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Uniform central limit theorems for sieved

maximum likelihood and trigonometric

series estimators on the unit circle∗

Richard Nickl1

University of Cambridge

Abstract: Given an i.i.d. sample from the law P on the unit circle, we obtain
uniform central limit theorems for the random measures induced by trigono-
metric series and sieved maximum likelihood density estimators. The limit
theorems are uniform over balls in Sobolev-Hilbert spaces of order s > 1/2.

1. Introduction

Let X1, . . . , Xn be independent identically distributed random variables with com-
mon law P. The simplest way to estimate the probability measure P is by the
empirical measure Pn = n−1

∑n
j=1 δXj . The uniform central limit theorem (UCLT)

for empirical measures is an important tool for studying the asymptotic properties
of Pn as an estimator for P. It states that

√
n

⎛
⎝ 1

n

n∑
j=1

f(Xj) −
∫

fdP

⎞
⎠

converges in law to a Gaussian limit not only for a given function f (with
∫

f2dP <
∞), but uniformly so over certain function classes F . Classes F for which this holds
(also called Donsker classes) have been extensively studied in empirical process
theory, cf. van der Vaart and Wellner [17] and Dudley [5].

The usefulness of Pn as an estimator for P, however, also has its limitations.
For example, if one considers the strong (instead of the weak) topology on the
set of all probability measures, then ‖Pn − P‖TV – where ‖·‖TV denotes the total
variation norm on the set of finite signed measures – will not converge to zero
in general. However, if P possesses a density p0 w.r.t. Lebesgue measure λ that
belongs to a probability model P contained in some Hölder- or Sobolev ball, then
it is well-known that classical nonparametric density estimators p̃n for p0 satisfy
‖P̃n − P‖TV →n→∞ 0 (where dP̃n = p̃ndλ), with explicit rates of convergence to
zero available - cf., e.g., Devroye and Lugosi [4]. A natural question now to ask is
whether such a density estimator p̃n – that achieves the optimal rate of convergence
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in the strong ‖·‖TV -norm – simultaneously satisfies a uniform central limit theorem,
that is, whether the stochastic process

(1)
√

n

(∫
f(p̃n − p0)dλ

)
(f ∈F )

converges in law, with respect to uniform convergence over some class of functions
F , to some Gaussian process indexed by F . Such results imply in particular that the
estimator p̃n possesses the uniform ‘plug-in property’ introduced recently by Bickel
and Ritov [1]. As argued already in Bickel and Ritov [1], there are many potential
statistical applications of such results. For example, there exist many parameters
θ(P) of statistical interest for which θ(Pn) is an inconsistent (or not even a well-
defined) estimator. By using UCLTs for density estimators, these parameters can
be shown to be estimable at rate

√
n by certain plug-in density-estimators. See also

Section 3 in Nickl [12] for further examples.
In the recent articles Nickl [12] and Giné and Nickl [8, 9, 10] it was shown

that certain nonparametric maximum likelihood estimators (MLEs), classical kernel
density estimators and wavelet density estimators satisfy the central limit theorem
uniformly over a many Donsker classes F . Since the estimators considered there also
achieve the minimax rate of convergence in ‘strong’ metrics, this gives a positive
answer to the question raised before (1).

In this article we shall restrict our attention to the special case where the sample
takes values in the unit circle T, and where F is a ball Us in a Sobolev space of
order s > 1/2 on T. This has the advantage that one can explicitly use Hilbert-
space structure in the proofs, which is useful to lay out the main mechanisms behind
UCLTs for certain density estimators without having to become too technical. The
estimators we consider in this article are the classical trigonometric series estimator
(TSE), as well as the sieved maximum likelihood estimator based on trigonometric
sieves. No UCLTs are available in the literature for both estimators, and we will
close this gap for the Sobolev-case. Whereas the proofs for the trigonometric series
estimator is simple, the sieved MLE is much harder and requires several nontrivial
adaptations of the proof in Nickl [12]. The interest in sieved MLEs (in contrast to
just MLEs) stems often from computational or practicaly issues, see van de Geer
[15, 16], Wong and Shen [18] and Birgé and Massart [3]. We should note that our
results for the particular Sobolev class Us directly apply to many other classes of
functions: Imbedding theorems for function spaces (see, e.g., Sections 3.5.4 and
3.5.5 in Schmeisser and Triebel [14]) imply that balls in Besov, Lipschitz, Hölder
spaces (with smoothness index s > 1/2) are bounded subsets of the Sobolev spaces
considered here.

2. Notations and Definitions

For an arbitrary (non-empty) set M , �∞(M) will denote the Banach space of
bounded real-valued functions H on M normed by

‖H‖M := sup
m∈M

|H(m)| .

Let T be the unit circle equipped with its Borel sigma-algebra. Then L∞(T) will
denote the Banach space of bounded measurable real-valued functions on T, normed
by ‖ · ‖∞ := ‖ · ‖T. For measurable functions h : T → R and measures μ on T, we set
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μh :=
∫

T
hdμ and ‖h‖p,μ := (

∫
T

|h|pdμ)1/p, 1 ≤ p ≤ ∞ (where ‖h‖∞,μ denotes the μ-
essential supremum of |h|). We write Lp(T, μ) for the vector space of all measurable
functions h : T → R that satisfy ‖h‖p,μ < ∞. The symbol Lp(T, μ) denotes the usual
quotient spaces of Lp(T, μ) modulo equality μ-almost everywhere. The symbol dλ
will denote the usual Lebesgue-measure normalized by (2π)−1 so that

∫
T

dλ = 1,
and we then set shorthand Lp(T) := Lp(T, λ). The convolution f ∗ g(x) of two
measurable real-valued functions f, g on T is defined by

∫
g(x − y)f(y)dλ(y) if the

integral converges. Similarly, if μ is a finite signed measure and f is a measurable
function, we define the convolution μ ∗ f(x) =

∫
f(x − y)dμ(y) if the integral exists.

Let 〈k〉s = (1 + |k|2)s/2 and define, for real s ≥ 0, the Sobolev space

(2) W s
2 (T) =

{
f ∈ L2(T) : ‖f ‖2

s,2,λ =
∑
k∈Z

〈k〉2s |Ff(k)|2 < ∞
}

where Ff(k) =
∫

e−ixkf(x)dλ(x), k ∈ Z. Clearly W s
2(T) is a vector space semi-

normed by ‖ · ‖s,2,λ. With each element f ∈ W s
2(T), any element of [f ]λ also

belongs to W s
2(T), and by taking the quotient w.r.t. the set {f : ‖f ‖s,2,λ = 0}, one

obtains the Hilbert space W s
2 (T). For s > 1/2, each equivalence class [f ]λ ∈ W s

2 (T),
contains a (unique) continuous function (Sobolev’s lemma), and one defines the
Hilbert spaces Ws

2(T) = {f continuous : [f ]λ ∈ W s
2 (T)}.

