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On non-asymptotic bounds for estimation

in generalized linear models with highly

correlated design

Sara A. van de Geer1

ETH Zürich

Abstract: We study a high-dimensional generalized linear model and penal-
ized empirical risk minimization with �1 penalty. Our aim is to provide a
non-trivial illustration that non-asymptotic bounds for the estimator can be
obtained without relying on the chaining technique and/or the peeling device.

1. Introduction

We study an increment bound for the empirical process, indexed by linear com-
binations of highly correlated base functions. We use direct arguments, instead of
the chaining technique. We moreover obtain bounds for an M-estimation problem
inserting a convexity argument instead of the peeling device. Combining the two
results leads to non-asymptotic bounds with explicit constants.

Let us motivate our approach. In M-estimation, some empirical average indexed
by a parameter is minimized. It is often also called empirical risk minimization.
To study the theoretical properties of the thus obtained estimator, the theory of
empirical processes has been a successful tool. Indeed, empirical process theory
studies the convergence of averages to expectations, uniformly over some parameter
set. Some of the techniques involved are the chaining technique (see e.g. [13]), in
order to relate increments of the empirical process to the entropy of parameter
space, and the peeling device (a terminology from [10]) which goes back to [1],
which allows one to handle weighted empirical processes. Also the concentration
inequalities (see e.g. [9]), which consider the concentration of the supremum of the
empirical process around its mean, are extremely useful in M-estimation problems.

A more recent trend is to derive non-asymptotic bounds for M-estimators. The
papers [6] and [4] provide concentration inequalities with economical constants.
This leads to good non-asymptotic bounds in certain cases [7]. Generally however,
both the chaining technique and the peeling device may lead to large constants in
the bounds. For an example, see the remark following (5).

Our aim in this paper is simply to avoid the chaining technique and the peeling
device. Our results should primarily be seen as non-trivial illustration that both
techniques may be dispensable, leaving possible improvements for future research.
In particular, we will at this stage not try to optimize the constants, i.e. we will
make some arbitrary choices. Moreover, as we shall see, our bound for the increment
involves an additional log-factor, log m, where m is the number of base functions
(see below).
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122 S. A. van de Geer

The M-estimation problem we consider is for a high-dimensional generalized
linear model. Let Y ∈ Y ⊂ R be a real-valued (response) variable and x be a
covariate with values in some space X . Let{

fθ(·) :=
m∑

k=1

θkψk(·), θ ∈ Θ

}

be a (subset of a) linear space of functions on X . We let Θ be a convex subset of
Rm, possibly Θ = Rm. The functions {ψk}m

k=1 form a given system of real-valued
base functions on X . The number of base functions, m, is allowed to be large.
However, we do have the situation m ≤ n in mind (as we will consider the case of
fixed design).

Let γf : X ×Y → R be some loss function, and let {(xi, Yi)}n
i=1 be observations

in X × Y . We consider the estimator with �1 penalty

(1) θ̂n := arg min
θ∈Θ

{
1
n

n∑
i=1

γfθ
(xi, Yi) + λ

2
2−s
n I

2(1−s)
2−s (θ)

}
,

where

(2) I(θ) :=
m∑

k=1

|θk|

denotes the �1 norm of the vector θ ∈ Rm. The smoothing parameter λn controls
the amount of complexity regularization, and the parameter s (0 < s ≤ 1) is
governed by the choice of the base functions (see Assumption B below). Note that
for a properly chosen constant C depending on λn and s, we have for any I > 0,

λ
2

2−s
n I

2(1−s)
2−s = min

λ

(
λI +

C

λ
2(1−s)

s

)
.

In other words, the penalty λ
2

2−s
n I

2(1−s)
2−s (θ) can be seen as the usual Lasso penalty

λI(θ) with an additional penalty on λ. The choice of the latter is such that adaption
to small values of I(θ∗n) is achieved. Here, θ∗n is the target, defined in (3) below.

The loss function γf is assumed to be convex and Lipschitz (see Assumption
L below). Examples are the loss functions used in quantile regression, logistic re-
gression, etc. The quadratic loss function γf (x, y) = (y − f(x))2 can be studied as
well without additional technical problems. The bounds then depend on the tail
behavior of the errors.

