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Some History of Optimality
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Abstract: This paper gives an account of the history of both small- and
large-sample optimality for both estimation and testing. It covers this history
from the beginnings by Laplace and Gauss to the ongoing research on optimal
multiple comparison procedures, and also includes the optimality of designs.

Contents

1 Combination of Observations . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . 11
3 The Neyman-Pearson Program . . . . . . . . . . . . . . . . . . . . . . . . 12
4 The Neyman-Pearson Theory of Hypothesis Testing . . . . . . . . . . . . 12
5 Wald’s Optimality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 The Hunt-Stein Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7 Some Extension of the Neyman-Pearson Theory . . . . . . . . . . . . . . . 14
8 Large Sample Optimality of Testing . . . . . . . . . . . . . . . . . . . . . 15
9 Optimal Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10 A Culture Clash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
11 Tukey’s Criticism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1. Combination of Observations

The earliest optimality considerations appear to be those of Laplace and Gauss
at the beginning of the 19th Century concerned with determining the best linear
estimates of parameters in linear structures. Laplace calls these optimal estimates
“the most advantageous” while Gauss refers to them as “the most plausible values.”
Various aspects of this problem were discussed throughout the 19th Century under
the heading “Combination of Observations.” The version of the principal result gen-
erally accepted today is the so-called Gauss-Markov theorem. It states (in modern
language) that the least squares estimates are the linear unbiased estimates with
minimum variance. While restricted to linear estimates, the result is nonparametric
in that it makes no assumptions about the distribution of the errors. For an account
of this work see, for example, Stigler [23], Hald [7], or Chatterjee [3].

2. Maximum Likelihood Estimation

Optimality next played an important part in Fisher’s fundamental paper of 1922.
In this paper (followed by a clarifying paper in 1925), Fisher considers estimation
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in parametric models, proposes the maximum likelihood estimator (MLE) as a gen-
erally applicable solution, and claims (but does not prove) that such estimators are
consistent and asymptotically efficient efficient (i.e., that they minimize the asymp-
totic variance). Note that unlike the Gauss-Markov theorem, maximum likelihood
estimation does assume that the distribution of the variables belongs to a given
parametric family.

Maximum likelihood has become the most widely used method of estimation,
and there has been an enormous amount of work connected with Fisher’s claims
concerning it. It has led to the discovery of superefficiency on the one hand and of
second order efficiency on the other. Many counterexamples have been found (even
to consistency), and a number of modifications (bias correction and replacement
of the MLE by a consistent root of the likelihood equation, for example) have
been proposed. The situation is complex, but under suitable restrictions Fisher’s
conjecture is essentially correct when the likelihood equation has a unique root. For
a more precise statement, see Shao [22], and for further discussion, for example,
Efron [4], Le Cam [15], and Barndorff-Nielsen and Cox [1].

3. The Neyman-Pearson Program

Least squares and maximum likelihood were first proposed on intuitive grounds and
then justified by showing that they possessed certain optimality properties. Opti-
mality as a deliberate program for determining good procedures was introduced in
1933 by Neyman and Pearson in a paper (on testing rather than estimation) appro-
priately called, “On the problem of the most efficient tests of statistical hypotheses.”
As they explain in the introduction:

The main purpose of the present paper is to find a general method of determining
tests which . . . would be most efficient”[in the sense of minimizing the probability of
erroneous conclusions].

In a certain sense this is the true start of optimality theory.

4. The Neyman-Pearson Theory of Hypothesis Testing

Neyman and Pearson [17] implemented the above program by seeking, for any
given situation, the test which, among all those controlling the probability of false
rejection at a given level α, has the maximum power (and hence the minimum
probability of false acceptance).

For testing a simple hypothesis against a simple alternative, they found the
solution to this problem to be the likelihood ratio test. This result, which is math-
ematically quite elementary but has crucial statistical consequences, is known as
the Neyman-Pearson Lemma.

It turns out that in some (very rare) cases the same test is most powerful against
all alternatives under consideration. Such a uniformly most powerful (UMP) test
is then the optimal solution to the given testing problem. Where a UMP test does
not exist, additional criteria must be invoked.

For example, when nuisance parameters are present, Neyman and Pearson re-
quire that under the hypothesis the rejection probability be α for all values of the
nuisance parameters. They call such rejection regions similar regions. As an im-
portant example, they show that the one-sided t-test is UMP among all similar
regions.
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For two-sided alternatives, one would not expect UMP tests to exist even with-
out nuisance parameters. For such cases, Neyman and Pearson then impose the
additional condition of unbiasedness, i.e., that the power of the test is ≥ α for
all alternatives. In follow-ups to their 1933 paper (1936 and 1938), they show, for
example, that the two-sided t-test is UMP among all unbiased tests.

