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Uniform in bandwidth consistency of

kernel regression estimators at a fixed

point

Julia Dony1,∗ and Uwe Einmahl1,†

Vrije Universiteit Brussel

Abstract: We consider pointwise consistency properties of kernel regression
function type estimators where the bandwidth sequence is not necessarily de-
terministic. In some recent papers uniform convergence rates over compact sets
have been derived for such estimators via empirical process theory. We now
show that it is possible to get optimal results in the pointwise case as well. The
main new tool for the present work is a general moment bound for empirical
processes which may be of independent interest.

1. Introduction

Let (X, Y ), (X1, Y1), (X2, Y2), . . . be independent random vectors in R
d × R with

joint density fXY , and take t ∈ R
d fixed. Let further F be a class of measurable

functions ϕ : R → R with Eϕ2(Y ) < ∞, and consider the regression function
mϕ(t) = E[ϕ(Y )|X = t]. For any function ϕ ∈ F , bandwidth 0 < h < 1 and n ≥ 1
define the kernel–type estimator

ϕ̂n,h(t) :=
1

nhd

n∑
i=1

ϕ(Yi)K
( t − Xi

h

)
,

where K is a kernel function, i.e.K is Borel measurable and
∫

K(x)dx = 1.
Such kernel estimators have been studied for many years creating a huge research

literature. By choosing ϕ ≡ 1, one obtains an estimator for fX(t), the marginal
density of X in t ∈ R

d. This kernel density estimator denoted by f̂n,h(t) forms an
important special case of the class of kernel estimators ϕ̂n,h(t). It is well–known that
for suitable (deterministic) bandwidth sequences hn going to zero at an appropriate
rate and assuming that the density fX is continuous, one obtains a strongly consis-
tent estimator f̂n,hn of fX , that is, one has with probability 1 that f̂n,hn(t) → fX(t)
for all t ∈ R

d fixed. For proving such consistency results, one usually writes the dif-
ference f̂n,hn(t) − fX(t) as the sum of a probabilistic term f̂n,hn(t) − Ef̂n,hn(t), and
a deterministic term Ef̂n,hn(t) − fX(t), the so–called bias.
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The order of the bias depends on smoothness properties of fX and of the ker-
nel K, whereas the first (random) term can be studied via techniques based on
empirical processes. Hall [15] proved an LIL type result for the probabilistic term
corresponding to the kernel density estimator if d = 1. The d–dimensional version
of this result implies in particular that under suitable conditions on the bandwidth
sequence hn and the kernel function K, one has

(1.1) f̂n,hn(t) − Ef̂n,hn(t) = O

(√
log log n

nhd
n

)
, a.s.

Since this is an LIL type result (with corresponding lower bounds), this gives us
the precise convergence rate for the pointwise convergence of the probabilistic term.
Deheuvels and Mason [2] later showed that this LIL holds whenever the bandwidth
sequence satisfies

(1.2) nhd
n/ log log n → ∞, as n → ∞,

which is the optimal condition under which (1.1) can hold. The work of [2] is
based on a notion of a local empirical process indexed by sets. This was further
generalized by Einmahl and Mason [8, 9] who looked at local empirical processes
indexed by functions and established strong invariance principles for such processes.
From their strong invariance principles they inferred LIL type results for the kernel
density estimator, the Nadaraya–Watson estimator of the regression function and
conditional empirical processes.

Recall that the Nadaraya–Watson estimator m̂n,h,ϕ(t) of mϕ(t) = E[ϕ(Y )|X =
t], where ϕ : R → R is Borel measurable, is defined as

m̂n,h,ϕ(t) := ϕ̂n,h(t)/f̂n,h(t).

There is also an LIL for this estimator which implies that

(1.3) m̂n,hn,ϕ(t) − Êm̂n,hn,ϕ(t) = O

(√
log log n

nhd
n

)
, a.s.,

where Êm̂n,h,ϕ(t) = Eϕ̂n,h(t)/Ef̂n,h(t) is a convenient centering term. If ϕ is
a bounded function this holds again under the above condition (1.2). If x �→
E[|ϕ(Y )|p|X = x] is uniformly bounded in a neighborhood of t, where p > 2,
one needs that {hd

n} is at least of order O(n−1(log n)q) for some q > 2/(p − 2) (see
[8, 9] and for a first attempt in this direction consult [13]). From our main result it
will actually follow that in this last case q ≥ 2/(p − 2) is already sufficient.

Some related results have also been obtained for uniform convergence of kernel–
type estimators on compact subsets or even on R

d. In this case one typically gets
a slightly worse convergence rate of the probabilistic term of order O(

√
log n/nhd

n)
and one needs that the bandwidth sequence satisfies nhd

n/ log n → ∞ in the bounded
case, which is more restrictive than (1.2). For more details see [3, 14, 10, 12] and
the references in these papers.

In practice, one has to choose a bandwidth sequence hn in such a way that the
bias and the probabilistic part are reasonably balanced. The optimal choice for
hn then will often depend on some unknown parameter of the distribution which
one has to estimate. This can lead to bandwidth sequences depending on the data
and the location t. Many elaborate schemes have been proposed in the statistical
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literature for constructing such bandwidth sequences (see for example [3], especially
Sections 2.3 and 2.4). This means that the above results do not apply if one is
interested in estimators with such general bandwidth sequences. In [11] “uniform
in h” versions of the results in [10, 12] were obtained. This makes it possible to
establish consistency of kernel–type estimators when the bandwidth h is allowed to
range in an interval which may increase or decrease in length with the sample size.
These kinds of results are immediately applicable to proving uniform consistency of
kernel–type estimators when the bandwidth h is a function of the data X1, . . . , Xn

or the location t ∈ R
d.

A typical result in [11] of this type is the following asymptotic result for the
Nadaraya–Watson estimator which holds under certain conditions on the distribu-
tion of (X, Y ) and the kernel K.

