear-cut rules on how the tempering of optimal procedures

should be done — compromises are involved, and one must rely on human
judgment. But if one insists on a mathematical approach, minimizing Fisher
information within a subjective uncertainty range often will do a good job,
both for Bayesians and non-Bayesians.
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[25] James, W. and Stein, C. (1961). Estimation with quadratic loss. Proc. Fourth

Berkeley Symp. Math. Statist. Prob. I 311–319.
[26] Kiefer, J. (1959). Optimum experimental designs. J. Roy. Statist. Soc. Ser.

B 21 272–319.
[27] Launer, R. L. and Wilkinson, G. N. (Eds.) (1979). Proc. ARO Workshop

on Robustness in Statistics, April 11–12, 1978. Academic Press, New York.
[28] LeCam, L. (1953). On some asymptotic properties of maximum likelihood

estimates and related Bayes’ estimates. Univ. Calif. Publ. Statist. 1 277–330.
[29] LeCam, L. (1957). Locally asymptotically normal families of distributions.

Univ. Calif. Publ. Statist. 3 37–98.
[30] Lehmann, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.
[31] Lehmann, E. L. (1983). Theory of Point Estimation. Wiley, New York.
[32] Neyman, J. and Pearson, E. S. (1933). On the problem of the most efficient

tests of statistical hypotheses. Philos. Trans. Roy. Soc. London, Ser. A 231
289–337.

[33] Rieder, H. (1994). Robust Asymptotic Statistics. Springer, Berlin.
[34] Rousseeuw, P. J. (1984). Least median of squares regression. J. Amer. Sta-

tist. Assoc. 79 871–880.
[35] Rousseeuw, P. J. and Yohai, V. J. (1984). Robust regression by means

of S-Estimators. In Robust and Nonlinear Time Series Analysis (J. Franke,
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