Given n independent random variables X1, . . . , Xn identically distributed accord-
ing to some Borel law P on T, we denote by Pn = n−1

∑n
j=1 δXj the empirical mea-

sure. We assume throughout that the variables Xj are the coordinate projections
of TN with product probability PN. The empirical process indexed by F ⊆ L2(T, P)
is given by

f 
−→
√

n (Pn − P) f =
1√
n

n∑
j=1

(f(Xj) − Pf).

Convergence in law of random elements in �∞(F ) is defined in the usual way, see,
e.g., Section 3 in Dudley [5], and will be denoted by the symbol ��∞(F ). The
class F is said to be P-Donsker if it is P-pregaussian and if

√
n(Pn − P) ��∞(F ) G

where G is the (generalized) Brownian bridge process indexed by F with covariance
EG(f)G(g) = P[(f − Pf)(g − Pg)].

3. Main Results

3.1. Trigonometric Series Estimator

Estimating a density on the cirlce T is equivalent to estimating a density p0 sup-
ported by [0, 2π). Note that if p0 is continuous on T, it is necessarily periodic when
viewed as a function on [0, 2π) (i.e., p0(0) = limx→2π p0(x) has to hold). A natural
density estimator can be obtained using the trigonometric polynomials

{ek(x) ≡ eixk : k ∈ Z}.

Given the empirical measure Pn obtained from the sample, its (random) Fourier
series coefficients are given by FPn(k) = n−1

∑n
j=1 e−iXjk, k ∈ Z. We define the

trigonometric series estimator by

(3) pTSE
n =

∑
k∈Z∩[−H(n),H(n)]

FPn(k)ek
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where H(n) ∈ N is the truncation point of the series expansion increasing with
sample size n, i.e., H(n) < ∞, H(n) → ∞ as n → ∞. [It is not difficult to see that
the mapping [pTSE

n (·, X1, . . . , Xn)]λ : T
n → L2(T, λ) is Borel measurable.] The

following result is folklore, and we include it for completeness and since elements
of the proof will be used later on.

Proposition 1. Let X1, . . . , Xn be i.i.d. with law P on T, dP(x) = p0(x)dλ(x),
where p0 ∈ W t

2(T) for some t ≥ 0. Then

(4)
∥∥pTSE

n − p0

∥∥
2,λ

= o(H(n)−t) + OP(n−1/2H(n)1/2).

Proof. Here and later we shall use the simple fact that

E |FPn(k) − Fp0(k)|2 = E

∣∣∣∣∣∣n−1
n∑

j=1

e−iXjk −
∫

T

e−ixkdP(x)

∣∣∣∣∣∣
2

(5)

≤ n−2
n∑

j=1

E
∣∣e−iXjk − Ee−iXjk

∣∣2 ≤ n−1

holds by independence of the Xj and since the e−ixk are uniformly bounded by 1.
Now define the truncated Fourier series

(6) un(p0) =
∑

k∈Z∩[−H(n),H(n)]

Fp0(k)ek

so that ‖pTSE
n − p0‖2,λ ≤ ‖pTSE

n − un(p0)‖2,λ + ‖un(p0) − p0‖2,λ. We treat the bias
term first:

‖un(p0) − p0‖2
2,λ =

∑
k∈Z\[−H(n),H(n)]

|Fp0(k)|2

≤ sup
k∈Z\[−H(n),H(n)]

〈k〉−2t
∑

k∈Z\[−H(n),H(n)]

〈k〉2t |Fp0(k)|2

= O(H(n)−2t)o(1) = o(H(n)−2t)(7)

holds by assumption, Parseval’s identity, Hölder’s inequality and definition of
‖ · ‖t,2,λ. By using (5) and again Parseval’s identity, we obtain for the variance
term

E
∥∥pTSE

n − un(p0)
∥∥2

2,λ

= E

∑
k∈Z∩[−H(n),H(n)]

|FPn(k) − Fp0(k)|2

≤
∑

k∈Z∩[−H(n),H(n)]

n−1 = n−1(2H(n) + 1),

which – after collecting terms – completes the proof.

Consequently, for the choice H(n) ∼ n1/(2t+1), we obtain the rate bound
OP(n−t/(2t+1)), which is the usual minimax rate of convergence over Sobolev balls
of densities in ‖ · ‖2,λ-loss for any estimator of p0.

We will denote by PTSE
n the random measure defined by

P
TSE
n (A) =

∫
A

pTSE
n (x)dλ(x)
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for every Borel set A ⊆ T. The following result has a simple proof. Note that balls
in Ws

2(T) are P-Donsker for any P if s > 1/2, see, e.g., Giné [7].

Theorem 1. Let X1, . . . , Xn be i.i.d. with law P on T, dP(x) = p0(x)dλ(x), where
p0 ∈ W t

2(T) for some t ≥ 0. Let F be a (non-empty) bounded subset of the space
Ws

2(T) with s > 1/2. Then

(8) E
√

n
∥∥P

TSE
n − Pn

∥∥
∞,F = o(n1/2H(n)−s−t) + O(H(n)1/2−s).

If in addition H(n)−s−t = O(n−1/2) holds, we have

(9)
√

n(PTSE
n − P) ��∞(F )G.

Proof. To prove Theorem 1, we use negative order Sobolev (distribution-) spaces
W −s

2 (T) with norm ‖f ‖2
−s,2,λ �

∑
k∈Z

|Ff(k)|2〈k〉−s, which are the dual spaces
of Ws

2(T). (The proof of this duality is elementary, using Fourier transforms and
duality arguments for weighted �2-spaces.) We set w.l.o.g. F equal to the unit ball
Us,1 of Ws

2(T). Define the finite signed measure P
rem
n by

dP
rem
n = (un(p0) − p0)dλ

where un(p0) was defined in (6) above. Note further that

P
TSE
n − Pn = −

∑
k∈Z\[−H(n),H(n)]

FPn(k)ek

holds (in W −s
2 (T) for s > 1/2). We thus have∥∥P

TSE
n − Pn

∥∥
∞,Us,1

=
∥∥P

TSE
n − Pn + P

rem
n − P

rem
n

∥∥
∞,Us,1

≤
∥∥P

TSE
n − Pn + P

rem
n

∥∥
∞,Us,1

+ ‖P
rem
n ‖ ∞,Us,1

.