(1.4) lim sup
n→∞

sup
( c log n

n )γ/d ≤h<1

sup
t∈I

sup
ϕ∈F

√
nhd|m̂n,h,ϕ(t) − Êm̂n,h,ϕ(t)|√

| log h| ∨ log log n
< ∞, a.s.,

where γ = 1 or γ = 1 − 2/p depending on whether F is a bounded class of functions,
or it has an envelope function with a finite p–th moment (p > 2). Here, I is a
compact rectangle in R

d on which fX is assumed to be bounded and strictly positive.
We call (1.4) an asymptotic uniform in bandwidth (AUiB) boundedness result.
It implies that if one chooses the bandwidth depending on the data and/or the
location (as is usually done in practice), one keeps the same order of convergence
as the one valid for a deterministic bandwidth sequence, given, for instance, in
[10]. The resulting kernel estimators are from a statistical point of view clearly
preferable to those based on bandwidths which are only a function of the sample
size n, ignoring the data and the location. Results like (1.4) improve on earlier work
in this direction where the uniformity in the bandwidth is achieved over intervals
of the form an ≤ h ≤ bn, where bn/an tends to a positive finite constant (see for
instance [3]).

The purpose of the present paper is to establish a similar AUiB boundedness
result in the “pointwise” setting, where in view of the aforementioned results, one
can hope for a slightly smaller order and bigger intervals from which one can choose
the bandwidth sequence. Pointwise AUiB boundedness results can be useful in
various contexts. In particular, they can be used for deriving consistency results for
generalized Hill type estimators introduced in [1]. (See [6] and Chapter 6 in [4].)

2. Main result

Before stating our main result, we have to impose several assumptions on the kernel
function, the bandwidth and the class F . These assumptions are mainly technical,
and will be listed below.

We first recall some terminology. Let (X , A) be a measurable space. We say that
a class G of A–measurable functions g : X → R is pointwise measurable if there
exists a countable subclass G0 of G such that we can find for any function g ∈ G
a sequence of functions gm ∈ G0 for which gm(z) → g(z), z ∈ X . This property is
usually assumed to avoid measurability problems, and is discussed in [18]. Next, we
call a class of functions G with envelope function G : X → [0, ∞] a VC–type class,
if

(2.1) N (ε, G) ≤ Cε−ν , 0 < ε < 1
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for some constants C, ν > 0. As usual we define

N (ε, G) = sup
Q

N (ε
√

Q(G2), G, dQ),

where the supremum is taken over all probability measures Q on (X , A) with
Q(G2) < ∞. Here, dQ is the L2(Q)–metric and N (ε, G, d) is the minimal number of
d–balls with radius ε which are needed to cover the function class G. An envelope
function is any A–measurable function G : X → [0, ∞] such that supg∈G |g(x)| ≤
G(x), x ∈ X .

We are now ready to state the conditions that need to be imposed for our results.
Let F be a class of functions ϕ : R → R satisfying the following three conditions :

(F.i) F is a pointwise measurable class,
(F.ii) F has a (measurable) envelope function F (y) ≥ supϕ∈F |ϕ(y)|, y ∈ R,
(F.iii) F is a VC–type class.

Next, a kernel function K : R
d → R will be any measurable function satisfying

(K.i) ‖K‖∞ = κ < ∞ and
∫

K(x)dx = 1,
(K.ii) K has a support contained in [−1/2, 1/2]d,
(K.iii) K := {x �→ K(γ(t − x)) : γ > 0} is a pointwise measurable VC–type class

of functions from R
d to R.

Conditions (K.i) and (K.ii) are easy to verify. Many kernels satisfy also condition
(K.iii). (See for instance Remark 1 in [9] for some discussion.)

Our main result is then as follows.

Proposition 2.1 (Pointwise AUiB boundedness of kernel–type estima-
tors). Let F and K satisfy (F) and (K) and assume that the envelope function F
of F satisfies for some 0 < ε < 1 one of the following conditions on J := t+[−ε, ε]d:

(F.a) ∃ p > 2 : supx∈J E[F p(Y )|X = x] =: μp < ∞.
(F.b) ∃ s > 0 : supx∈J E[exp(sF (Y ))|X = x] < ∞.

Then if fX is bounded on J it follows for any c > 0 that

(2.2) lim sup
n→∞

sup
an ≤h≤b0

sup
ϕ∈F

√
nhd|ϕ̂n,h(t) − Eϕ̂n,h(t)|√

log log n
< ∞, a.s.,

where 0 < b0 < 2ε is a positive constant and ad
n = cn−1(log n)

2
p−2 or ad

n =
cn−1 log log n depending on whether condition (F.a) or condition (F.b) holds.

Note that Proposition 2.1 under (F.b) is more general than the corresponding
result on uniform convergence on compact rectangles which one obtains from Theo-
rem 4 in [11] by setting cϕ = 1 and dϕ = 0. In that case one has to assume that the
function class F is bounded. The above Proposition 2.1, however, provides a result
for all classes whose envelope function admits a finite moment generating function.
This improvement is possible since in the present case we can apply an exponential
Bernstein type inequality for empirical processes formulated in terms of the second
moment of the envelope function (see Fact 4.2).

For establishing an AUiB boundedness result uniformly on compact rectangles of
R

d one would need this inequality in terms of the weak second moment of the func-
tion class. Such an improvement of the Bernstein inequality for empirical processes,
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however, seems to be only known in the bounded case. This means that, concern-
ing uniform in bandwidth pointwise consistency, there is no distinction between
the bounded case and the case where the moment generating function of F is fi-
nite. Also in the case where one uses deterministic bandwidth sequences, this result
seems to be new.

We conclude this section by formulating some corollaries of our proposition. We
first look at the kernel estimator for the density fX . If the kernel K satisfies the
above conditions, we can conclude for any sequence an such that nad

n/ log log n → ∞
and 0 < an ≤ bn < 1, where bn → 0,

sup
an ≤h≤bn

|f̂n,h(t) − Ef̂n,h(t)| = O

(√
log log n

nad
n

)
= o(1), a.s.,

provided that fX is bounded on J , a neighborhood of t. If fX is continuous at t,
then it is easy to see that |Ef̂n,h(t) − fX(t)| → 0 as h → 0. Thus we have for any
sequence 0 < bn → 0,

(2.3) sup
0<h<bn

|Ef̂n,h(t) − fX(t)| = o(1).