The covariates x1, . . . , xn are assumed to be fixed, i.e., we consider the case of
fixed design. For γ : X × Y → R, use the notation

Pγ :=
1
n

n∑
i=1

Eγ(xi, Yi).

Our target function θ∗n is defined as

(3) θ∗n := arg min
θ∈Θ

Pγfθ
.

When the target is sparse, i.e., when only a few of the coefficients θ∗n,k are
nonzero, it makes sense to try to prove that also the estimator θ̂n is sparse. Non-
asymptotic bounds for this case (albeit with random design) are studied in [12]. It
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is assumed there that the base functions {ψk} have design matrix with eigenval-
ues bounded away from zero (or at least that the base functions corresponding to
the non-zero coefficients in θ∗n have this property). In the present paper, the base
functions are allowed to be highly correlated. We will consider the case where they
form a VC class, or more generally, have ε-covering number which is polynomial in
1/ε. This means that a certain smoothness is imposed a priori, and that sparseness
is less an issue.

We use the following notation. The empirical distribution based on the sam-
ple {(xi, Yi)}n

i=1 is denoted by Pn, and the empirical distribution of the covari-
ates {xi}n

i=1 is written as Qn. The L2(Qn) norm is written as ‖ · ‖n. Moreover,
‖ · ‖∞ denotes the sup norm (which in our case may be understood as ‖f‖∞ =
max1≤i≤n |f(xi)|, for a function f on X ).

We impose four basic assumptions: Assumptions L, M, A and B.

Assumption L. The loss function γf is of the form γf (x, y) = γ(f(x), y), where
γ(·, y) is convex for all y ∈ Y. Moreover, it satisfies the Lipschitz property

|γ(fθ(x), y) − γ(fθ̃(x), y)| ≤ |fθ(x) − fθ̃(x)|,∀ (x, y) ∈ X × Y , ∀ θ, θ̃ ∈ Θ.

Assumption M. There exists a non-decreasing function σ(·), such that all M > 0
and all all θ ∈ Θ with ‖fθ − fθ∗

n
‖∞ ≤ M , one has

P (γfθ
− γfθ∗

n
) ≥ ‖fθ − fθ∗

n
‖2

n/σ2(M).

Assumption M thus assumes quadratic margin behavior. In [12], more general
margin behavior is allowed, and the choice of the smoothing parameter does not
depend on the margin behavior. However, in the setup of the present paper, the
choice of the smoothing parameter does depend on the margin behavior.

Assumption A. It holds that

‖ψk‖∞ ≤ 1, 1 ≤ k ≤ m.

Assumption B. For some constant A ≥ 1, and for V = 2/s − 2, it holds that

N(ε, Ψ) ≤ Aε−V ,∀ ε > 0.

Here N(ε, Ψ) denotes the ε-covering number of (Ψ, ‖ · ‖n), with Ψ := {ψk}m
k=1.

The paper is organized as follows. Section 2 presents a bound for the increments
of the empirical process. Section 3 takes such a bound for granted and presents a
non-asymptotic bound for ‖fθ̂n

− fθ∗
n
‖n and I(θ̂n). The two sections can be read

independently. In particular, any improvement of the bound obtained in Section 2
can be directly inserted in the result of Section 3. The proofs, which are perhaps
the most interesting part of the paper, are given in Section 4.

2. Increments of the empirical process indexed by a subset of a linear
space

Let ε1, . . . , εn be i.i.d. random variables, taking values ±1 each with probability
1/2. Such a sequence is called a Rademacher sequence. Consider for ε > 0 and
M > 0, the quantity

Zε,M := sup
‖fθ‖n≤ε, I(θ)≤M

∣∣∣∣∣ 1
n

n∑
i=1

fθ(xi)εi

∣∣∣∣∣.
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We need a bound for the mean EZε,M , because this quantity will occur in the
concentration inequality (Theorem 4.1). In [12], the following trivial bound is used:

EZε,M ≤ ME

(
max

1≤k≤m

∣∣ 1
n

n∑
i=1

εiψk(xi)
∣∣).

On the right hand side, one now has the mean of finitely many functions, which
is easily handled (see for example Lemma 4.1). However, when the base functions
ψk are highly correlated, this bound is too rough. We need therefore to proceed
differently.

Let conv(Ψ) = {fθ =
∑m

k=1 θkψk : θk ≥ 0,
∑m

k=1 θk = 1} be the convex hull of
Ψ.