We first handle the second term. Using the duality between W −s
2 (T) and Ws

2(T)
together with Hölder’s inequality and the definition of ‖ · ‖t,2,λ, we obtain

‖P
rem
n ‖ ∞,Us,1

∼ ‖P
rem
n ‖ −s,2,λ

=

( ∑
k∈Z\[−H(n),H(n)]

|Fp0(k))|2 〈k〉 −2s

)1/2

=

( ∑
k∈Z\[−H(n),H(n)]

〈k〉2t |Fp0(k))|2 〈k〉 −2(s+t)

)1/2

≤
(

sup
k∈Z\[−H(n),H(n)]

〈k〉−2(s+t)

)1/2

×
( ∑

k∈Z\[−H(n),H(n)]

〈k〉2t |Fp0(k)|2
)1/2

= O(H(n)−s−t)o(1) = o(H(n)−s−t)

for some 0 < C < ∞. For the first term, we use the same duality argument, Fubini



Uniform central limit theorems and trigonometric series estimators 343

and (5) to obtain

E
∥∥P

TSE
n − Pn + P

rem
n

∥∥2

∞,Us,1
� E

∥∥P
TSE
n − Pn + P

rem
n

∥∥2

−s,2,λ

= E

∑
k∈Z\[−H(n),H(n)]

〈k〉 −2s |FPn(k) − Fp0(k)|2

= n−1
∑

k∈Z\[−H(n),H(n)]

〈k〉 −2s = O(n−1H(n)1−2s)

for some 0 < C < ∞. This completes the proof of (8). The second claim of the theo-
rem follows immediately from (8) since ‖P

TSE
n − Pn‖ ∞,F is then of order oP(n−1/2),

and the fact that F is a universal Donsker class.

We discuss some interesting choices of H(n). First, we obtain a corollary for the
case H(n) ∼ n1/(2t+1).

Corollary 1. Let the conditions of Theorem 1 be satisfied. Choose H(n) ∼
n1/(2t+1). We then have that

(10)
√

n
∥∥P

TSE
n − Pn

∥∥
∞,F = OP(n(1/2−s)/(2t+1)) = oP(1)

holds. In particular, we have
√

n(PTSE
n − P) ��∞(F )G

where G is defined as in Theorem 1 above.

Hence, if p0 ∈ W t
2(T) for some t > 0, our results imply hat the trigonometric

series estimator with H(n) ∼ n1/(2t+1) achieves both the optimal rate of convergence
(to p0) in ‖ · ‖2,λ-loss, and satisfies a UCLT.

3.2. Sieved Maximum Likelihood Estimator

Consider the probability model
(11)

P (t, ζ, D) =
{

p ∈ Wt
2 (T) : p(x) ≥ ζ for all x ∈ T,

∫
T

p dλ = 1, ‖p‖t,2,λ ≤ D

}

with real constants t > 1/2, ζ > 0, 0 < D < ∞ satisfying ζ ≤ 1 ≤ D; the latter
condition ensuring that P (t, ζ, D) is non-empty. Given the model P (t, ζ, D), the
(log)likelihood function is given by

(12) Ln (p) := Pn log p = n−1
n∑

j=1

log p (Xj)

with p ∈ P (t, ζ, D). A maximizer of the function Ln(p) over P (t, ζ, D) (if it exists)
is a maximum likelihood estimator.

Instead of maximizing Ln over the whole parameter space P (t, ζ, D), it is often
convenient to rather maximize Ln over some sieve (approximating model) PH(n),
see, e.g., van de Geer [15], Wong and Shen [18] and Birgé and Massart [3]. We will
consider the following simple trigonometric sieve

PH(n)(t, ζ, D) =
{

p ∈ P (t, ζ, D) : p ∈ 〈ek 〉H(n)

}
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where 〈ek 〉H denotes the set of real-valued functions contained in the linear span
of {ek : k ∈ Z ∩ [−H, H]}, and where H(n) ∈ N for every n is the dimension
of the sieve. [Note that 〈ek 〉H ⊆ W s

2(T) for every H ∈ N, s ∈ R. In particular,
PH(n)(t, ζ, D) is non-empty.] The sieved maximum likelihood estimator is defined
as an element pMLE

n ∈ PH(n)(t, ζ, D) which satisfies

(13) Ln

(
pMLE

n

)
= sup

p∈PH(n)(t,ζ,D)

Ln (p) .

We will use the convention that 〈ek 〉 ∞ is equal to L2(T, λ), so that the unsieved
MLE corresponds to the case H(n) = ∞.

Since t > 1/2, the set PH(t, ζ, D) is, for every H ∈ N ∪ {∞}, a compact subset of
C(T), see Lemma 2. Furthermore, the function Ln(·) is continuous on PH(t, ζ, D)
w.r.t. the sup-norm topology. Consequently, the supremum in (13) is attained. [Fur-
thermore, using Proposition 5 in Nickl [12], a Borel (e.g., for the sup-norm-topology)
measurable element pMLE

n ∈ PH(n)(t, ζ, D) satisfying (13) exists. We note that all
results in the paper hold for every measurable selection. In fact, they hold for
any selection (measurable or not) if one formulates all results in terms of outer
probability P

∗.]
We will impose the following condition:

Condition 1. Let X1, . . . , Xn be i.i.d. with law P on T, dP(x) = p0(x)dλ(x), and
p0 is contained in P (t, ζ, D) where t > 1/2 (and 0 < ζ ≤ 1 ≤ D). Furthermore, p0

satisfies the strict inequalities p0(x) > ζ for all x ∈ T, as well as ‖p0‖t,2,λ < D.

The second part of the condition is an ‘internality condition’ – which is discussed
in detail in Nickl [12]. With an eye on Bickel and Ritov’s [1] plug-in property’, we
first wish to show that the sieved MLE is optimal in strong’ metrics, by using a
result in van de Geer [16]. The proof can be found in the next section.

Proposition 2. Let 0 < H(n) < ∞, H(n) → ∞ as n → ∞. Suppose Condition 1
is satisfied. Then

(14)
∥∥pMLE

n − p0

∥∥
2,λ

= o(H(n)−t) + OP(n−t/(2t+1)).

For the choice H(n) ∼ n1/(2t+1), we obtain the rate bound OP(n−t/(2t+1)). The
conditions on the MLE in the above proposition are somewhat stronger than those
needed for the kernel and series estimator, which is related to the well known fact
that otherwise the bracketing integral of Pt is not convergent and MLEs are then
known to be suboptimal (cf. Birgé and Massart [2]). Also, with a view on what
follows, whether (14) can be proved under less restrictive assumptions is not our
primary focus here.

Denote by P
MLE
n the random measure induced by pMLE

n . While one can obtain
results for general sequences H(n) (see Theorem 2 below), in most cases only spe-
cific choices of H(n) are of interest, which are given in the following corollary (to
Theorem 2 below). Recall that balls in Ws

2(T) are P-Donsker for any P if s > 1/2.

Corollary 2. Suppose that Condition 1 is satisfied. Let F be a (non-empty) bounded
subset of the space Ws

2(T) where s > 1/2. Let either H(n) ∼ n1/(2t+1)or H(n) = ∞
for every n. We then have for every 1/2 < k < min(t, s) that

(15)
√

n
∥∥P

MLE
n − Pn

∥∥
∞,F =

{
OP(n(k−s)/(2t+1)) = oP(1) if s < t
OP(n(k−t)/(2t+1)) = oP(1) if s ≥ t
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holds. In particular, we have
√

n(PMLE
n − P) ��∞(F )G.