If moreover the density fX is smooth at t, one can also provide explicit convergence
rates. For instance, assume similarly as in [14] that fX is Lipschitz continuous of
order 0 < α ≤ 1 at t, that is, we assume that we have for suitable constants C, δ > 0,

|fX(t) − fX(s)| ≤ C|s − t|α, whenever |s − t| ≤ δ.

Then it follows easily (and we shall show this in Section 4) that the convergence in
(2.3) is of order O(bα

n).
Noting that the continuity at t also implies that fX is bounded on J provided

that we have chosen ε small enough, we have the following result.

Corollary 2.1 (UiB consistency of kernel density estimators). Let K be a
kernel satisfying (K). If fX is continuous at t, and 0 < an ≤ bn < 1 are sequences
such that nad

n/ log log n → ∞ and bn → 0, then we have almost surely,

sup
an ≤h≤bn

|f̂n,h(t) − fX(t)| → 0, as n → ∞.

If moreover the density fX is Lipschitz continuous of order 0 < α ≤ 1 at t, the
convergence is of order O(

√
log log n/nad

n ∨ bα
n).

We now look at the Nadaraya–Watson estimator for the class of regression func-
tions mϕ(x), ϕ ∈ F . Assuming that fX is continuous at t and that fX(t) > 0,
we have also that fX is positive and bounded on an ε–neighborhood J of t for a
suitable ε > 0. Then if F , K and {an} are as in Proposition 2.1, we get from this
result via a standard argument (see, for instance, the proof of Theorem 2 in [11])
that for any sequence bn ≥ an converging to zero,

(2.4) sup
an ≤h≤bn

sup
ϕ∈F

|m̂n,h,ϕ(t) − Êm̂n,h,ϕ(t)| = O

(√
log log n

nad
n

)
, a.s.

This implies that if an is such that nad
n/ log log n → ∞, this probabilistic term

converges to zero, almost surely.
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Assuming additionally that the family of regression functions {mϕ : ϕ ∈ F } is
equicontinuous at t, that is,

∀ ε > 0, ∃ δ > 0 : sup
ϕ∈F

|mϕ(s) − mϕ(t)| ≤ ε for all |s − t| ≤ δ,

we also have for any sequence 0 < bn → 0,

(2.5) sup
0<h<bn

sup
ϕ∈F

∣∣Êm̂n,h,ϕ(t) − mϕ(t)
∣∣ → 0, as n → ∞.

Moreover, if the function class {mϕfX : ϕ ∈ F } is uniformly Lipschitz continuous
of order 0 < α ≤ 1 at t, meaning that there exist constants C, δ > 0 such that

sup
ϕ∈F

|mϕ(s)fX(s) − mϕ(t)fX(t)| ≤ C|t − s|α, when |s − t| ≤ δ,

then the convergence rate of the bias term in (2.5) is again of order O(bα
n). Com-

bining (2.4) and (2.5), we obtain the following result.

Corollary 2.2 (UiB consistency of Nadaraya–Watson type estimators).
Let F and K satisfy (F) and (K) and assume that the function class {mϕ : ϕ ∈ F }
is equicontinuous at t. Further suppose that fX is continuous and positive at t. If
the envelope function F of F satisfies (F.b) for some 0 < ε < 1 on J := t+[−ε, ε]d,
then we have for any sequences 0 < an ≤ bn < 1 with nad

n/ log log n → ∞ and
bn → 0, with probability one,

(2.6) sup
an ≤h≤bn

sup
ϕ∈F

|m̂n,h,ϕ(t) − mϕ(t)| → 0, as n → ∞.

Assuming only (F.a) instead of (F.b), relation (2.6) remains true if

lim inf
n→∞

nad
n/(log n)2/(p−2) > 0.

If the function class {mϕfX : ϕ ∈ F } is uniformly Lipschitz continuous of order
0 < α ≤ 1 at t, the convergence is again of order O(

√
log log n/nad

n ∨ bα
n).

Remark 2.3. Here are three conditions which can be easily checked and which
imply that the function class {mϕ : ϕ ∈ F } is equicontinuous at t:

(i) fX is continuous and positive at t,
(ii) the joint density fXY of (X, Y ) satisfies the following condition:

lim
s→t

fXY (s, y) = fXY (t, y), for almost all y ∈ R,

(iii) supx∈J E[F q(Y )|X = x] < ∞ for some q > 1.

In Section 4.5 below we will give a formal proof that these three conditions are
sufficient. (We note that very similar conditions have also been considered in [3, 11].)

For more information on the order of the bias under additional smoothness as-
sumptions on fX,Y and K and on how one should choose the bandwidth, the reader
is referred to Section 2.3 in [3] and the references of this paper.

As in [3, 10, 11], the proof of Proposition 2.1 is based on the theory of empirical
processes. Again we use exponential deviation inequalities in combination with
certain moment inequalities. The necessary exponential inequalities are available
in the literature, but we need a new moment inequality, which will be stated and
proved in Section 3. Finally, in Section 4 we shall prove Proposition 2.1 and its
corollaries.
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3. Moment inequalities

To simplify notation we set for any class C of functions on X and any ψ : C → R,

‖ψ‖ C = sup
g∈C

|ψ(g)|.

Let X, X1, . . . , Xn be i.i.d. random variables taking values in a measurable space
(X , A) and let A ∈ A be a fixed set. It is our goal to derive a moment inequality
for

E
∥∥αn(g · 1IA)

∥∥
G , n ≥ 1,

where αn is the empirical process based on X1, . . . , Xn and G is a pointwise mea-
surable class of functions g : X → R for which Eg2(X) exists. Let G : X → [0, ∞]
be an envelope function for the function class G and assume that EG2(X) < ∞.
We further assume that G has the following property:

(�) For any sequence of i.i.d. X –valued random variables Z1, Z2, . . . it holds that

E

∥∥∥ k∑
i=1

{
g(Zi) − Eg(Z1)

}∥∥∥
G

≤ C1

√
k‖G(Z1)‖2, 1 ≤ k ≤ n,

where C1 > 1 is a constant depending on G only.