Recall that s = 2/(2+V ), where V is from Assumption B. From e.g. [10], Lemma
3.2, it can be derived that for some constant C, and for all ε > 0,

(4) E
∣∣∣∣ max
f∈conv(Ψ),‖f‖n≤ε

1
n

n∑
i=1

f(xi)εi

∣∣∣∣ ≤ Cεs 1√
n

.

The result follows from the chaining technique, and applying the entropy bound

(5) log N(ε, conv(Ψ)) ≤ A0ε
−2(1−s), ε > 0,

which is derived in [2]. Here, A0 is a constant depending on V and A.

Remark. It may be verified that the constant C in (4) is then at least proportional
to 1/s, i.e., it is large when s is small.

Our aim is now to obtain a bound from direct calculations. Pollard ([8]) presents
the bound

log N(ε, conv(Ψ)) ≤ A1ε
−2(1−s) log

1
ε
, ε > 0,

where A1 is another constant depending on V and A. In other words, Pollard’s
bound has an additional log-factor. On the other hand, we found Pollard’s proof
a good starting point in our attempt to derive the increments directly, without
chaining. This is one of the reasons why our direct bound below has an additional
log m factor. Thus, our result should primarily be seen as illustration that direct
calculations are possible.

Theorem 2.1. For ε ≥ 16/m, and m ≥ 4, we have

E

∣∣∣∣∣ max
f∈conv(Ψ),‖f‖n≤ε

1
n

n∑
i=1

f(xi)εi

∣∣∣∣∣ ≤ 20
√

1 + 2Aεs

√
log(6m)

n
.

Clearly the set {
∑m

k=1 θkψk : I(θ) ≤ 1} is the convex hull of {±ψk}m
k=1. Using

a renormalization argument, one arrives at the following corollary

Corollary 2.1. We have for ε/M > 8/m and m ≥ 2

EZε,M ≤ 20
√

1 + 4AM1−sεs

√
log(12m)

n
.

Invoking symmetrization, contraction and concentration inequalities (see Sec-
tion 4), we establish the following lemma. We present it in a form convenient for
application in the proof of Theorem 3.1.
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Lemma 2.1. Define for ε > 0, M > 0, and ε/M > 8/m, m ≥ 2,

Zε,M := sup
‖fθ−fθ∗

n
‖n≤ε, I(θ−θ∗

n)≤M

|(Pn − P )(γfθ
− γfθ∗

n
)|.

Let

λn,0 := 80
√

1 + 4A

√
log(12m)

n
.

Then it holds for all σ > 0, that

P
(
Zε,M ≥ λn,0ε

sM1−s +
ε2

27σ2

)
≤ exp

[
− nε2

2 × (27σ2)2

]
.

3. A non-asymptotic bound for the estimator

The following theorem presents bounds along the lines of results in [10], [11] and
[3], but it is stated in a non-asymptotic form. It moreover formulates explicitly the
dependence on the expected increments of the empirical process.

Theorem 3.1. Define for ε > 0 and M > 0,

Zε,M := sup
‖fθ−fθ∗

n
‖n≤ε, I(θ−θ∗

n)≤M

|(Pn − P )(γfθ
− γfθ∗

n
)|.

Let λn,0 be such that for all 8/m ≤ ε/M ≤ 1, we have

(6) EZε,M ≤ λn,0ε
sM1−s.

Let c ≥ 3 be some constant.
Define

Mn := 2
2−s

2(1−s) (27)−
s

2(1−s) c
1

1−s I(θ∗n),

σ2
n := σ2(Mn),

and
εn :=

√
54σ

2
2−s
n c

1
2−s λ

1
2−s

n,0 I
1−s
2−s (θ∗n) ∨ 27σ2

nλn,0.

Assume that

(7) 1 ≤
(

27
2

)− 2−s
2(1−s)

c
1

1−s
1

σ2
nλn,0

I(θ∗n) ≤
(m

8

)2−s

.