Proof. The result follows from Theorem 2 below: If H(n) ∼ n1/(2t+1), choose
K(n) = H(n). If H(n) = ∞, choose K(n) ∼ n1/(2t+1).

The corollary shows that – under the conditions of Theorem 2 – the sieved MLE
(with H(n) ∼ n1/(2t+1)) as well as the unsieved MLE have a similar asymptotic
behavior in �∞(F ) as the trigonometric series estimator with MISE-optimal band-
widths. In particular, also the sieved MLE satisfies Bickel and Ritov’s [1] plug-in
property’. Note also that for H(n) = ∞, the corollary gives a result analogous to
Theorem 3 in Nickl [12] for the sample space T. Inspection of Theorem 2 also shows
that, in contrast to the series estimator, any approximating space growing faster
than H(n) ∼ n1/(2t+1) delivers a UCLT for the maximum likelihood estimator.

4. Proofs for Sieved MLEs

The purpose of this section is to prove the following result.

Theorem 2. Suppose that Condition 1 is satisfied. Let F be a (non-empty) bounded
subset of the space Ws

2(T) where s > 1/2. Let either H(n) = ∞ for every n or
H(n) < ∞, H(n) → ∞ as n → ∞. Let K(n) be any sequence of positive integers
such that K(n) ≤ H(n) holds for every n, and let k be arbitrary subject to 1/2 <
k < min(t, s). Define the random sequence of real numbers

(16) Cn(s, t) =
√

n
∥∥P

MLE
n − Pn

∥∥
∞,F .

Then Cn(s, t) can be stochastically bounded as follows: If s < t, then

Cn(s, t) = oP(n1/2−t/(2t+1)K(n)−s) + o(n1/2H(n)−tK(n)−s)
+OP∗ (n−(t−k)/(2t+1)K(n)t−s) + O(H(n)−(t−k)K(n)t−s)
+o(n1/2H(n)−2tK(n)t−s) + oP(K(n)−(s−k)).

If s ≥ t, then

Cn(s, t) = oP(n1/2−t/(2t+1)K(n)−s) + o(n1/2H(n)−tK(n)−s)
+OP∗ (n−(t−k)/(2t+1)) + OP(H(n)−(t−k))
+o(n1/2H(n)−2t) + oP(K(n)−(s−k)).

In both displays, if H(n) = ∞ for every n, then any term that involves H(n) can
be set to zero.

Furthermore, if Cn(s, t) = oP∗ (1) holds, then we have

(17)
√

n(PMLE
n − P) ��∞(F )G.

The basic proof idea for Theorem 2 is inspired by the proof of Theorems 1-3 in
Nickl [12], where unsieved MLEs are treated. The case of the sieved MLE needs
considerable (and nontrivial) adaptations. In particular, since the true parameter
p0 is not generally contained in PH(n)(t, ζ, D) for given n, the proof of the central
Lemma 4 in Nickl [12] cannot be directly used. On the other hand, some preliminary
results can be taken from Nickl [12] without special efforts. Note also that the proof
of Proposition 2 follows as a special case of Proposition 5 below.

The proof will be given in several steps. We first recall some simple facts on
Sobolev spaces.
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Proposition 3. Let s > 1/2.

1. Every [f ]λ ∈ W s
2 (T) contains an element f ∈ C(T). In particular,

‖f ‖∞ ≤ Cs ‖f ‖s,2,λ

holds for every [f ]λ ∈ W s
2 (T) and imbedding constant 0 < Cs < ∞.

2. The set P (s, ζ, D) defined in (11) is contained in {f ∈ C(T) : ζ ≤ f(x) ≤ CsD
for all x ∈ T}.

3. Let F be a bounded subset of Ws
2(T). Then F is equicontinuous on T.

Proof. Part 1 (Sobolev’s lemma) follows easily from Fourier inversion, and Part 2
follows from Part 1 and the definitions. Equicontinuity in Part 3 follows, e.g., from
3.5.4/19 and 3.5.5/4 in Schmeisser and Triebel [14].

4.1. Preliminary Results

We will need the Fréchet derivatives of the likelihood function p 
−→ Ln(p) as well
as of its limiting function p 
−→ PL(p) =

∫
T

log p(x)dP(x) both viewed as mappings
defined on a suitable open subset V of the Banach space L∞(T).

Proposition 4. Let V = {d ∈ L∞(T) : d(x) > ζ/2 for all x ∈ T} where 0 < ζ < ∞.
For f1, . . . , fα ∈ L∞(T), α ≥ 1, the multilinear mapping representing the α-th
Fréchet-derivative of Ln : V → R at the point d ∈ V is given by

DαLn (d) (f1, . . . , fα) = n−1(α − 1)!(−1)α−1
n∑

j=1

d−α (Xj) f1 (Xj) · · · · · fα(Xj).

Furthermore, the multilinear mapping representing the α-th Fréchet-derivative of
PL(·) at the point d ∈ V is given by

Dα
PL (d) (f1, . . . , fα) = PDαL (d) (f1, . . . , fα)

= (α − 1)!(−1)α−1

∫
T

d−αf1 · · · · · fαdP.

Proof. The result follows from Proposition 3 in Nickl [12] upon setting Ω = [0, 1)
in that proposition (and upon identifying L∞(T) with L∞([0, 1))). [Note that [0, 1)
in Nickl [12] carries a different topology but the same σ-field.]

By Part 2 of Proposition 2, the set P (t, ζ, D) is contained in the L∞(T)-open
set V . Thus the above result shows that the likelihood function and its limiting
counterpart are Fréchet-differentiable in L∞(T) at each p ∈ P (t, ζ, D) (the former
for all (X1, . . . , Xn)T ∈ T

n).
In what follows, for a (possibly random) symmetric bilinear functional Ψ defined

on L0(T), we shall use the following notation where H and G are subsets of L0(T):

(18) ‖Ψ‖∞,H,G := sup
h∈H

sup
g∈G

|Ψ(h, g)| .

We use the same notation for multilinear functionals.

Lemma 1. Let Condition 1 hold with t > 1/2 and assume p0(x) ≥ ζ > 0 for every
x ∈ T. Let 1 ≤ α < ∞ and let Hj, j = 1, . . . , α, be bounded subsets of L∞(T) that
are P-Donsker. We then have

(19) sup
p∈P(t,ζ,D)

‖DαLn (p) − PDαL (p)‖∞,H1,...,Hα
= OP∗ (n−1/2).
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Proof. The proof is exactly the same as the one of Lemma 2 in Nickl [12].

We now turn to compactness of the (approximating) parameter space.

Lemma 2. If t > 1/2, then PH(n)(t, ζ, D) is a compact subset of C(T).