From Theorem 3.2 below it will follow that VC–type classes always have this prop-
erty. But we first prove our new moment inequality.

Theorem 3.1. Let G be a pointwise measurable function class satisfying the above
assumptions. Then we have for any A ∈ A,

(3.1) E
∥∥αn(g · 1IA)

∥∥
G ≤ 2C1‖G(X)1IA(X)‖2.

Proof. W.l.o.g. we assume that 0 < P(A) < 1. Similarly as in [8, 9] we shall use
a special representation of the random variables Xi, i ≥ 1. To that end, consider
independent random variables Y1, Y2, . . . , Y

′
1 , Y ′

2 , . . . such that for all B ∈ A and
any i ≥ 1,

P{Yi ∈ B} = P{X ∈ B|X ∈ A} and P{Y ′
i ∈ B} = P{X ∈ B|X ∈ Ac}.

Let further ε1, ε2, . . . be independent Bernoulli(P{X ∈ A})–variables, independent
of the two other sequences, and set ν(n) :=

∑n
i=1 εi. Finally, define for any i ≥ 1,

X∗
i =

{
Yν(i), if εi = 1,

Y ′
i−ν(i), if εi = 0.

Then it is easy to see that this leads to a sequence of independent random variables
with X∗

i
d= Xi, i ≥ 1. Consequently, it is sufficient to prove the moment bound for

the empirical process α∗
n based on the variables X∗

i , i ≥ 1. Moreover, it is readily
seen that

n∑
i=1

g(X∗
i )1IA(X∗

i ) =
ν(n)∑
i=1

g(Yi),
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and also that E[g(X∗)1IA(X∗)] = Eg(Y1)P{X ∈ A}. Consequently, we have that

E
∥∥√

nα∗
n(g · 1IA)

∥∥
G = E

∥∥∥ ν(n)∑
i=1

g(Yi) − nP{X ∈ A}Eg(Y1)
∥∥∥

G

≤ E

∥∥∥ ν(n)∑
i=1

(
g(Yi) − Eg(Yi)

)∥∥∥
G

+ E

∥∥∥ ν(n)∑
i=1

Eg(Yi) − nP{X ∈ A}Eg(Y1)
∥∥∥

G

≤ E
∥∥√

ν(n)α̃ν(n)(g)
∥∥

G + E
∣∣ν(n) − nP{X ∈ A}

∣∣ · sup
g∈G

E|g(Y1)|,

where α̃n(g) denotes the empirical process based upon Y1 . . . , Yn. Recall that ν(n)
has a Binomial(n, P{X ∈ A}) distribution so that Eν(n) = nP{X ∈ A}, and thus
E|ν(n) − nP{X ∈ A} | ≤ Var(ν(n))1/2 ≤

√
nP{X ∈ A}. Moreover, since G is an

envelope function of G, we have that

E
∥∥√

nα∗
n(g · 1IA)

∥∥
G ≤ E

∥∥√
ν(n)α̃ν(n)(g)

∥∥
G +

√
nP{X ∈ A}EG2(Y1).

We now look at the first term. Due to assumption (�) and by independence of
the variable ν(n) and the variables Y1, Y2, . . ., we can conclude that (note that
ν(n) ≤ n),

E
∥∥√

ν(n)α̃ν(n)(g)
∥∥

G ≤
n∑

k=1

E
∥∥√

kα̃k(g)
∥∥

G P{ν(n) = k}

≤ C1

n∑
k=1

√
kEG2(Y1) P{ν(n) = k}

= C1

√
EG2(Y1)E[ν1/2(n)]

≤ C1

√
nP{X ∈ A}EG2(Y1),

where we have used the trivial fact that E[ν1/2(n)] ≤ (E[ν(n)])1/2 =
√

nP{X ∈ A}.
Recalling that C1 > 1 and EG2(Y1) = E[G2(X)1IA(X)]/P{X ∈ A}, we can conclude
that

E
∥∥√

nα∗
n(g · 1IA)

∥∥
G ≤ 2C1

√
nE[G2(X)1IA(X)],

proving that the moment bound (3.1) holds, as claimed.

We note that condition (�) can be somewhat weakened. An inspection of the
above proof shows that if one needs the moment inequality for a fixed set A, this
condition has only to be satisfied for sequences of i.i.d. random variables Z1, Z2, . . .
with distribution P{X ∈ · |X ∈ A}. The next result shows that condition (�) as
formulated above is satisfied if we have a VC–type class.

Theorem 3.2. Let G be a pointwise measurable VC–type class of functions with
envelope function G and let A0, ν ≥ 1 be constants such that

N (ε, G) ≤ A0ε
−ν , 0 < ε < 1.

If Z, Z1, Z2, . . . is a sequence of i.i.d. X –valued random variables satisfying for some
0 < β < ∞, EG2(Z) ≤ β2, then we have for a suitable constant C depending on A0
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and ν only that

(3.2) E

∥∥∥∥∥
n∑

i=1

(g(Zi) − Eg(Z))

∥∥∥∥∥
G

≤ C
√

nβ2, n ≥ 1.

Proof. Let ε1, . . . , εn be i.i.d. Rademacher variables which are also independent of
Z1, . . . , Zn. Then we have by a standard symmetrization inequality which is stated
on page 153 in [17], E‖

∑n
i=1(g(Zi) − Eg(Z))‖ G ≤ 2E‖

∑n
i=1 εig(Zi)‖G , and it is

sufficient to show that

(3.3) E

∥∥∥∥∥
n∑

i=1

εig(Zi)

∥∥∥∥∥
G

≤ C ′
√

nβ2,

where C ′ = C/2 is a positive constant depending on A0 and ν only. From the
Hoffmann–Jørgensen inequality (see Proposition 6.8. in [17]) it follows that

(3.4) E

∥∥∥∥∥
n∑

i=1

εig(Zi)

∥∥∥∥∥
G

≤ 6t0 + 6E

[
max

1≤i≤n
G(Zi)

]
,

where

t0 := inf
t>0

(
P

{∥∥∥∥∥
n∑

i=1

εig(Zi)

∥∥∥∥∥
G

> t

}
≤ 1

24

)
.