Then for λn := cσs
nλn,0, with probability at least

1 − exp
[
−

nλ
2

2−s

n,0 c
2

2−s I
2(1−s)
2−s (θ∗n)

27σ
4(1−s)
2−s

n

]
,

we have that
‖fθ̂n

− fθ∗
n
‖n ≤ εn

and
I(θ̂n − θ∗n) ≤ Mn.
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Let us formulate the asymptotic implication of Theorem 3.1 in a corollary. For
positive sequences {an} and {bn}, we use the notation

an 
 bn,

when
0 < lim inf

n→∞

an

bn
≤ lim sup

n→∞

an

bn
< ∞.

The corollary yields e.g. the rate εn 
 n−1/3 for the case where the penalty rep-
resents the total variation of a function f on {x1, . . . , xn} ⊂ R (in which case
s = 1/2).

Corollary 3.1. Suppose that A and s do not depend on n, and that I(θ∗n) 
 1 and
σ2(Mn) 
 1 for all Mn 
 1. By (4), we may take λn 
 1/

√
n, in which case, with

probability 1 − exp[−dn], it holds that ‖fθ̂n
− fθ∗

n
‖n ≤ εn, and I(θ̂n − θ∗n) ≤ Mn,

with
εn 
 n− 1

2(2−s) , Mn 
 1, dn 
 nε2n 
 n
1−s
2−s .

4. Proofs

4.1. Preliminaries

Theorem 4.1 (Concentration theorem [6]). Let Z1, . . . , Zn be independent
random variables with values in some space Z and let Γ be a class of real-valued
functions on Z, satisfying

ai,γ ≤ γ(Zi) ≤ bi,γ ,

for some real numbers ai,γ and bi,γ and for all 1 ≤ i ≤ n and γ ∈ Γ. Define

L2 := sup
γ∈Γ

n∑
i=1

(bi,γ − ai,γ)2/n,

and

Z := sup
γ∈Γ

∣∣∣∣∣ 1
n

n∑
i=1

(γ(Zi) − Eγ(Zi))

∣∣∣∣∣ .
Then for any positive z,

P(Z ≥ EZ + z) ≤ exp
[
−nz2

2L2

]
.

The Concentration theorem involves the expectation of the supremum of the
empirical process. We derive bounds for it using symmetrization and contraction.
Let us recall these techniques here.

Theorem 4.2 (Symmetrization theorem [13]). Let Z1, . . . , Zn be independent
random variables with values in Z, and let ε1, . . . , εn be a Rademacher sequence
independent of Z1, . . . , Zn. Let Γ be a class of real-valued functions on Z. Then

E

(
sup
γ∈Γ

∣∣∣∣∣
n∑

i=1

{γ(Zi) − Eγ(Zi)}
∣∣∣∣∣
)

≤ 2E

(
sup
γ∈Γ

∣∣∣∣∣
n∑

i=1

εiγ(Zi)

∣∣∣∣∣
)

.
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Theorem 4.3 (Contraction theorem [5]). Let z1, . . . , zn be non-random ele-
ments of some space Z and let F be a class of real-valued functions on Z. Consider
Lipschitz functions γi : R → R, i.e.

|γi(s) − γi(s̃)| ≤ |s − s̃|, ∀ s, s̃ ∈ R.

Let ε1, . . . , εn be a Rademacher sequence. Then for any function f∗ : Z → R, we
have

E

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

εi{γi(f(zi)) − γi(f∗(zi))}
∣∣∣∣∣
)

≤ 2E

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

εi(f(zi) − f∗(zi))

∣∣∣∣∣
)

.

We now consider the case where Γ is a finite set of functions.

Lemma 4.1. Let Z1, . . . , Zn be independent Z-valued random variables, and
γ1, . . . , γm be real-valued functions on Z, satisfying

ai,k ≤ γk(Zi) ≤ bi,k,

for some real numbers ai,k and bi,k and for all 1 ≤ i ≤ n and 1 ≤ k ≤ m. Define

L2 := max
1≤k≤m

n∑
i=1

(bi,k − ai,k)2/n,

Then

E

(
max

1≤k≤m

∣∣∣∣∣ 1
n

n∑
i=1

{γk(Zi) − Eγk(Zi)}
∣∣∣∣∣
)

≤ 2L

√
log(3m)

n
.

Proof. The proof uses standard arguments, as treated in e.g. [13]. Let us write for
1 ≤ k ≤ m,

γ̄k :=
1
n

n∑
i=1

{
γk(Zi) − Eγk(Zi)

}
.

