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Weak invariance principle and exponential
bounds for some special functions of
intermittent maps
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Université Paris 6 and Université Paris Est

Abstract: We consider a parametric class T, of expanding maps of [0,1]
with a neutral fixed point at 0 for which there exists an unique invariant ab-
solutely continuous probability measure v, on [0, 1]. On the probability space
([0, 1], ), we prove the weak invariance principle for the partial sums of foT;Z
in some special cases involving non-standard normalization. We also prove new
moment inequalities and exponential bounds for the partial sums of f oT@ when
f is some Hélder function such that f(0) = v+ (f).

1. Introduction

For « in |0, 1], we consider the following intermittent map T, from [0, 1] to [0, 1],
introduced by Liverani, Saussol and Vaienti [11]:

Y Y i
T (2) = .;c(l +2727) .1fx €1[0,1/2],
x—1 if x € (1/2,1].
We denote by v, the unique T’ -invariant probability measure on [0, 1] which is
absolutely continuous with respect to the Lebesgue measure.

In 1999, Young [16] showed that such systems (among many others) may be
described by a Young tower with polynomial decay of the return time. From this
construction, she was able to control the covariances v, (g o T" - (f — v,(f))) for
any bounded function g and any Hélder function f, and then to prove that, on the
probability space ([0, 1], ),

Suld) _ 1NN Gop
\/ﬁ _\/ﬁ;(f T’y ’Y(f))

converges in distribution to a normal law as soon as v < 1/2. Note that, in that case,
one can easily prove that the weak invariance principle holds, which means that
the normalized partial sum process converges in distribution to a Wiener process
in the Skorohod topology.

In his paper, Gouézel [6] has given a complete picture of the limit behaviour of the
distribution of S,,(f) when f is any Holder function. If v = 1/2 and f(0) # v1/2(f),
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he proved that the central limit theorem remains true with the normalization
vnln(n). When 1/2 < v < 1 and f(0) # v,(f), he proved that n™7S,(f) con-
verges in distribution to a stable law. If f(0) = v, (f) and |f(z) — f(0)| < Cz, he
proved that the central limit theorem holds with the normalization y/n provided
that v < a+1/2. Gouézel studied also the case where f(z) = z(27=1/2 for v < 1/2,
and proved that the central limit theorem holds for the normalization y/n1n(n).

In this note, we shall prove that in every situation described by Gouézel for which
the central limit theorem holds, the weak invariance principle also holds (with the
appropriate normalization). Moreover, we shall give some new moment inequalities
and exponential bounds for S, (f) in the special case where f(0) = v, (f).

To prove our results, we shall first introduce an appropriate Markov chain as
follows. Let K, be the Perron-Frobenius operator of T’, with respect to v,: for any
bounded measurable functions f, g,

(1.1) vy(f-goTy) =vy(K(f)g)-

Let (Y;);>0 be a stationary Markov chain with invariant measure v, and transition
kernel K. It is well known (see Lemma XI.3 in Hennion and Hervé [10]) that on
the probability space ([0, 1], v ), the random variable (T,,T2,...,TZ) is distributed
as (Yn, Yn—h N 7Y1)-

To prove the weak invariance principle, we shall apply the sharp results given in
Merlevede and Peligrad [13] to the normalized partial sum process of the sequence
(f(Y:) —vy(f))i>0. To prove the moment (resp. exponential) inequalities, the main
point is to control the quantity ||KZ(f) — v (f)llpw, (resp. [|KZ(f) — vy (f)lloow,)
when f(0) = v, (f), and next to apply the Burkholder inequality (resp. Hoeffding
inequality) given in Peligrad et al. [14] to the sums Y . (f(¥;) — vy(f)).