Observing that

E
[

max
1≤i≤n

G(Zi)
]

≤
(
E

[
max

1≤i≤n
G2(Zi)

])1/2

≤
(

E

[
n∑

i=1

G2(Zi)

])1/2

≤
√

nβ2,

we see that it suffices to show that for C ′ ′ = C ′/6 − 1 = C/12 − 1,

(3.5) t0 ≤ C ′ ′
√

nβ2.

Let μ be the distribution of the variable Z : Ω → X and define

Gn :=
{
x ∈ X n :

n∑
i=1

G2(xi) ≤ 64nβ2
}
.

Note that for any t > 0,

P

{∥∥∥∥∥
n∑

i=1

εig(Zi)

∥∥∥∥∥
G

> t

}
=

∫
X n

P

{∥∥∥∥∥
n∑

i=1

εig(xi)

∥∥∥∥∥
G

> t

}
μn(dx)

≤ μn(Gc
n) +

∫
Gn

P

{∥∥∥∥∥
n∑

i=1

εig(xi)

∥∥∥∥∥
G

> t

}
μn(dx)

=: α1 + α2.

From Markov’s inequality we obtain that α1 = P
{ ∑n

i=1 G2(Zi) > 64nβ2
}

≤ 1/64.
To bound α2, we use a well known inequality of Jain and Marcus [16] which is also
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stated as Corollary 2.2.8 in [18]. We can conclude that for any x = (x1, . . . , xn) ∈ X n

and some absolute constant c0 < ∞,

E

∥∥∥∥∥
n∑

i=1

εig(xi)

∥∥∥∥∥
G

≤ E

∣∣∣∣∣
n∑

i=1

εig0(xi)

∣∣∣∣∣ + c0

√
n

∫ ∞

0

√
log N (ε, G, d2,x) dε,

where g0 ∈ G is arbitrary and d2
2,x(g1, g2) := n−1

∑n
i=1(g1(xi) − g2(xi))2. Further,

it is easy to infer that when x ∈ Gn,

E

∣∣∣∣∣
n∑

i=1

εig0(xi)

∣∣∣∣∣ ≤
(

n∑
i=1

g2
0(xi)

)1/2

≤ 8
√

nβ2,

and for g1, g2 ∈ G, d2
2,x(g1, g2) ≤ 2

n

∑n
i=1(g

2
1(xi) + g2

2(xi)) ≤ 256β2. Hence, if
ε > 16β, one needs only one ball of d2,x–radius ε to cover the class G. There-
fore, N (ε, G, d2,x) = 1 whenever x ∈ Gn and ε > 16β. On the other hand, let
Qn,x(f) := n−1

∑n
i=1 f(xi) and note that Qn,x((g1 −g2)2) = d2

2,x(g1, g2). Then since
Qn,x(G2) ≤ 64β2 for x ∈ Gn, and recalling that N (ε, G) = supQ N (ε

√
Q(G2), G,

dQ) where dQ is the L2(Q)–metric, the assumption that G is a VC–type class
gives us for any x ∈ Gn and whenever 0 < ε ≤ 16β, (notice that in this case,√

Qn,x(G2)/16β ≤ 1/2)

N (ε, G, d2,x) ≤ N
(ε

√
Qn,x(G2)
16β

, G, d2,x

)
≤ N

( ε

16β
, G

)
≤ A0ε

−ν(16β)ν .

Hence, we have for x ∈ Gn,∫ ∞

0

√
log N (ε, G, d2,x) dε =

∫ 16β

0

√
log N (ε, G, d2,x) dε

≤
∫ 16β

0

√
log A0(16β/ε)ν dε

=
√

νA0
1/ν16β

∫ A
−1/ν
0

0

√
log

1
s
ds,

which can be bounded by 16c
√

νA0
1/νβ, with c :=

∫ 1

0

√
log 1/s ds < ∞. (Recall

that A0 ≥ 1.) Consequently, by Markov’s inequality we have for any x ∈ Gn:

P

{∥∥∥∥∥
n∑

i=1

εig(xi)

∥∥∥∥∥
G

> t

}
≤ t−1{8

√
nβ2 + c016β

√
n c

√
νA

1/ν
0 }

=
√

64nβ2(1 + 2c0c1)/t,

with c1 = c
√

νA
1/ν
0 . Taking everything together, we obtain that

P

{∥∥∥∥∥
n∑

i=1

εig(Zi)

∥∥∥∥∥
G

> t

}
≤ 1

64
+

√
64nβ2

t
(1 + 2c0c1).

To finish, recall from (3.5) that we need to find a range for t > 0 such that the
above probability is bounded by 1/24. By solving the equation, we see that t should
be such that

√
64nβ2(1 + 2c0c1) ≤ 5t/(3 · 26), or

t ≥ 3 · 29
√

nβ2(1 + 2c0c1)
5

.
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Consequently, by setting C ′ ′ = 3 · 29(1+2c0c1)/5 and taking t ≥ C ′ ′
√

nβ2, we have
shown that P

{
‖

∑n
i=1 εig(Zi)‖ G > t

}
≤ 1

24 , proving the theorem for C = 212(1 +
2C0C1)+12 ≥ 12(C ′ ′ +1) through (3.5) and the Hoffmann–Jørgensen inequality.

Note that from our assumptions on F and the kernel K it follows that the
following class of functions on X = R

d × R,

(3.6) G :=
{

(x, y) �→ ϕ(y)K
( t − x

h

)
: ϕ ∈ F , h > 0

}
is a VC–type class

with envelope function G(x, y) = κF (y). (Use, for instance, Lemma A.1 in [10].)
Consequently, Theorem 3.2 ensures the class G to satisfy condition (�), and thereby
all the conditions of Theorem 3.1.