By Hoeffding’s inequality, for all z ≥ 0

P (|γ̄k| ≥ z) ≤ 2 exp
[
−nz2

2L2

]
.

Hence,

E exp
[ n

4L2
γ̄2

k

]
= 1 +

∫ ∞

1

P

(
|γ̄k| ≥

√
4L2

n
log t

)
dt

≤ 1 + 2
∫ ∞

1

1
t2

dt = 3.

Thus

E
(

max
1≤k≤m

|γ̄k|
)

=
2L√

n
E

√
max

1≤k≤m
log exp

[
4

4L2
γ̄2

k

]

≤ 2L√
n

√
log E

(
max

1≤k≤m
exp

[
4

4L2
γ̄2

k

])
≤ 2L

√
log(3m)

n
.
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4.2. Proofs of the results in Section 2

Proof of Theorem 2.1. Let us define, for k = 1, . . . , m,

ξk :=
1
n

n∑
i=1

ψk(xi)εi.

We have
1
n

n∑
i=1

fθ(xi)εi =
m∑

k=1

θkξk.

Partition {1, . . . , m} into N := N(εs, Ψ) sets Vj , j = 1, . . . , N , such that

‖ψk − ψl‖n ≤ 2εs, ∀ k, l ∈ Vj .

We can write
1
n

n∑
i=1

fθ(xi)εi =
N∑

j=1

αj

∑
k∈Vj

pj,kξk,

where

αj = αj(θ) :=
∑
k∈Vj

θk, pj,k = pj,k(θ) :=
θk

αj
.

Set for j = 1, . . . , N ,
nj = nj(α) := 1 + � αj

ε2(1−s)
.

Choose πt,j = πt,j(θ), t = 1, . . . , nj , j = 1, . . . , N independent random variables,
independent of ε1, . . . , εn, with distribution

P(πt,j = k) = pj,k, k ∈ Vj , j = 1, . . . , N.

Let ψ̄j = ψ̄j(θ) :=
∑nj

i=1 ψπt,j /nj and ξ̄j = ξ̄j(θ) :=
∑nj

i=1 ξπt,j /nj .
We will choose a realization {(ψ∗

j , ξ∗j ) = (ψ∗
j (θ), ξ∗j (θ))}N

j=1 of {(ψ̄j , ξ̄j)}N
j=1 de-

pending on {εi}n
i=1, satisfying appropriate conditions (namely, (9) and (10) below).

We may then write∣∣∣∣∣
m∑

k=1

θkξk

∣∣∣∣∣ ≤
∣∣∣∣∣

N∑
j=1

αjξ
∗
j

∣∣∣∣∣ +

∣∣∣∣∣
m∑

k=1

θkξk −
N∑

j=1

αjξ
∗
j

∣∣∣∣∣.
Consider now

N∑
j=1

αjξ
∗
j .

Let AN := {
∑N

i=1 αj = 1, αj ≥ 0}. Endow AN with the �1 metric. The ε-covering
number D(ε) of AN satisfies the bound

D(ε) ≤
(

4
ε

)N

.

Let Aε be a maximal ε-covering set of AN . For all α ∈ A there is an α′ ∈ Aε such
that

∑N
j=1 |αj − α′

j | ≤ ε.
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We now write∣∣∣∣∣
m∑

k=1

θkξk

∣∣∣∣∣ ≤
∣∣∣∣∣

N∑
j=1

(αj − α′
j)ξ

∗
j

∣∣∣∣∣ +

∣∣∣∣∣
m∑

k=1

θkξk −
N∑

j=1

αjξ
∗
j

∣∣∣∣∣ +

∣∣∣∣∣
N∑

j=1

α′
jξ

∗
j

∣∣∣∣∣
:= i(θ) + ii(θ) + iii(θ).

Let Π be the set of possible values of the vector {πt,j : t = 1, . . . , nj , j =
1, . . . , N}, as θ varies. Clearly,

i(θ) ≤ ε max
Π

max
j

|ξ̄j |,

where we take the maximum over all possible realizations of {ξ̄j}N
j=1 over all θ.

For each t and j, πt,j takes its values in {1, . . . ,m}, that is, it takes at most m
values. We have

N∑
j=1

nj ≤ N +
N∑

j=1

αj

ε2(1−s)

≤ Aε−sV +
∑m

k=1 θk

ε2(1−s)

= (1 + A)ε−2(1−s) ≤ K + 1.

where K is the integer
K := �(1 + A)ε2(1−s).