Note that some moment inequalities for S,,(f) can be found in the literature for
functions which do not satisfy the constraint f(0) = v4(f), but under more restric-
tive assumptions on . Let us cite the upper bounds given in Melbourne and Nicol
([12], Example 1.3) for Holder continuous functions and v < 1/2, and the upper
bounds given in Dedecker and Prieur ([5], Section 6) for a class of unbounded func-
tions. For y small enough, Chazottes et al. [1] have proved some moment inequalities
for Lipschitz functionals of (T, Tf, cn T,

2. Weak invariance principle when v = 1/2

Let h be the density of v,. Let v = 1/2. According to Item 2 of the comments
following Theorem 1.3 in Gouézel [6], we know that for any Holder function f,

(2.1) ¥Sn(f) converges in distribution to 1/h(1/2)(f(0) — v1/2(f))N,

nln(n)

where N is a standard Gaussian. Moreover, if f(0) = vy 2(f), n~1/28,(f) converges
in distribution to a normal law.

In the next theorem, we show that the weak invariance principle also holds. More-
over, we show that if f(0) = vy/2(f), the limiting variance is the usual covariance
series.

Theorem 2.1. Let v = 1/2 and let [ be any Holder function. Let W be a standard
Brownian motion.
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1. On the probability space ([0,1],v1/2), the process

1
—— Sa(f),telo,1
{ S0}
converges in distribution to \/h(1/2)(f(0)—v1,2(f))W, in the Skorohod topol-

0gy.
2. If f(0) = v1)2(f), then the series

o*(f) = vip2(f 012N +2D_v1p2((f = vaj2(£)f o TF)

k>0

converge absolutely to some nonnegative number. In addition, on the proba-
bility space ([0,1],v1/2), the process

{ =S 011}

converges in distribution to o(f)W, in the Skorohod topology.

3. Weak invariance principle for f(x) = z(27—1)/2

Let h be the density of v,. Let v < 1/2, and let f be the function from ]0, 1] to
R* defined by f(z) = 2(>v=1/2, From the comment 3 page 88-89 in Gouézel [6],
we know that
1
(3.1) ﬁsn(f) converges in distribution to \/h(1/2)2172V/2 N
nln(n
where N is a standard Gaussian (the limiting variance was communicated to us by
S. Gouézel and can be obtained by following the arguments given in the proof of
his Theorem 1.3).
In the next theorem, we show that the weak invariance principle also holds.

Theorem 3.1. Let v < 1/2 and f(z) = x27=1/2. Let W be a standard Brownian
motion. On the probability space ([0, 1],v,), the process

{——Sun(f).t € 0,1]}

nln(n)

converges in distribution to /h(1/2)20=20)/2W in the Skorohod topology.

4. On the functions such that f(0) = v (f)
As in Gouézel [6], our results will depend on the behaviour of f around 0. Therefore,
we first introduce the following class:

Definition 4.1. For any v €]0, 1] and any a > 0, let Hg 4, be the class of Holder
functions f on [0,1] such that f(0) = v, (f) and |f(z) — f(0)] < Cz®.

In his Theorem 2.4.14, Gouézel [8] proved that: for any v €]0,1[ any a > 0 and
any f in Ho g, there exists a positive constant C; such that

(41) 1K) = v (Pl < Coma ()~

nl/v’ n(4a—y)/y

In the next proposition, we shall give an upper bound for the L*°(v,)-norm.
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Proposition 4.2. For any v €]0,1[ any a > 0 and any f in Ho ,q, there exists a
positive constant Cso such that

IEZ(f) = vy (F)lloon, < Co max( 1 1)

a/v’ n

Remark 4.3. Combining (4.1) and Proposition 4.2, we obtain that for any p €
[1,00], there exists a positive constant C), such that

. C, 11
||K7 (f) = vy (Dllpw, < mmax (Wa ﬁ) .

Starting from Remark 4.3 and applying the moment inequality given in Peligrad
et al. [14], we obtain the following results:

Theorem 4.4. For any a >0, any f in Ho~,q and any p € [2,00[, we have
1. If0 <y < 2(ap+1)/(p+2), then there exists some positive constant C such

that
<Cyn.