Proof. The proof is again a simple adaptation of a result in Nickl [12]. The set
UH(n),t,D = {f : T → R, f ∈ 〈ek 〉H(n) : ‖f ‖t,2,λ ≤ D} is, by Proposition 3, bounded
in C(T) and uniformly equicontinuous on T. Hence UH(n),t,D is relatively compact
in C(T) by the Arzelà-Ascoli theorem. That UH(n),t,D is in fact compact in C(T)
follows from similar arguments as in the proof of Lemma 3 in Nickl [12]. [Note that
〈ek 〉H(n) is a closed subspace of Wt

2(T), which implies that UH(n),t,D is norm-closed
and -bounded - and hence weakly compact - in Wt

2(T).]
Again similar as in Lemma 3 in Nickl [12], it follows that the sets

P ζ = {f ∈ C(T) : ζ ≤ f (x) < ∞ ∀x ∈ T}

as well as
P (1) = {g ∈ C(T) : ‖g‖1,λ = 1}

are ‖ · ‖∞-closed. Then PH(n)(t, ζ, D) = P (1) ∩ P ζ ∩ UH(n),t,D is compact in C(T)
since it is the intersection of a compact and two closed subsets of C(T).

4.2. Approximating Sequence, Rates of (Strong) Convergence

To develop the relevant asymptotic theory for the sieved MLE (i.e., H(n) < ∞
for given n), we have to take into account that the true density p0 is not neces-
sarily contained in PH(n)(t, ζ, D) for any given n. The main idea is based on the
construction of a suitable approximating element p∗

n ∈ PH(n)(t, ζ, D) of p0. This
approach is also often used to obtain rates of convergence of the sieved MLE in the
L2-norm (or some closely related distance), see, e.g., Theorem 10.13 in van de Geer
[16] or Section 4 in Wong and Shen [18]. In our case the approximating element p∗

n

has to match some geometric properties of PH(n)(t, ζ, D). In particular, p∗
n has to

satisfy the internality condition’ in Condition 1. We construct such a sequence in
the following lemma.

Lemma 3. Let p0 satisfy Condition 1. Let H(n) < ∞ tend to infinity as n → ∞.
Then there exists a sequence of functions p∗

n ∈ PH(n)(t, ζ, D) satisfying the following
properties:

1. ‖p∗
n‖t,2,λ < D for every n.

2. p∗
n(x) > ζ for every x ∈ T and every n.

3. ‖p∗
n − p0‖s,2,λ = o(H(n)s−t) for s ≤ t as n → ∞.

Proof. For p0 ∈ Wt
2(T), un(p0) is the truncated Fourier series expansion of p0 (see

(6) above). Clearly, un(p0) is, for every n, a continuous and hence bounded and
integrable function on T. Observe first that for s ≤ t

‖un(p0) − p0‖2
s,2,λ =

∑
k∈Z\[−H(n),H(n)]

|Fp0(k)|2 〈k〉2t 〈k〉2(s−t)(20)

≤ sup
k∈Z\[−H(n),H(n)]

〈k〉2(s−t)
∑

k∈Z\[−H(n),H(n)]

|Fp0(k)|2 〈k〉2t

= O(H(n)2(s−t))o(1) = o(H(n)2(s−t))
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by Hölder’s inequality and definition of ‖ · ‖t,2,λ. In particular, we have the chain
of inequalities

‖un(p0) − p0‖1,λ ≤ ‖un(p0) − p0‖2,λ(21)
≤ ‖un(p0) − p0‖ ∞ ≤ Ct ‖un(p0) − p0‖t,2,λ →n→∞ 0

where we have used Part 1 of Proposition 3 in the last inequality.
Now (21) implies that ‖un(p0)‖1,λ →n→∞ ‖p0‖1,λ = 1 holds, and hence there

exists some positive integer N such that the sequence un(p0)/‖un(p0)‖1,λ is well
defined for every n ≥ N . In particular we conclude that

(22)
∥∥∥un(p0)/ ‖un(p0)‖1,λ − p0

∥∥∥
t,2,λ

→ 0

holds as n tends to infinity. Consequently, since ‖p0‖t,2,λ < D holds by assumption,
we infer that ∥∥∥un(p0)/ ‖un(p0)‖1,λ

∥∥∥
t,2,λ

< D

holds for every n ≥ N ′, where N ′ is a sufficiently large positive integer. Observe
next that also ∥∥∥un(p0)/ ‖un(p0)‖1,λ − p0

∥∥∥
∞

→ 0

holds as n tends to infinity by (22) and Part 1 of Proposition 3. Furthermore,
infx∈T p0(x) > ζ holds by continuity of p0 on the compact metric space T. Hence
also un(p0)(x)/‖un(p0)‖1,λ > ζ has to hold for every x ∈ T and for every n ≥ N ′ ′,
where N ′ ′ is a sufficiently large positive integer. This proves Parts 1 and 2 of the
lemma upon setting

p∗
n = un(p0)/ ‖un(p0)‖1,λ

for n ≥ N ′ ′ ′ = max(N, N ′, N ′ ′) and p∗
n = p∗

N ′ ′ ′ for n < N ′ ′ ′.
Finally, to prove the third part of the lemma, observe that

‖p∗
n − p0‖s,2,λ =

∥∥∥un(p0) ‖un(p0)‖−1
1,λ − un(p0) + un(p0) − p0

∥∥∥
s,2,λ

≤
∣∣∣‖un(p0)‖ −1

1,λ − 1
∣∣∣ ‖un(p0)‖s,2,λ + ‖un(p0) − p0‖s,2,λ

= o(H(n)−t) + o(H(n)s−t)

holds for s ≤ t by using (20) twice as well as the first inequality in (21), and noting
‖ · ‖0,2,λ � ‖ · ‖2,λ.

In the following proposition, we derive the rate of convergence of the sieved MLE
in the L2-norm by using results in van de Geer [16]. This provides, among others,
the proof for Part 2 of Proposition 2. By a suitable interpolation inequality, these
results also imply convergence rates in certain Sobolev norms, which will be of
importance in the proof of Theorem 2 below.