The number of integer sequences {nj}N
j=1 with

∑N
j=1 nj ≤ K + 1 is equal to(

N + K + 2
K + 1

)
≤ 2N+K+2 ≤ 4 × 2(1+2A)ε−2(1−s)

.

So the cardinality |Π| of Π satisfies

|Π| ≤ 4 × 2(1+2A)ε−2(1−s) × m(1+A)ε−2(1−s) ≤ (2m)(1+2A)ε−2(1−s)
,

since A ≥ 1 and m ≥ 4.
Now, since ‖ψ‖∞ ≤ 1 for all ψ ∈ Ψ, we know that for any convex combination∑
k pkξk, one has E|

∑
k pkξk|2 ≤ 1/n. Hence Eξ̄2

j ≤ 1/n for any fixed ξ̄j and thus,
by Lemma 4.1,

(8) εEmax
Π

max
j

|ξ̄j | ≤ 2ε
√

1 + 2Aε−(1−s)

√
log(6m)

n
= 2

√
1 + 2Aεs

√
log(6m)

n
.

We now turn to ii(θ).
By construction, for i = 1, . . . , n, t = 1, . . . , nj , j = 1, . . . , N ,

Eψπt,j (xi) =
∑
k∈Vj

pj,kψk(xi) := gj(xi)

and hence
E(ψπt,j (xi) − gj(xi))2 ≤ max

k,l∈Vj

(ψk(xi) − ψl(xi))2.

Thus
E(ψ̄j(xi) − gj(xi))2 ≤ max

k,l∈Vj

(ψk(xi) − ψl(xi))2/nj ,
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and so
E‖ψ̄j − gj‖2

n ≤ max
k,l∈Vj

‖ψk − ψl‖2
n/nj ≤ (2εs)2/nj = 4ε2s/nj .

Therefore

E

∥∥∥∥∥
N∑

j=1

αj(ψ̄j − gj)

∥∥∥∥∥
2

n

=
N∑

j=1

α2
jE‖ψ̄j − gj‖2

n

≤ 4ε2s
N∑

j=1

α2
j

nj
≤ 4ε2s

N∑
j=1

α2
j ε

2(1−s)

αj
≤ 4ε2.

Let Eε denote conditional expectation given {εi}n
i=1. Again, by construction

Eεξπt,j =
∑
k∈Vj

pj,kξk := ej = ej(θ),

and hence
Eε(ξπt,j − ej)2 ≤ max

k,l∈Vj

(ξk − ξl)2.

Thus
Eε(ξ̄j − ej)2 ≤ max

k,l∈Vj

(ξk − ξl)2/nj .

So we obtain

Eε

∣∣∣∣∣
N∑

j=1

αj(ξ̄j − ej)

∣∣∣∣∣ ≤
N∑

j=1

αjEε|ξ̄j − ej | ≤
N∑

j=1

αj max
k,l∈Vj

|ξk − ξl|√
nj

≤
N∑

j=1

αjε
1−s

√
αj

max
k,l∈Vj

|ξk − ξl| =
N∑

j=1

√
αjε

1−s max
k,l∈Vj

|ξk − ξl|

≤
√

Nε1−s max
j

max
k,l∈Vj

|ξk − ξl| ≤
√

A max
j

max
k,l∈Vj

|ξk − ξl|.

It follows that, given {εi}n
i=1, there exists a realization

{(ψ∗
j , ξ∗j ) = (ψ∗

j (θ), ξ∗j (θ))}N
j=1

of {(ψ̄j , ξ̄j)}N
j=1 such that

(9) ‖
N∑

j=1

αj(ψ∗
j − gj)‖2

n ≤ 4ε

as well as

(10)

∣∣∣∣∣
N∑

j=1

αj(ξ∗j − ej)

∣∣∣∣∣ ≤ 2
√

Amax
j

max
k,l∈Vj

|ξk − ξl|.

Thus we have
ii(θ) ≤ 2

√
A max

j
max
k,l∈Vj

|ξk − ξl|.