DV

‘ max Sk (f)]

1<k<n

2. Ify=2(ap+1)/(p+2), then there exists some positive constant C' such that

< Cy/nln(n).

H max |Sk(f)]
1<k<n

P,V

3. If2(ap+1)/(p+2) < <1, then there exists some positive constant C' such
that
< on©pt)—ap=1)/py

P,V

H max |Si(f)]
1<k<n

Of course, this result is no longer true if p = co. Instead, we have the following
exponential bounds:

Theorem 4.5. For any a > 0 and any f in Ho y,q, we have

1. If 0 < v < 2a, then there exists two positive constants C1 and Cy such that,
for any x > 0,

1<k<n

Vs ( max |Sk(f)| > m/ﬁ) < C) exp(—Cya?).

2. If v = 2a, then there exists two positive constants Cy1 and Cs such that, for
any © > 0,

Uy ( max |Sk(f)| > xﬁln(n)) < Cy exp(—Cyz?).

1<k<n
3. If 2a < v < 1, then there exists two positive constants Cy and Cy such that,
for any x > 0,

Uy (1211?2% |Sk(f)] > zn(va)/v) < Cy exp(—Cax?).

Remark 4.6. As a straightforward consequence of Theorem 4.5, we obtain that
1. If 0 < v < 2a, then there exists a positive constant C' such that

lim sup 7|Sn (N

< C almost everywhere.
n—oo /nln(ln(n))
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2. If v = 2a, then there exists a positive constant C' such that

: S (f)]
limsu
sy In(n)y/nIn(ln(n))

< C' almost everywhere.

3. If 2a < v < 1, then there exists a positive constant C' such that

Jim sup |Sn (f)]
n— 00 n(V*“)/V ln(ln(n))

< C almost everywhere.

As recalled in the introduction, Gouézel [6] has proved that if f belongs to Ho ~,a
for 0 < v < a+ 1/2 then n='/25,,(f) converges to a normal distribution. In the
next theorem, we show that the weak invariance principle also holds, and that the
limiting variance is the usual covariance series. Note that this result is more precise
than Item 1 of Theorem 4.4 in the case where p = 2.

Theorem 4.7. Let W be a standard Brownian motion. For any a > 0, any 0 <
v<a+1/2 and any f in Ho ,q, the series

(4.2) o2 (f) = v ((f =y (D) +2D_ws((f = () f o T)
k>0
converges absolutely. Moreover, on the probability space ([0,1],v,), the process
1
{%S[nt](f)zt € [Oa 1]}

converges in distribution to o(f)W, in the Skorohod topology.

5. Proofs

From now, C and D are positive constants which may vary from line to line.

5.1. Proof of Theorem 2.1

We first note that Item 2 of Theorem 2.1 is a consequence of Theorem 4.7 (if
v = 1/2, the constraint v < a + 1/2 is clearly satisfied), which will be proved in
Section 5.5. Now, if f(0) = vy /5(f), then Item 1 is a straightforward consequence of
Item 2. Consequently, it remains to prove Item 1 in the case where f(0) # v /2(f).

Let X; = f(Y;)—v1/2(f), where (Y;);ez is the Markov chain with transition kernel
K5 and invariant measure v /5. Recall that (7} 2, T12/27 e ,Tln/g) is distributed as

(Yo, Yoo1,...,Y1). Let S, = 377 | X5, and let ¢(f) = v/h(1/2)(f(0) — v1/2(f)). To

prove Item 1, we shall prove that

(5.1) {éé’[mpt € [0, 1]}

nln(n)

converges in distribution to ¢(f)W, in the Skorohod topology. To see that this
result implies Item 1 of Theorem 2.1, it suffices to notice that the process W, (f) =
{W,(f,t),t € [0,1]} defined by