Proposition 5. Let the conditions of Proposition 2 hold. Then

(23)
∥∥pMLE

n − p0

∥∥
s,2,λ

= OP∗ (n−(t−s)/(2t+1)) + o(H(n)−(t−s))

holds for 0 ≤ s ≤ t. If H(n) = ∞ for every n, then the second term on the r.h.s. of
(23) can be set to zero.
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Proof. We apply Theorem 10.13 in van de Geer [16] with P ∗
n = PH(n)(t, ζ, D) and

p∗
n as in Lemma 3. [If H(n) = ∞, choose p∗

n = p0.] Expression 10.69 in van de Geer
[16] is readily verified for p∗

n since p∗
n(x) > ζ > 0 holds for every x ∈ T and since

p0 is bounded.
For two densities p, q, denote by h2(p, q) =

∫
T
(p1/2 − q1/2)2dλ the usual Hellinger

distance. By using the equality∫
T

(
√

p − √
q)2dλ =

∫
T

[
(p − q)(

√
p +

√
q)−1

]2
dλ

we conclude that there exist universal constants 0 < c ≤ C < ∞ so that

(24) ch(p, q) ≤ ‖p − q‖2,λ ≤ Ch(p, q)

holds for p, q ∈ P (t, ζ, D) with t > 1/2 and ζ > 0 (cf. Part 2 of Proposition 3).
Now, by convexity of PH(n)(t, ζ, D), and since p∗

n ∈ PH(n)(t, ζ, D) holds for every
n, the set

P̃H(n) = {(p + p∗
n)/2 : p ∈ PH(n)(t, ζ, D)}

is contained in PH(n)(t, ζ, D) and hence norm-bounded in Wt
2(T). Consequently, us-

ing (24), the Hellinger-bracketing metric entropy H[](ε, P̄H(n), ‖ · ‖2,λ) (with P̄H(n) =
{√

p : p ∈ P̃H(n)}) can be bounded by the L2(T, λ)-bracketing metric entropy of a
bounded subset of Wt

2(T). The latter is of order ε−1/t (where ε → 0 denotes bracket
size) by using Part 2 of Corollary 2 in Nickl and Pötscher [13]. [This corollary can be
applied with Ω = [0, 1), β = 0, d = 1, μ = λ|[0, 1), r = p = q = 2, upon noting that
W s

2 (R) coincides with the Besov space Bs
22(R), and upon noting that Wt

2(T) can
be identified with a bounded subset of the Banach space of restrictions of functions
in W s

2 (R) to [0, 1), cf. also Remark 3 in Nickl and Pötscher [13].] Theorem 10.13 in
van de Geer [16] with Ψ(δ) = Aδ1−1/2t for some suitable constant 0 < A < ∞ now
gives

h2(pMLE
n , p0) = OP(n−2t/(2t+1)) + h2(p∗

n, p0).

Using (24) and Part 3 of Lemma 3, we obtain∥∥pMLE
n − p0

∥∥
2,λ

= OP(n−t/(2t+1)) + O(‖p∗
n − p0‖2,λ)(25)

= OP(n−t/(2t+1)) + o(H(n)−t).

This proves (23) for the case s = 0.
The remaining cases 0 < s ≤ t follow from interpolation properties of Sobolev

spaces: Expression 3.6.1/3 (and 3.5.1/13, 3.5.4/18,19) in Schmeisser and Triebel
[14] implies the interpolation inequality

‖f ‖s,2,λ ≤ C ‖f ‖s/t
t,2,λ ‖f ‖(t−s)/t

2,λ

for f ∈ Wt
2(T) and 0 < C < ∞. The result (23) now follows from (25) and the bound

‖pMLE
n − p0‖t,2,λ ≤ 2D (as well as from (a + b)c ≤ 2c(ac + bc) for a, b, c > 0).

4.3. Proof of Theorem 2

Throughout Section 4.3, we shall assume that the conditions of Theorem 2 hold. In
case H(n) = ∞ for every n, we shall use the convention that Zn = O(H(n)−α) for
some random element Zn and α > 0 implies Zn = 0 for every n. Define the set

UH(n),t,B = {f ∈ 〈ek 〉H(n) : ‖f ‖t,2,λ ≤ B},
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with the convention that U∞,t,B equals the closed ball in Wt
2(T) of radius B. The

following lemma is the key to prove Theorem 2.

Lemma 4. We have that∥∥√
n(PMLE

n − Pn)
∥∥

∞,UH(n),t,B
= OP∗ (n−(t−k)/(2t+1)) + OP(H(n)−(t−k))

+o(n1/2H(n)−2t)

for every k > 1/2 and 0 < B < ∞.

Proof. Step 1:
By a point internal to PH(n)(t, ζ, D) we mean a probability density function

p ∈ PH(n)(t, ζ, D) that satisfies ‖p‖t,2,λ < D as well as p(x) > ζ for every x ∈ T.
Let p∗

n be the sequence from Lemma 3, which is an internal point for every n.
If H(n) = ∞, choose p∗

n = p0 for every n, which is also an internal point by
Condition 1. Set

UH(n),t,η,0 =
{

f ∈ UH(n),t,η :
∫

T

fdλ = 0
}

for 0 < η ≤ D − ‖p∗
n‖t,2,λ which is possible since p∗

n is an internal point. Define for
0 < ε ≤ 1 the function

h∗
n(w) := (1 − ε) pMLE

n + εp∗
n + εw (w ∈ UH(n),t,η,0).

We now show that, for η small enough but positive,

(26) {h∗
n(w) : w ∈ Ut,η,0} ⊆ PH(n)(t, ζ, D)

holds. To see this, observe the following three facts: First, by the triangle inequality

‖h∗
n(w)‖t,2,λ ≤ (1 − ε) D + ε ‖p∗

n‖t,2,λ + εη

≤ D

holds for every 0 < ε ≤ 1, every n and every w ∈ UH(n),t,η,0 by definition of η. This
verifies the Sobolev-norm condition for containment of h∗

n(w) in PH(n)(t, ζ, D).
Second, since ‖w‖∞ ≤ Ct‖w‖t,2,λ ≤ Ctη holds by Part 1 of Proposition 3 and since
infx∈T p0(x) > ζ holds by continuity of p0 on the compact metric space T, it follows
that p∗

n(x)+w(x) ≥ ζ+β −Ctη holds for some β > 0. This implies for 0 < η ≤ β/Ct

small enough that

(h∗
n(w))(x) = (1 − ε) pMLE

n (x) + ε(p∗
n + w)(x)

≥ ζ

holds for every x ∈ T and every w ∈ UH(n),t,η,0. Third, since w integrates to zero,
h∗

n(w) is a density for every w ∈ UH(n),t,η,0.
Consequently, in view of (26), since pMLE

n is a maximizer of Ln(·) over PH(n)(t,
ζ, D), and since Ln(·) is Fréchet differentiable at pMLE

n by Proposition 4, the deriv-
ative of Ln(·) at pMLE

n in the direction of h∗
n(w) = pMLE

n +ε(w − pMLE
n +p∗

n), every
w ∈ UH(n),t,η,0, has to be nonpositive, that is, we have that,

DLn

(
pMLE

n

) (
w − pMLE

n + p∗
n

)
≤ 0 for every w ∈ Ut,η,0.

Since Ut,η,0 also contains −w, we conclude that

(27) |DLn

(
pMLE

n

)
(w)| ≤ DLn

(
pMLE

n

) (
pMLE

n − p∗
n

)
for every w ∈ Ut,η,0
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holds.