UMP similar or unbiased tests exist for important classes of testing problems
concerning a single real-valued parameter (in the presence or not of nuisance para-
meters) but not for hypotheses such as

H : θ1 = · · · = θs

concerning several parameters.
A different condition, the principle of invariance (suggested by Hunt and Stein,

unpublished), is successful in a number of important such multiparameter situa-
tions. If both the hypothesis and the class of alternatives remain invariant under a
group G of transformations of the sample space, there does in these cases exist a
UMP test among all tests invariant under G.

5. Wald’s Optimality Criteria

A quite-different approach to optimality was initiated by Wald in his 1939 paper,
“Contributions to the theory of statistical estimation and testing hypotheses,” and
was then developed further in a series of publications culminating in his 1950 book,
“Statistical Decision Functions.”

This approach was part of Wald’s formulation of a general theory of decision
procedures. Instead of seeking procedures that are uniformly optimal among some
suitably restricted class of decision procedures, Wald proposes to minimize some
global feature of the performance.

Specialized to hypothesis testing, these proposals reduce to:

i Maximize the average power, averaged with respect to some suitable weight
function over the alternatives. For obvious reasons, Wald called such maxi-
mizing procedures Bayes solutions.

ii Maximize the minimum power over alternatives bounded away from the hy-
pothesis.

6. The Hunt-Stein Theorem

An important connection between the earlier invariance approach and that of Wald
is the Hunt-Stein theorem. It states that if a UMP invariant test exists under a group
G satisfying certain conditions (called amenability), then this test also maximizes
the minimum power over any invariant set of alternatives.1

To illustrate this theorem, consider the univariate linear hypothesis. Under the
combined action of the groups of location, scale and orthogonal transformation, a
UMP invariant test exists. Since these groups satisfy the Hunt-Stein conditions, the
resulting test therefore maximizes the minimum power against all invariant sets of
alternatives.

1The 1946 paper by Hunt and Stein, “Most stringent tests of statistical hypotheses,” containing
this theorem was never published. The theorem appeared in print for the first time in Lehmann,
“Testing Statistical Hypotheses,” John Wiley, 1959.
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As a second example, consider the multivariate one-sample problem. Hotelling’s
T 2-test is UMP among all tests that are invariant under the group G of all non-
singular linear transformations. Since G is not amenable, the Hunt-Stein theorem
does not apply. The resulting maximin problem poses considerable difficulties.

7. Some Extension of the Neyman-Pearson Theory

The Neyman-Pearson theory has been extended in a number of directions. The
following are two extensions of the Neyman-Pearson Lemma, which is so basic to
this theory.

(i) Sequential Analysis

During World War II, Wald proposed sequential procedures, as a way of obtaining
good power with fewer observations. In particular, he suggested the probability ratio
test for testing a simple hypothesis against a simple alternative. This test continues
observation as long as the likelihood ratio remains between two fixed limits and
takes the indicated decision (acceptance or rejection) as soon as it falls outside
these limits.

In 1948, Wald and Wolfowitz proved the remarkable result that for testing a
simple hypothesis against a simple alternative, the sequential probability ratio test,
among all tests with the same (or smaller) probabilities of error, minimizes the
expected number of observations both under the hypothesis and the alternative.

(ii) Robust Inference

All the work reported so far (except for the Gauss-Markov theorem) was carried
out under the assumption of an underlying parametric model. In practice, such
an assumption can be expected to hold at best approximately. As a more realistic
formulation, Huber [8] suggested replacing the assumption of a parametric model
by that of a neighborhood of such a model.

In the following year, he obtained the analog of the Neyman-Pearson Lemma.
For testing the neighborhood of a distribution P0, the test maximizing the mini-
mum power over the neighborhood of an alternative P1 is a censored version of the
likelihood ratio test of P0 against P1.

(iii) Multiple Testing

A very different extension of the Neyman-Pearson theory that is of great practical
importance deals with the situation in which a number of hypotheses (sometimes a
very large number) are being tested rather than just one. Unlike the work discussed
so far, which is classical, the theory of multiple testing is an area of very active
ongoing research.