[nt]
_ 1 o Tn—k+1 _ v nt — [nt] o n—[nt] _ "y
Wn(fit) = 7nln(n) ki:l(f T 172(f)) + 7nln(n) (foT 172(f)),
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converges in distribution in C([0,1], ]| - ||eo) to ¢(f)W, so that W,,(f,1) — W,(f)
converges in distribution in C([0,1], || - ||ec) to ¢(f)(W (1) — W). Hence
{Wn(f7 1) - Wn(fv 1- t)vt € [07 1]}

converges in distribution in C([0,1], || - [|eo) to {e(f)(W(1) — W(1 —t)),t € [0,1]}
which is distributed as ¢(f)W. Now {W,,(f,1) — W,,(f,1 —1t),t € [0,1]} is equal to
the process

1 nt — [nt
[ —Stun(h) + = ottt ().t e 0.1},
nlin(n) nln(n)
which consequently converges in distribution in C([0,1], | - ||s) to ¢(f)W. Theo-

rem 2.1 easily follows.

To prove the weak convergence of the process (5.1), we use Corollary 3 in Mer-
levede and Peligrad [13]. Let B,, = /7/2E(]S,|). Applying this corollary to the
bounded random variables X;, we infer that if

(5.2) on =E(S7) — oo,

(5.3) > E(XG[Y0) 1 = o(0})
=1

and

(5.4) lim o, ?E(S?|Y_,)=1in L',

are satisfied, then the process {B,; 1S[nt],t € [0,1]} converges in distribution to W,
in the Skorohod topology. We shall see in the rest of the proof that necessarily,

(5.5) B~ /h(1/2)[f(0) = v12(f)]V/nIn(n).

It remains to prove (5.2), (5.3) and (5.4). We first recall that from Young [16],
if f is 0-Holder for some ¢ in 0, 1],

C
(5.6) 17209 - Ko (f = vay2 (D) < —lgllooLs(£)
where
z,y€[0,1] |z — ]

Clearly, inequality (5.6) is equivalent to

; c
(5.7) EXnlYo) 1w = IKT)2(f) = vaj2(H)lls < —Ls(f) -

Since 02 < | f|loo (| Xolli + 237, [E(X:|Yo)[l1), we obtain from (5.7) that
(5.8) op < C||flloonn(n).

Clearly, (5.8) implies that {S,/y/nln(n)} is uniformly integrable. Consequently,

using (2.1) and the fact that {|S,|/y/nIn(n)} is uniformly integrable, we derive
that (5.5) holds. Since f(0) # v1/2(f), it follows that for n large enough,

(5.9) 0% > (E(|S))* > Cnln(n),
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for some C' > 0, so that (5.2) is satisfied.
Now, combining (5.7) and (5.9), we infer that (5.3) holds. It remains to prove
(5.4). According to inequality (4.92) in Merlevede and Peligrad [13], we get that

2n 2n
(5:10) 0,2 E(S2Y-0) = E(S2)h < 20,2 - D IE(XiX; %) — E(Xi X)) | -
i=n+1 j=i
Let f(O = f — I/l/z(f). For j > 1,
IECX:X;1Y0) — B(XiX )l = 1o (| K (FO KT O) = v o (K (FO KT FO)) ).

According to Lemmas 2.1 and 2.2 in Dedecker and Prieur [5], we have that

Q

V1/2(|Ki(f(O)Kj*if(0)) _ Vl/g(Ki(f(O)Kj’if(o)))D < ZLs5(f).

3

These considerations together with (5.9) end the proof of (5.4).