Since E|ξk − ξl|2 ≤ 2ε2/n for all k, l ∈ Vj and all j, we have by Lemma 4.1,

(11) 2
√

AEmax
j

max
k,l∈Vj

|ξk − ξl| ≤ 6
√

Aεs

√
log(6m)

n
.
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Finally, consider iii(θ). We know that

‖fθ‖n =

∥∥∥∥∥
N∑

j=1

αjgj

∥∥∥∥∥
n

≤ ε.

Moreover, we have shown in (9) that∥∥∥∥∥
N∑

j=1

αj(ψ∗
j − gj)

∥∥∥∥∥
n

≤ 4ε.

Also ∥∥∥∥∥
N∑

j=1

(αj − α′
j)ψ

∗
j

∥∥∥∥∥
n

≤
N∑

j=1

|αj − α′
j |‖ψ∗

j ‖n ≤ ε,

since ‖ψ∗
j ‖∞ ≤ 1 for all j . Thus

∥∥∥∥∥
N∑

j=1

α′
jψ

∗
j

∥∥∥∥∥
n

≤
∥∥∥∥∥

N∑
j=1

(α′
j − αj)ψ∗

j

∥∥∥∥∥
n

+

∥∥∥∥∥
N∑

j=1

αj(ψ∗
j − gj)

∥∥∥∥∥
n

+ ‖fθ‖n ≤ 6ε.

The total number of functions of the form
∑N

j=1 α′
jξ

∗
j is bounded by

(
4
ε

)N

× |Π| ≤
(

4
ε

)Aε−2(1−s)

× (2m)(1+2A)ε−2(1−s)

≤ (2m)(1+2A)ε−2(1−s)
,

since we assume ε ≥ 16/m, and A ≥ 1. Hence, by Lemma 4.1,

(12) E max
α′∈Aε

max
Π

|
N∑

j=1

α′
jξ

∗
j | ≤ 12

√
1 + 2Aεs

√
log(6m)

n
.

We conclude from (8), (11), and (12), that

Emax
θ

∣∣∣∣∣
N∑

j=1

αj(θ)ej(θ)

∣∣∣∣∣
≤ 2

√
1 + 2Aεs

√
log(6m)

n
+ 6

√
Aεs

√
log(6m)

n
+ 12

√
1 + 2Aεs

√
log(6m)

n

≤ 20
√

1 + 2Aεs

√
log(6m)

n
.

Proof of Lemma 2.1. Let

Zε,M := sup
‖fθ‖n≤ε, I(θ)≤M

∣∣∣∣∣ 1
n

n∑
i=1

γfθ
(xi, Yi)εi

∣∣∣∣∣
denote the symmetrized process. Clearly, {fθ =

∑m
k=1 θkψk : I(θ) = 1} is the

convex hull of Ψ̃ := {±ψk}m
k=1. Moreover, we have

N(ε, Ψ̃) ≤ 2N(ε, Ψ).
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Now, apply Theorem 2.1, to Ψ̃, and use a rescaling argument, to see that

EZε,M ≤ 20
√

1 + 4AεsM1−s

√
log(12m)

n
.

Then from Theorem 4.2 and Theorem 4.3, we know that

EZε,M ≤ 4EZε,M .

The result now follows by applying Theorem 4.1.

4.3. Proofs of the results in Section 3

The proof of Theorem 3.1 depends on the following simple convexity trick.

Lemma 4.2. Let ε > 0 and M > 0. Define f̃n = tf̂n + (1 − t)f∗
n with

t := (1 + ‖f̂n − f∗
n‖n/ε + I(f̂n − f∗

n)/M)−1,

and with f̂n := fθ̂n
and f∗

n := fθ∗
n
. When it holds that

‖f̃n − f∗
n‖n ≤ ε

3
, and I(f̃n − f∗

n) ≤ M

3
,

then
‖f̂n − f∗

n‖n ≤ ε, and I(f̂n − f∗
n) ≤ M.

Proof. We have
f̃n − f∗

n = t(f̂n − f∗
n),

so ‖f̃n − f∗
n‖n ≤ ε/3 implies

‖f̂n − f∗
n‖n ≤ ε

3t
= (1 + ‖f̂n − f∗

n‖n/ε + I(f̂n − f∗
n)/M)

ε

3
.

So then

(13) ‖f̂n − f∗
n‖n ≤ ε

2
+

ε

2M
I(f̂n − f∗

n).