The first problem here (before optimization) is to find a suitable generalization
of the concept of significance level that would provide satisfactory control of the
probability of false rejections. After this, maximin tests have been obtained, which
require, however, not only unbiasedness and invariance but also a condition of
monotonicity. Surveys of the current state of this work are provided by Shaffer
[20, 21].
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8. Large Sample Optimality of Testing

A small-sample theory of optimal estimation parallels that of optimal testing
sketched in Sections 4-7, with concepts such as unbiasedness, equivariance (instead
of invariance), and minimax variance (instead of maximin power), and will not be
discussed here. Asymptotic optimality for estimation goes back to Fisher (1922),
as mentioned in Section 2, and is defined as minimum asymptotic variance.

For testing, asymptotic optimality is considerably more complex, both concep-
tually and technically. It was first studied by Wald in 1941. Consider testing a
simple hypothesis θ = θ0 against a simple alternative θ = θ1. If we keep both θ0

and θ1 fixed, and carry out the tests at a fixed level α, the power of any reasonable
test sequence will tend to 1. Thus any such test sequence will in a trivial sense be
asymptotically UMP.

A more useful approach is obtained by considering a sequence of alternatives

(8.1) θn = θ0 + h/
√

n.

For a sequence with fixed h, the power will typically tend to a limit between 0 and
1 as n → ∞. As h varies from 0 to ∞, the limiting power will be an increasing
function of h, going from α to 1; we shall call this the asymptotic power function.
A sequence of tests can then be defined as being asymptotically most powerful
(AUMP) if it maximizes the asymptotic power for all h.

Unlike the finite sample situation where UMP tests exist only rarely and then
are unique, it turns out that AUMP tests exist under very weak assumptions, and
that in fact many different AUMP tests exist for the same situation, among them
the likelihood ratio test, the Wald test, and the locally most powerful (Rao) test. To
distinguish them, one must resort to higher order asymptotics. (See, for example,
Barndorff-Nielsen and Cox [1]). An exposition of the first order theory due to Le
Cam can be found in Lehmann and Romano [16].

9. Optimal Design

In generalization of minimizing the variance of an estimator, optimal design the-
ory is concerned with determining the design that minimizes some function of the
covariance matrix of the best linear estimators of the parameters in question. In
particular, D-optimality minimizes the determinant, E-optimality is a minimax cri-
terion, and so on. After some isolated earlier efforts, the problem of optimal design
was studied systematically by Kiefer in more than 40 papers between 1958 and his
early death in 1981. They make up vol. III of his collected papers.

10. A Culture Clash

Not everyone was enthusiastic about optimality as a guiding principle. Criticism
was highlighted at a 1958 meeting of the Royal Statistical Society at which Kiefer
presented a survey talk on “Optimum Experimental Designs.” It was a discussion
paper, and the reaction was nearly uniformly negative. The core of the disagreement
is stated clearly when Barnard quotes Kiefer as saying of procedures proposed in
a paper by Box and Wilson [2] that they “often [are] not even well-defined rules of
operation.” Barnard’s reply:

In the field of practical human activity, rules of operation which are not well defined
may be preferable to rules which are.
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The conflict is discussed by Henry Wynn in his introduction to a reprint of
Kiefer’s paper in “Breakthroughs in Statistics,” vol. I (Kotz and Johnson, Eds.).
Wynn calls it “a clash of statistical cultures.”

This clash is between the Wald school of abstraction and optimality on the one
hand and what Tocher, in his discussion of Kiefer’s paper, calls “the school of
British experimental design – a very practical people,” on the other.

11. Tukey’s Criticism

Criticism of optimality was not confined to England. An outspoken American critic
questioning the value and importance of optimization was John Tukey. His attitude
is indicated by the titles of two philosophical papers in 1961 and 1962, which are
titled respectively, “The tyranny of the best” and “Dangers of optimization.”

Tukey’s concern with optimality had its origin in the fact that at the time opti-
mization had become the dominant interest of mathematical statistics. In the 1962
paper, he writes:

Some [statisticians] seem to equate [optimization] to statistics an attitude which, if
widely adopted, is guaranteed to produce a dried-up, encysted field with little chance
of real growth.

12. Conclusion

That optimality considerations had become so dominant is explained by the histor-
ical situation. Periods of great innovation are followed by periods of consolidation,
in which the new work is given a final (or, as Tukey says, encysted) form. Such a
dichotomy is also discussed by Huber [10]. Thus, the revolutionary work of Student
and Fisher was followed by the optimization approach of Neyman, Pearson, Wald
and their students described in this paper.

Today we are faced with the opposite situation. We are confronted with new
problems arising from immense data sets and involving problems of great com-
plexity. Ad hoc solutions are proposed and tried out on a few examples. This is a
natural first step, but eventually we will want to justify the solutions at which we
have arrived intuitively and by trial and error. A theoretical underpinning will be
provided and the conditions will be found under which these solutions are the best
possible.
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