4. Proof of Proposition 2.1 and its corollaries

To begin the proof of Proposition 2.1, we first show how the process in (2.2) can be
expressed in terms of an empirical process indexed by a certain class of functions.
To do so, consider the following classes of functions on X = R

d × R defined by

Gn :=
{

(x, y) �→ ϕ(y)K
( t − x

h

)
: ϕ ∈ F , an ≤ h ≤ b0

}
,

and note that for any ϕ ∈ F and an ≤ h ≤ b0,

ϕ̂n,h(t) − Eϕ̂n,h(t) =
1

nhd

[ n∑
i=1

ϕ(Yi)K
( t − Xi

h

)
− nEϕ(Y )K

( t − X

h

)]
=:

1√
nhd

αn(gϕ,h),

where gϕ,h(x, y) := ϕ(y)K((t − x)/h) and αn(g) is the empirical process based
upon the sample (X1, Y1), . . . , (Xn, Yn). Further, set nk := 2k, k ≥ 0 and define
hd

k,j := 2jad
nk

. Then hk,0 = ank
and by setting L(k) := max{j : hd

k,j ≤ 2bd
0 },

it holds that hk,L(k)−1 ≤ b0 < hk,L(k) so that [ank
, b0] ⊂ [hk,0, hk,L(k)]. Further,

consider for 1 ≤ j ≤ L(k) the subclasses

(4.1) Gk,j :=
{

(x, y) �→ ϕ(y)K
( t − x

h

)
: ϕ ∈ F , hk,j−1 ≤ h ≤ hk,j

}
,

and note that Gnk
⊂

⋃L(k)
j=1 Gk,j . Since an is eventually non–decreasing, we have for

all nk−1 < n ≤ nk and for any ϕ ∈ F if k ≥ 1 is large enough,

sup
an ≤h≤b0

√
nhd|ϕ̂n,h(t) − Eϕ̂n,h(t)|√

log log n
≤ sup

ank
≤h≤b0

‖αn(g)‖Gnk√
hd log log n

≤ max
1≤j≤L(k)

2
√

2‖√
nαn(g)‖Gk,j√

nkhd
k,j log log nk

.(4.2)

Recall further that the class G in (3.6) is a VC–type class with envelope G(x, y) =
κF (y). This of course implies that also Gk,j is a VC–type class for this envelope
function and where the constants A0, ν can be chosen independently of k and j. In
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view of Theorem 3.2, the assumptions of Theorem 3.1 are satisfied and we have for
any subset A of R

d × R,

E
∥∥αnk

(g · 1IA)
∥∥

Gk,j
≤ 2C ′ ‖G(X, Y )1IA(X, Y )‖2,

where C ′ is a positive constant (depending on the constants A0 and ν only). Setting
Ak,j = {t + [−hk,j/2, hk,j/2]d} × R, we can conclude that

(4.3) E‖αnk
(g)‖Gk,j

= E
∥∥αnk

(g · 1IAk,j
)
∥∥

Gk,j
≤ 2C ′ (

EG2
k,j(X, Y )

)1/2
,

where

(4.4) Gk,j(x, y) = κF (y)1I{x ∈ t + [−hk,j/2, hk,j/2]d}

is the envelope function for Gk,j .

4.1. Proof of the proposition under condition (F.a)

We use the empirical process version of a recent Fuk–Nagaev type inequality in
Banach spaces. (See Theorem 3.1 in [7].) By a slight misuse of notation, we also
write αn for the empirical process based on the sample Z1, . . . , Zn, n ≥ 1, in a
general measurable space (X , A). (We shall apply this inequality on X = R

d × R

and with Zi = (Xi, Yi), i ≥ 1.)

Fact 4.1 (Fuk–Nagaev type inequality). Let Z, Z1, . . . , Zn, n ≥ 1, be i.i.d. X –
valued random variables and consider a pointwise measurable class G of functions
g : X → R with envelope function G. Assume that for some p > 2, EGp(Z) < ∞.
Then we have for 0 < η ≤ 1, δ > 0 and any t > 0,

P

{
max

1≤k≤n
‖

√
kαk(g)‖G ≥ (1 + η)βn + t

}
≤ exp

(
− t2

(2 + δ)nσ2

)
+ nC2EGp(Z)/tp,

where σ2 = supg∈G Eg2(Z), βn = E‖ √
nαn(g)‖G and C2 is a positive constant

depending on η, δ and p.

Let κ = supx∈Rd |K(x)| and recall that by (K.ii) the support of K lies in
[−1/2, 1/2]d. Recall further that fX is bounded on J = t + [−ε, ε]d so that

‖fX ‖J := sup
x∈J

|fX(x)| < ∞.

Then for any gϕ,h ∈ Gk,j with k large enough such that hk,j ≤ 2ε, it holds that

E(gϕ,h(X, Y ))2 = E

[
ϕ2(Y )K2

( t − X

h

)]
≤ hdκ2

∫
[− 1

2 , 1
2 ]d

E
[
F 2(Y )|X = t − uh

]
fX(t − uh)du

≤ κ2‖fX ‖J

∫
[− hk,j

2 ,
hk,j

2 ]d
E [F p(Y )|X = t + x]2/p

dx,
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which on account of (F.a) implies that for k sufficiently large,

sup
g∈Gk,j

Eg2(X, Y ) ≤ hd
k,jκ

2‖fX ‖Jμ2/p
p =: σ2

k,j .

In the same way, we obtain that

E‖g(X, Y )‖q
Gk,j

≤ EGq
k,j(X, Y ) ≤ Cqσ

2
k,j , 2 ≤ q ≤ p,

where Cq = κq−2μ
(q−2)/p
p . This gives in particular that EG2

k,j(X, Y ) ≤ σ2
k,j and we

can infer from (4.3),

(4.5) E‖√
nkαnk

(g)‖Gk,j
≤ 2C ′

√
nkσ2

k,j .