Similarly, I(f̃n − f∗
n) ≤ M/3 implies

(14) I(f̂n − f∗
n) ≤ M

2
+

M

2ε
‖f̂n − f∗

n‖n.

Inserting (14) into (13) gives

‖f̂n − f∗
n‖n ≤ 3ε

4
+

1
4
‖f̂n − f∗

n‖n,

i.e., ‖f̂n − f∗
n‖n ≤ ε. Similarly, Inserting (13) into (14) gives I(f̂n − f∗

n) ≤ M .

Proof of Theorem 3.1. Note first that, by the definition of of Mn, εn and λn, it
holds that

(15) λn,0ε
s
nM1−s

n =
ε2n

27σ2
n

,
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and also

(16) (27)
s

2−s c−
2

2−s λ
2

2−s
n M

2(1−s)
2−s

n =
ε2n

27σ2
n

.

Define
θ̃n = tθ̂n + (1 − t)θ∗n,

where
t := (1 + ‖fθ̂n

− fθ∗
n
‖n/εn + I(fθ̂n

− fθ∗
n
)/Mn)−1.

We know that by convexity, and since θ̂n minimizes the penalized empirical risk,
we have

Pnγfθ̃n
+ λ

2
2−s
n I

2(1−s)
2−s (θ̃n)

≤ t

(
Pnγfθ̂n

+ λ
2

2−s
n I

2(1−s)
2−s (θ̂n)

)
+ (1 − t)

(
Pnγfθ∗

n
+ λ

2
2−s
n I

2(1−s)
2−s (θ∗n)

)

≤ Pnγfθ∗
n

+ λ
2

2−s
n I

2(1−s)
2−s (θ∗n).

This can be rewritten as

P (γfθ̃n
− γfθn∗) + λ

2
2−s
n I

2(1−s)
2−s (θ̃n) ≤ −(Pn − P )(γfθ̃n

− γfθ∗
n
) + λ

2
2−s
n I

2(1−s)
2−s (θ∗n).

Since I(fθ̃n
− fθ∗

n
) ≤ Mn, and ‖ψk‖∞ ≤ 1 (by Assumption A), we have that

‖fθ̃n
− fθ∗

n
‖∞ ≤ Mn. Hence, by Assumption M,

P (γfθ̃n
− γfθn∗) ≥ ‖fθ̃n

− fθ∗
n
‖2

n/σ2
n.

We thus obtain

‖fθ̃n
− fθ∗

n
‖2

n

σ2
n

+ λ
2

2−s
n I

2(1−s)
2−s (θ̃n − θ∗n)

≤
‖fθ̃n

− fθ∗
n
‖2

n

σ2
n

+ λ
2

2−s
n I

2(1−s)
2−s (θ̃n) + λ

2
2−s
n I

2(1−s)
2−s (θ∗n)

≤ −(Pn − P )(γfθ̃n
− γfθ∗

n
) + 2λ

2
2−s
n I

2(1−s)
2−s (θ∗n).

Now, ‖fθ̃n
− fθ∗

n
‖n ≤ εn and I(θ̃n − θ∗n) ≤ Mn. Moreover εn/Mn ≤ 1 and in view

of (7), εn/Mn ≥ 8/m. Therefore, we have by (6) and Theorem 4.1, with probability
at least

1 − exp
[
− nε2n

2 × (27σ2
n)2

]
,

that

‖fθ̃n
− fθ∗

n
‖2

n

σ2
n

+ λ
2

2−s
n I

2(1−s)
2−s (θ̃n − θ∗n)

≤ λn,0ε
s
nM1−s

n + 2λ
2

2−s
n I

2(1−s)
2−s (θ∗n) +

ε2n
27σ2

n

≤ λn,0ε
s
nM1−s

n + (27)
s

2−s c−
2

2−s λ
2

2−s
n M

2(1−s)
2−s

n +
ε2n

27σ2
n

=
1

9σ2
n

ε2n,
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where in the last step, we invoked (15) and (16).
It follows that

‖fθ̃n
− fθ∗

n
‖n ≤ εn

3
,

and also that

I
2(1−s)
2−s (θ̃n − θ∗n) ≤ ε2n

9σ2
n

λ
− 2

2−s
n ≤

(
Mn

3

) 2(1−s)
2−s

,

since c ≥ 3.
To conclude the proof, apply Lemma 4.2.
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