5.2. Proof of Theorem 3.1

We use the same notations as in the proof of Theorem 2.1: (Y;);cz is the Markov
chain with transition operator K, and invariant measure v., and X; = f(Y;)—v(f).
We use again Corollary 3 in Merlevede and Peligrad [13]. We still have to prove
(5.2) and (5.4). Since the variables are not bounded, instead of (5.3) we have to
prove that

n

IE(X:1Y0) [l
(5.11) > Q0 Gy(u)du = o(0?),
i=1 70

where Q¢(u) = inf{t > 0,v,(f > t) < u} and Gy is the inverse function of z —

Jy Qf(u)du. Note that Qf(u) = (F;l(u))(z”’l)/2 where F,(t) = v,([0,t]). Since

the density h of v, is such that az™" < h(z) < ba~7 (see Section 5.3), we derive that
2y—1 2y —1

Chui—n < Qf(u) < Cou=77, so that G(u) > Cu*=7). Hence Qf o Gy(u) <

Cu?’~! and to prove (5.11), it remains to show that

n

(5.12) Y lEX[Yo) 7Y = olo7) -

i=1
Here, we need the following definition:

Definition 5.1. For any integrable real-valued random variable X, let X(©) =
X — E(X). For any random variable Y = (Y7,...,Y}) with values in R¥ and any
o-algebra F, let

(x1,...,1)ERE

k (0)
WFY) =  sup (E(H(ﬂng%)(m‘f))
j=1

1

For the Markov chain Y = (Y;);cz, we then define

(5.13) agy(n) = max sup  a(o(Yo), (Yi,,-..,Y5,)).

1I<ISE §,>..>i>n
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In Proposition 1.17 of Dedecker et al. [2], it is proved that

C(k,)
any(n) < Ta= -

Since f is monotonic, the coefficients of the sequence (f(Y;))icz are smaller than
that of (Y;);cz. Hence, applying Theorem 1.1 in Rio [15], one has

al,y(n) C
Bl <2 [ @i < =

Hence to prove (5.12), it suffices to show that (5.9) holds. We proceed as in the
proof of Theorem 2.1. First, applying again Theorem 1.1 in Rio [15], one has

a1,y (n)
|Cov(Xo, Xn)| < 2/0 Q?(u)du <Cn7',

so that 02 < Cnln(n). Consequently {|S,|/y/nIn(n)} is uniformly integrable. Us-

ing (3.1), we derive that B, ~ +/h(1/2)2(=27)/2, /nIn(n). Hence (5.9) holds, so
that (5.2) and (5.11) are satisfied.

To complete the proof, it remains to prove (5.4). Let us first prove that for
j>i>0,

az v (i)/4
(5.14) B 1Y) ~ BCGX) ] < 16 Q% (u)du.
0
Setting A := sign{E(X,;X,|Yy) — E(X,;X;)}, we have that
IECXX;1Y0) — B(X X)) | = B A(B(XX;(Y0) - E(X:X;)) }
= E((A - E(4))X.X;).

From Proposition A.1 and Lemma A.1 in Dedecker and Rio [4], noticing that
Qa(u) <1, we have that

a(AX;,X;)/2
E((A—E(A4))X:X;) < 16/O Q7 (u)du,

where for real valued random variables A, U,V

a(A, U, V) = ( tsu)p . |]E((1ASS—IP(A <8))(Ly<i—PU < 1)) Ly<u—P(V < u)))| .

Since f is monotonic, we infer that, for all j > ¢ > 0,

and (5.14) follows. From the previous upper bounds for Qs and sy (k), we obtain
that for j > >0,

C
|E(X:X;|Y) — E(X;X;)|: < =

and (5.4) follows easily from (5.9) and (5.10).
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5.3. Proof of Proposition 4.2

Let vg : [0,1] — [0,1/2] and vy : (0,1] — (1/2, 1] be the two inverse branches of T
Let g = 1, and 2, = vo(@n—1). Let I, = (Xp41,2,], so that T7 is bijective from
I, to Iy = (1/2,1]. Let also h be the density of v, with respect to the Lebesgue
measure A on [0, 1].