Applying the Fuk–Nagaev type inequality (see Fact 4.1) with η = δ = 1, we find
that for all x > 0,

P

{
max

nk−1<n≤nk

‖
√

nαn(g)‖Gk,j
≥ x + 4C ′

√
nkσ2

k,j

}
≤ exp

(
− x2

3nkσ2
k,j

)
+ C2x

−pnkEGp
k,j(X, Y )

≤ exp
(

− x2

3c1nkhd
k,j

)
+ c2x

−pnkhd
k,j ,

where c1 = κ2‖fX ‖Jμ
2/p
p and c2 = C2κ

pμp‖fX ‖J . Taking x = ρ
√

nkhd
k,j log log nk

for ρ > 0 and recalling the condition on an, we get for large enough k,

P

{
max

nk−1<n≤nk

‖
√

nαn(g)‖Gk,j
≥ ρ

√
nkhd

k,j log log nk

}
≤ exp

(
− ρ2 log log nk

4c1

)
+

c3(ρ)(nkhd
k,j)

1−p/2

(log log nk)p/2

≤ (log nk)− ρ2

4c1 +
c4(ρ)2−j( p

2 −1)

log nk(log log nk)p/2
.

Finally, it is not too difficult to see that L(k) ≤ 2 log nk for any k ≥ 1 (since
ε < 1). Therefore, recalling the empirical process representation in (4.2), this implies
immediately that for k large enough,

P

{
max

nk−1<n≤nk

sup
an ≤h≤b0

sup
ϕ∈F

√
nhd|ϕ̂n,h(t) − Eϕ̂n,h(t)|√

log log n
> 2

√
2ρ

}

≤
L(k)∑
j=1

P

{
max

nk−1<n≤nk

‖
√

nαn(g)‖Gk,j
≥ ρ

√
nkhd

k,j log log nk

}
≤ 2(log nk)1− ρ2

4c1 +
c4(ρ)

log nk(log log nk)p/2

1 − 2−( p
2 −1)L(k)

1 − 2−( p
2 −1)

≤ 2(log nk)1− ρ2

4c1 +
c4(ρ)(1 + ξ)

log nk(log log nk)p/2
,

for some ξ > 0. Finally, note that for any δ > 0,
∞∑

k=1

(k(log k)1+δ)−1 < ∞

so that by taking ρ large enough so that ρ >
√

8c1, the previous calculations yield
(2.2) via the Borel–Cantelli lemma by summing in k.
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4.2. Proof of the proposition under condition (F.b)

To prove Proposition 2.1 in this case, set

μp := sup
x∈J

E [F p(Y )|X = x] , p ≥ 1.

Obviously μp is finite for all p ≥ 1. We consider the function classes Gk,j defined
as in (4.1), where each class has the envelope function Gk,j(x, y) as in (4.4). Our
proof is similar to the one under condition (F.a), the main difference being that
we now use another exponential inequality which follows from a result of Yurinskii.
(See Theorem 3.3.1 and (3.3.7) in [19].)

Fact 4.2 (Bernstein type inequality). Let Z, Z1, . . . , Zn be i.i.d. X –valued
random variables and consider a pointwise measurable class G of functions g : X →
R with envelope function G. Assume that for some H > 0,

EGm(Z) ≤ m!
2

σ2Hm−2, m ≥ 2,

where σ2 ≥ EG2(Z). Then for βn = E‖ √
nαn(g)‖G , we have for any t > 0,

P

{
max

1≤k≤n
‖

√
kαk(g)‖G ≥ βn + t

}
≤ exp

(
− t2

2nσ2 + 2tH

)
≤ exp

(
− t2

4nσ2

)
∨ exp

(
− t

4H

)
.

Condition (F.b) implies that for some s > 0, and uniformly on x ∈ J ,

E[exp(sF (Y ))|X = x] ≤ M + 1 < ∞,

for some M > 0. Hence, a simple Taylor expansion in combination with the
monotone convergence theorem yields that for all x ∈ J ,

∞∑
m=1

sm

m!
E[Fm(Y )|X = x] ≤ M,

so that we can bound μp for any p ≥ 2 as

μp = sup
x∈J

E [F p(Y )|X = x] ≤ p!M
sp

, p ≥ 2.

In particular, μ2 ≤ 2M/s2. Furthermore, we obtain in the same way as in the
previous case that

EG2
k,j(X, Y ) ≤ 2Ms−2hd

k,jκ
2‖fX ‖J =: σ2

k,j .

With Ak,j = t + [−hk,j/2, hk,j/2]d, it then easily follows that for any m ≥ 1 and k
large enough (so that Ak,j ⊆ J),

EGm
k,j(X, Y ) =

∫
E[Gm

k,j(X, Y )|X = x]fX(x) dx

= κm

∫
Ak,j

E
[
Fm(Y )|X = x

]
fX(x) dx

≤ κmμmhd
k,j ‖fX ‖J

≤ m!
2

σ2
k,j(κ/s)m−2.
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Using the same argument as in the previous case, we can find suitable constants
A1, A2 > 0 such that

E
∥∥√

nkαnk
(g)

∥∥
Gk,j

≤ A1

√
nkσ2

k,j ≤ A2

√
nkhd

k,j .