Step 2:

Define the operator

(28) Π(f) = (f − Pf)p0

from L∞(T) into L∞(T) ∩ {g :
∫

T
g dλ = 0}. Note that Wt

2(T) is a multiplication
algebra for t > 1/2, that is ‖fg‖t,2,λ ≤ M ‖f ‖t,2,λ‖g‖t,2,λ holds for some 0 <
M < ∞. [This is easily seen to follow from the fact that Wt

2(R) is a multiplication
algebra and upon noting that Wt

2(T) can be identified with a bounded subset of
the (factor) Banach space of restrictions of functions in Ws

2(R) to [0, 1).] Hence, for
every f ∈ UH(n),t,B , we have

‖Π(f)‖t,2,λ ≤ M ‖f − Pf ‖t,2,λ ‖p0‖t,2,λ(29)
≤ MD(‖f ‖t,2,λ + ‖Pf ‖t,2,λ)
≤ MD(B + ‖CtB‖t,2,λ)
≤ MDB(1 + Ct) < ∞

by using Proposition 3. Now with η as in Step 1 define

s(Π(f)) = η ‖Π(f)‖−1
t,2,λ Π(f)

if Π(f) �= 0, and set s(Π(f)) = 0 otherwise. Then it follows that s(Π(f)) ∈
UH(n),t,η,0 for every f ∈ UH(n),t,B .

Step 3:

Inserting s(Π(f)) for w in (27) we obtain that

(30)
∣∣DLn(pMLE

n )(s(Π(f)))
∣∣ ≤ DLn(pMLE

n )(pMLE
n − p∗

n) for every f ∈ Ut,B

holds. Using Proposition 4, we see that the expected value of the likelihood deriv-
ative at p0 equals zero along the directions {g :

∫
T

g dλ = 0} and thus in particular
along the direction pMLE

n − p∗
n:

(31) PDL (p0) (pMLE
n − p∗

n) =
∫

T

(
pMLE

n − p∗
n

)
p−1
0 dP =

∥∥pMLE
n

∥∥
1,λ

− ‖p∗
n‖1,λ = 0

since both pMLE
n and p∗

n are probability densities. Thus, we have from (30) that

DLn

(
pMLE

n

)
(s(Π(f))) = (DLn

(
pMLE

n

)
− PDL (p0))(pMLE

n − p∗
n)

holds for every f ∈ UH(n),t,B . Let now k be as in the lemma. W.l.o.g. we may
restrict ourselves to the case k ≤ t. Choose a real j, 1/2 < j < k. Let Uj,1 denote
the unit ball of Wj

2(T) which is a universal Donsker class. By Proposition 4 we
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obtain

∣∣(DLn

(
pMLE

n

)
− PDL (p0))

(
pMLE

n − p∗
n

)∣∣
≤

∣∣(DLn

(
pMLE

n

)
− PDL

(
pMLE

n

)
)
(
pMLE

n − p0

)∣∣+∣∣(PDL
(
pMLE

n

)
− PDL (p0))

(
pMLE

n − p0

)∣∣ +∣∣(DLn

(
pMLE

n

)
− PDL

(
pMLE

n

)
) (p∗

n − p0)
∣∣ +∣∣(PDL

(
pMLE

n

)
− PDL (p0)) (p∗

n − p0)
∣∣

≤ sup
p∈P(t,ζ,D)

‖DLn (p) − PDL (p)‖∞,Uj

∥∥pMLE
n − p0

∥∥
j,2,λ

+ ζ−1
∥∥pMLE

n − p0

∥∥2

2,λ

+ sup
p∈P(t,ζ,D)

‖DLn (p) − PDL (p)‖∞,Uj
‖p∗

n − p0‖j,2,λ

+ ζ−1 ‖p∗
n − p0‖2

2,λ

=: Z ′
n.

It follows from Lemma 1, Part 3 of Lemma 3 and Proposition 5 that

Z ′
n = OP∗ (n−1/2−(t−j)/(2t+1)) + oP(n−1/2H(n)−(t−j))(32)

+OP(n−2t/(2t+1)) + o(H(n)−2t)
+OP(n−1/2)o(H(n)−(t−j)) + o(H(n)−2t)

= OP∗ (n−1/2−(t−k)/(2t+1)) + OP(n−1/2H(n)−(t−k)) + o(H(n)−2t).

Multiplying by η−1‖Π(f)‖t,2,λ we conclude that

∣∣DLn

(
pMLE

n

)
(Π(f))

∣∣ ≤ η−1 ‖Π(f)‖t,2,λ Z ′
n for every f ∈ UH(n),t,B

holds. Since Z ′
n does not depend on f ∈ UH(n),t,B , we conclude from (29) that

(33) sup
f ∈UH(n),t,B

∣∣DLn

(
pMLE

n

)
(Π(f))

∣∣ ≤ Zn

holds, where Zn is of the same order as Z ′
n in (32).

Step 4:
Expression (33) now allows to quantify the difference between the empirical

process
√

n(Pn − P) and the MLE-process
√

n(PMLE
n − P) on the class UH(n),t,B .

We have

∥∥√
n(PMLE

n − Pn)
∥∥

∞,UH(n),t,B

=
√

n sup
f ∈UH(n),t,B

∣∣(PMLE
n − P)f − (Pn − P)f

∣∣
=

√
n sup

f ∈UH(n),t,B

∣∣∣∣
∫

T

(f −
∫

T

fdP)
(
pMLE

n − p0

)
dλ − (Pn − P)f

∣∣∣∣ .

Observe furthermore that

−PD2L (p0) (pMLE
n − p0, g) =

∫
T

gp−1
0

(
pMLE

n − p0

)
dλ
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holds for g ∈ L∞(T) by Proposition 4, and hence – recalling definition (28) – we
obtain ∥∥√

n(PMLE
n − Pn)

∥∥
∞,UH(n),t,B

(34)

=
√

n sup
f ∈UH(n),t,B

∣∣−PD2L (p0) (pMLE
n − p0, Π(f)) − DLn (p0) (Π(f))

∣∣ .

Next, by the mean value theorem, we have

DLn

(
pMLE

n

)
(Π(f)) = DLn (p0) (Π(f)) + D2Ln (p̄n) (pMLE

n − p0, Π(f))

where the mean value p̄n ≡ p̄n(f) lies, for every f ∈ UH(n),t,B , on the line segment
between pMLE

n and p0, which is contained in P (t, ζ, D) for every f ∈ UH(n),t,B . This
gives

DLn

(
pMLE

n

)
(Π(f)) − PD2L (p0) (pMLE

n − p0, Π(f))(35)

= DLn (p0) (Π(f)) + (D2Ln (p̄n) − PD2L (p0))(pMLE
n − p0, Π(f)).