We use the decomposition given in Dedecker et al. [2]:

(5.15) Krf= > ATBif+Cuf,
i+j+k=n

where the operators A,,, B,, and C,, are defined as follows:

(v1vg ) (@) h(vivg ")

(5.16) Anf(z) = Lio,1/2) (z) h(z) f(vlv{;"lx) )
(5.17)  Buf(@) =1asen <x>Wﬂv3x> ,
(518)  Cuf(e) = 1po. /o () BLEIED) pm

h(z

~

The operator T,, is less explicit, but it can be handled as follows. Let Hs([a,b])
be the space of d-Holder functions on [a,b] equipped with the norm |f|5. =

Ls,a,5)(f) 4 || flloo, Where

Eé,[a,b] (f) = sup ‘f(.’l?) — f(y)| )

eyeap [Tyl

According to Section 3 in Gouézel [9] and to Section 6.3 in Gouézel [7], we have

that -
T":Z Z Rkl---Rk[7

l=1ki+-+ke=n

where (R,),>1 is a sequence of continuous linear operators on Hs([1/2,1]) such
that
[ fls, /2,1

[Bu(Plsp/zn = O 50

Consequently, we can apply Theorem 2.4.10 and Remark 2.4.11 in Gouézel [8] to
derive that

|fl5,1/2,1]

(5-19) |(Tn - PTnP)(f)|6,[1/2,1] <C i/

)

where

vy (flpy2,))
(5.20) P(f) = === 00 -

v, ([1/2,1]) "1
We proceed now as in the proof of Theorem 2.4.13 in Gouézel [8]. Let Z; = PT; P
and Y; =T, — Z;, so that

|fls,1/2,1]

(5.21) IY;(f)ls,1/21) < C g
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Notice that

Vo (T (1)1 72,1) 131 2,1)
Z;(f) = zjvy(fLj1/2,1)) 1)1 /2,1), where z; = ——— : -
() = B0 (P, where 2 = Zn

Setting Ai(f) = vy (Bk(f)), we have the following decomposition
(5:22)  KNH=CulN+ D zM(DAillpza)+ D AY;Bi(f).
it+jt+k=n it+j+k=n
We shall prove successively that
(5.23) [Cn(F)llse < C(f)/(n+1)*7 for all fin Ho..o with v (f) =0,
(5.24) AR (v) |0 < KlJul|loo/(n + 1) for all bounded function u,
(5.25) | Bn(u)ls 1721 < Cluls 0,1/ (n + 1)"/7 for all u in Hy([0,1]),
(5.26) () < C(f)/(n+ 1)@/ for all f in Ho,y,a with v, (f) =0.
Let us complete the proof of Proposition 4.2 with the help of these upper bounds.

Clearly, it suffices to prove the result for functions f in Hg 4 such that v, (f) = 0.
Using (5.24), (5.21) and (5.25), we get that

1
G+ 1)+ 1)V (k+ 1)/

S 1AY BNl < Cle o Y.

i+j+k=n i+j+k=n
1
< D|flso.1— -
n

We follow the computations of the proof of theorem 2.4.13 in Gouézel [8], with the
difference that here o; = [|A;(1}1/2,1))[ls0 = O(i!) by using (5.24). Consequently,

Inn 1
Y gu— Vi ﬁ)'

> s )l < O

i+j+k=n

The two latter upper bounds together with (5.23) end the proof of Proposition 4.2.
We turn now to the proof of (5.23), (5.24), (5.25) and (5.26). We will use the
following facts, which can be found in Liverani et al. [11]:

1. The density h of v, is non increasing with 2(1) > 0, and h(z) ~ Cz~7 for some
C > 0. Moreover if z,y € [A, 1] for A > 0, then |h(z)—h(y)| < DA™~z —y],
for some D > 0.