Hence all the conditions of the above Bernstein type inequality (Fact 4.2) are sat-
isfied for k large enough with H = κ/s and β2

n = O(nkhd
k,j) = o(nkhd

k,j log log nk).
This gives us for all 1 ≤ j ≤ L(k) and ρ > 0 (note that nkhd

j,k ≥ c log log nk),

P

{
max

nk−1<n≤nk

‖
√

nαn(g)‖Gk,j
≥ ρ

√
nkhd

k,j log log nk

}
≤ exp

(
− ρ2s2 log log nk

8Mκ2‖fX ‖J

)
+ exp

(
−ρs

√
nkhd

k,j log log nk/4κ
)

≤ (log nk)−A3ρ2
+ exp

(
− ρs

√
c log log nk/4κ

)
= (log nk)−A3ρ2

+ (log nk)−A4ρ,

with A3 = s2/8Mκ2‖fX ‖J and A4 = s
√

c/4κ. Consequently, by the empirical
process representation in (4.2), we have for any positive constant ρ < ∞ (recall
also that L(k) ≤ 2 log nk, k ≥ 1) that

P

{
max

nk−1<n≤nk

sup
an ≤h≤b0

sup
ϕ∈F

√
nhd|ϕ̂n,h(t) − Eϕ̂n,h(t)|√

8 log log n
> ρ

}

≤
L(k)∑
j=1

P

{
max

nk−1<n≤nk

‖
√

nαn(g)‖Gk,j
≥ ρ

√
nkhd

k,j log log nk

}
≤ 2(log nk)1−A3ρ2

+ 2(log nk)1−A4ρ.

Finally, by taking ρ large enough such that ρ >
√

2/A3 ∨ 2/A4, the result follows
from the Borel–Cantelli lemma by summing in k.

4.3. Proof of Corollary 2.1

To prove Corollary 2.1 we only need to establish relation (2.3). We denote the
maximum–norm on R

d by | · |. Further set Bt,h = t + [−h/2, h/2]d. Recalling that
the support of K is in [−1/2, 1/2]d and that K is bounded and integrates to 1, we
get after a simple transformation that

|Ef̂n,h(t) − fX(t)| =
∣∣h−d

∫
Bt,h

K((t − x)/h)fX(x)dx − fX(t)
∣∣

=
∣∣∣ ∫

[−1/2,1/2]d
K(u)[fX(t − uh) − fX(t)]du

∣∣∣
≤ κ sup

s:|s−t|≤h/2

|fX(s) − fX(t)|.

The last term clearly converges to zero as h → 0. Also note that this inequality
gives us the convergence rate of order O(bα

n) if fX is Lipschitz continuous of order
0 < α ≤ 1.
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4.4. Proof of Corollary 2.2

We now turn to the proof of Corollary 2.2. We have to show that uniformly in
ϕ ∈ F ,

|Êm̂n,h,ϕ(t) − mϕ(t)| −→ 0, as h → 0.

Observe that∣∣Êm̂n,h,ϕ(t) − mϕ(t)
∣∣ =

∣∣∣∣∣Eϕ̂n,h(t)

Ef̂n,h(t)
− mϕ(t)fX(t)

fX(t)

∣∣∣∣∣
≤ |Eϕ̂n,h(t) − mϕ(t)fX(t)|

fX(t)|Ef̂n,h(t)|
+

|mϕ(t)|
|Ef̂n,h(t)|

|Ef̂n,h(t) − fX(t)|.

From Corollary 2.1 we know that |Ef̂n,h(t)−fX(t)| → 0 as h → 0 which also implies
that Ef̂n,h(t) is bigger than fX(t)/2 > 0 for large n. Furthermore, we have

sup
ϕ∈F

|mϕ(t)| ≤ E[F (Y )|X = t] < ∞.

Therefore, it only remains to show that

Δ(h) := sup
ϕ∈F

|Eϕ̂n,h(t) − mϕ(t)fX(t)| −→ 0, as h → 0.

Using the same argument as in the proof of Corollary 2.1, we readily obtain that

Δ(h) = sup
ϕ∈F

∣∣∣ ∫
[−1/2,1/2]d

K(u)[mϕ(t − uh)fX(t − uh) − mϕ(t)fX(t)] du
∣∣∣.

Since {mϕ : ϕ ∈ F } is assumed to be equicontinuous at t, and as fX is continuous
at t, the function class {mϕ(·)fX(·) : ϕ ∈ F } is equicontinuous at t, which in turn
implies that Δ(h) → 0 as h → 0, whence Corollary 2.2 holds.

It is also easy to see that the bias is of order O(bα
n) if this last function class is

uniformly Lipschitz continuous of order 0 < α ≤ 1.

4.5. Proof of Remark 2.3

We finally show that {mϕ : ϕ ∈ F } is equicontinuous at t under the conditions
stated in Remark 2.3. First note that by the continuity of fX at t,

lim
s→t

∫ ∞

− ∞
fXY (s, y) dy = lim

s→t
fX(s) = fX(t) =

∫ ∞

− ∞
fXY (t, y) dy,

which in conjunction with condition (ii) in Remark 2.3 implies via Scheffé’s lemma
that

(4.6)
∫ ∞

− ∞
|fXY (s, y) − fXY (t, y)| dy −→ 0, as s → t.

Next, observe that uniformly in ϕ ∈ F ,

|mϕ(s)fX(s) − mϕ(t)fX(t)| =
∣∣∣∣∫ ∞

− ∞
ϕ(y)[fXY (s, y) − fXY (t, y)] dy

∣∣∣∣
≤

∫ ∞

− ∞
F (y)|fXY (s, y) − fXY (t, y)| dy.
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Set further FM = F1IF ≤M and GM = F1IF>M = F − FM . From (4.6) it follows
that ∫ ∞

− ∞
FM (y)|fXY (s, y) − fXY (t, y)| dy −→ 0, as s → t.

Furthermore, note that for any η > 0, we can choose M > 0 big enough such that
for q > 1 as in (iii),

sup
s∈J

∫ ∞

− ∞
GM (y)fXY (s, y) dy ≤ M1−q sup

s∈J
E[F q(Y )|X = s]fX(s) ≤ η/2.

Hence, we can conclude that for any η > 0,

lim sup
s→t

sup
ϕ∈F

|mϕ(s)fX(s) − mϕ(t)fX(t)| ≤ η,

so that the function class {mϕfX : ϕ ∈ F } is equicontinuous at t, which since fX

is continuous and positive at t also implies this property for {mϕ : ϕ ∈ F }. �

Acknowledgement

The authors would like to thank David M. Mason for numerous useful suggestions
and his comments on earlier versions of this work.

References
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