Note now that the set Π(UH(n),t,B) = {Π(f) = (f − Pf)p0 : f ∈ UH(n),t,B } is
a P-Donsker class by (29). Let k be as in Step 3. Again, w.l.o.g. we may restrict
ourselves to the case k ≤ t. Choose a real j, 1/2 < j < k. Let Uj,1 denote the unit
ball of Wj

2(T) which is a P-Donsker class. Using Lemma 1, Propositions 3, 4, 5 as
well as (29), we obtain

sup
f ∈UH(n),t,B

∣∣(D2Ln (p̄n) − PD2L (p0))(pMLE
n − p0, Π(f))

∣∣
≤ sup

f ∈UH(n),t,B

∣∣(D2Ln (p̄n) − PD2L (pn))(pMLE
n − p0, Π(f))

∣∣ +

sup
f ∈UH(n),t,B

∣∣(PD2L (p̄n) − PD2L (p0))(pMLE
n − p0, Π(f))

∣∣
≤ sup

p∈P(t,ζ,D)

∥∥D2Ln (p) − PD2L (p)
∥∥

∞,Uj,1,Π(UH(n),t,B)

∥∥pMLE
n − p0

∥∥
j,2,λ

+

2ζ−3CtD sup
f ∈UH(n),t,B

‖Π(f)‖∞
∥∥pMLE

n − p0

∥∥
2,λ

‖p̄n − p0‖2,λ

= : Wn

where again

(36) Wn = OP∗ (n−1/2−(t−k)/(2t+1)) + OP(n−1/2H(n)−(t−k)) + o(H(n)−2t).

Here we have used the simple fact that

‖p̄n − p0‖2,λ =
∥∥ξ(f)pMLE

n + (1 − ξ(f))p0 − p0

∥∥
2,λ

= ξ(f)
∥∥pMLE

n − p0

∥∥
2,λ

for some 0 ≤ ξ(f) ≤ 1. This together with (33) and (35) gives

sup
f ∈UH(n),t,B

∣∣−PD2L (p0) (pMLE
n − p0, Π(f)) − DLn (p0) (Π(f))

∣∣ ≤ Wn + Zn.

Inserting this into (34) shows that∥∥√
n(PMLE

n − Pn)
∥∥

∞,UH(n),t,B
≤

√
n(Wn + Zn)

holds. The proof of the lemma is now complete after collecting the terms in (32)
and (36).
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We note that Lemma 4 parallels Theorem 1 in Nickl [12] in the sense that the
set UH(n),t,B over which P

MLE
n and Pn are asymptotically close depends on the set

PH(n)(t, ζ, D) over which the likelihood is maximized (via t and H(n)). [In Nickl
[12], there was no dependence on H(n) since no sieve was used.]

Proof of Theorem 2. Define ν̂n =
√

n(PMLE
n − P). We set w.l.o.g. F equal to Us,1

the unit ball of Ws
2(T). For f ∈ Us,1, its Fourier series truncated at K(n) will

be denoted by un(f) =
∑

k∈Z∩[−K(n),K(n)] Ff(k)ek, where the sequence K(n) of
positive integers is chosen such that K(n) ≤ H(n) holds for every n. We start from

√
n

∥∥P
MLE
n − Pn

∥∥
∞,Us,1

= ‖ν̂n − νn‖∞,Us,1

≤ sup
f ∈Us,1

|ν̂n(f − un(f))|

+ sup
f ∈Us,1

|ν̂n(un(f)) − νn(un(f))|

+ sup
f ∈Us,1

|νn(un(f) − f)|

= I + II + III.

We now obtain bounds for these three expressions to prove the theorem.
Bound for I: Observe first that

sup
f ∈Us,1

‖un(f) − f ‖2
2,λ ≤ sup

k∈Z\[−K(n),K(n)]

〈k〉−2s sup
f ∈Us,1

∑
k∈Z\[−K(n),K(n)]

〈k〉2s |Ff(k)|2

= O(K(n)−2s)o(1)

holds by the same reasoning as in (20). Hence, by Proposition 5 and Cauchy-
Schwarz’s inequality, the first term can be bounded by

n1/2 sup
f ∈Us,1

∣∣∣∣
∫

T

(pMLE
n − p0)(un(f) − f)dλ

∣∣∣∣
≤ n1/2

∥∥pMLE
n − p0

∥∥
2,λ

sup
f ∈Us,1

‖un(f) − f ‖2,λ

= n1/2(oP(n−t/(2t+1)K(n)−s) + o(H(n)−tK(n)−s)).

Bound for II: We first treat the case s < t. Observe that

sup
f ∈Us,1

‖un(f)‖2
t,2,λ = sup

f ∈Us,1

∑
k∈Z∩[−K(n),K(n)]

|Ff(k)|2 〈k〉2s 〈k〉2t−2s

≤ sup
k∈Z∩[−K(n),K(n)]

〈k〉2t−2s sup
f ∈Us,1

‖f ‖2
s,2,λ = O(K(n)2t−2s)

holds by Hölder’s inequality. Consequently, the term II equals zero in the trivial
case where un(f) = 0 for every f ∈ F and otherwise is equal to

sup
f ∈Us,1,
un(f) �=0

‖un(f)‖t,2,λ

∣∣∣(ν̂n − νn)(un(f)/ ‖un(f)‖t,2,λ)
∣∣∣(37)

= OP∗ (n−(t−k)/(2t+1)K(n)t−s) + OP(H(n)−(t−k)K(n)t−s)
+o(n1/2H(n)−2tK(n)t−s)

for every k > 1/2 by Lemma 4, since un(f)/‖un(f)‖t,2,λ is contained, for every n,
in the set UH(n),t,1 (recalling that K(n) ≤ H(n) holds for every n). If s ≥ t, then
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supf ‖un(f)‖t,2,λ ≤ supf ‖f ‖t,2,λ = O(1) holds and we obtain that the expression in
(37) is of order OP∗ (n−(t−k)/(2t+1))+OP(H(n)−(t−k))+o(n1/2H(n)−2t) by Lemma 4.

Bound for III: Finally, the third term is equal to
√

n sup
f ∈Us,1

|(Pn − P)(un(f) − f)| ≤
√

n ‖Pn − P‖ ∞,Uj,1
sup

f ∈Us,1

‖un(f) − f ‖j,2,λ

= oP(K(n)−(s−j))

for every j > s > 1/2 by the same reasoning as in (20) above and since Uj,1 is a
universal Donsker class.

Collecting terms, we obtain for s < t that
√

n
∥∥P

MLE
n − Pn

∥∥
∞,Us,1

= oP(n1/2−t/(2t+1)K(n)−s) + o(n1/2H(n)−tK(n)−s)

+OP∗ (n−(t−k)/(2t+1)K(n)t−s)
+O(H(n)−(t−k)K(n)t−s)
+o(n1/2H(n)−2tK(n)t−s) + oP(K(n)−(s−k))

holds for every k > s > 1/2.
If s ≥ t we arrive at

√
n

∥∥P
MLE
n − Pn

∥∥
∞,Us,1

= oP(n1/2−t/(2t+1)K(n)−s) + o(n1/2H(n)−tK(n)−s)

+OP∗ (n−(t−k)/(2t+1)) + OP(H(n)−(t−k))
+o(n1/2H(n)−2t) + oP(K(n)−(s−k))

again for every k > 1/2. This completes the proof of the first claim of the theorem.
The second claim follows immediately from the fact that F is a universal Donsker
class above.
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