2. One has z,, ~ C’/nl/“Y for some C' > 0. Moreover, A(I,) = zp — Tpy1 ~
C/n1+/7 for some C > 0. One has

(5.27) h(zp) ~ CxY ~ Dn.
3. There exists a constant C' > 0 such that for all n > 0 and k& > 0, and for all
x,y S In+k7
(T3) (x)

5.28 1—- | <COIT"x — Tyl .
529 1~ oy < O~ T
Integrating the above inequality, we obtain that

_1 AMIg) A1)
5.29 CP B < (T (x) < C .
( ) /\(In-‘rk) B ( W) ( ) B /\(In-‘rk)
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To prove (5.23), we use the fact that

sup |fa) = sup |f()] < Cat < D=/
z€[0,1] z€(0,z,

and Lemma 3.5 in Dedecker et al. [2] which gives that

‘(v(’f)'(z)h(v(ﬁ)‘ <c.

sup h()

z€[0,1/2]

To prove (5.24), we use Lemma 3.6 in Dedecker et al. [2] which gives that

‘(Ulvg_l)’(ﬂc)h(vwg_lx)‘ < C

Sup h(x) “n4+1°

z€[0,1/2]

To prove (5.25), it suffices to notice that on [1/2,1] the function 1/h is Lipschitz,
the function (v (x)) is bounded by h(z,) < Cn, and the function (v{})" is bounded
by C/n(1+7/7 by applying (5.29). Moreover for x,y in [1/2,1],

[h(vg () = h(vg ()] < OO g (@) — v (y)] < Dl =yl
and, applying (5.28),
() (x) = () (y)| < O~z —y].
Gathering all these upper bounds, we obtain (5.25).
To prove (5.26), write

M) = BulD) = | FR@)) @h(h@)de= [ fu)h(y)dy.

1/2 Tn+1

Using the fact that on [z, 1, 2], |f(y)] < Cn=%7 and |h(y)| < Cn, (5.26) follows.

5.4. Proof of Theorems 4.4 and 4.5

Recall that (TA,,TA?, ..., T) is distributed as (Y3, Yy—1,...,Y1) where (Y;)iez is a

stationary Markov chain with invariant measure v, and transition kernel K. Let
Xn = f(Y,) —vy(f) and S, = X3 +--- + X,,. Then, for any € > 0,

Zk:(f o1 - vfy(f))] > s) < v, (2 max [Sy| > 5) _

<k<n

(5.30) 1/7< max

1<k<n

Hence it remains to prove the result for the sequence (S)x>1. To prove Theorem 4.4,
we apply Corollary 1 in Peligrad et al. [14]. We obtain that

—1/2
| s 151, < Covmn (1l + 2k IE(XY0) )

Since [|[E(X%[Y0)ll, = K5 (f) — v4(f)llp,v, the result follows from Remark 4.3. In
the same way Theorem 4.5 follows from Proposition 2 in Peligrad et al. [14], and
the control of | K7 (f) — vy(f)|c,v, given in Proposition 4.2
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5.5. Proof of Theorem 4.7

We proceed as in the proof of Theorem 3.1 keeping the same notations. From
Proposition 2 in Dedecker and Merlevede [3], the process

{%S[m],t € [0, 1}}

converges in distribution to oW, in the Skorohod topology, as soon as

(5.31) > (In(k)? [ E(Xk[Y0) |13 < oo,
E>1

with 02 = lim, ..o n”"E(S2). Since ||E(X|Y0)ll2 = K2 (f) — vy (f)ll2,v, , it follows
from Remark 4.3 that (5.31) holds as soon as 0 < v < a+ 1/2.

It remains to see that 0 = o?(f) defined in (4.2), which is true provided that
the series Y- [E(XoX})| converges. In Section 6.2 of Dedecker and Merlevede [3],
it is proved that (5.31) implies that

(oo}
D Py (Xi)]l2 < 00 where Pi(X;) = E(X;|Y) — E(X;[Yi1).
1=0

Since X = Zf:_oo P;(X4), and since E(P;(Xo)P;(Xx)) = 0 if ¢ # j, it follows that
for k > 0,

0 o
E(XoXe) = | 0 E(BRX)PXD)] < D IPX0) 2l Po (K2
] =0

1=—00
so that
o0 o0 2
SR X0 < (D IP(X0)ll2) < oo,
k=0 =0

and the result follows.
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