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Nonparametric estimation of a

distribution function under biased

sampling and censoring

Micha Mandel1,∗

The Hebrew University of Jerusalem

Abstract: This paper derives the nonparametric maximum likelihood estima-
tor (NPMLE) of a distribution function from observations which are subject to
both bias and censoring. The NPMLE is obtained by a simple EM algorithm
which is an extension of the algorithm suggested by Vardi (Biometrika, 1989)
for size biased data. Application of the algorithm to many models is discussed
and a simulation study compares the estimator’s performance to that of the
product-limit estimator (PLE). An example demonstrates the utility of the
NPMLE to data where the PLE is inappropriate.

1. Introduction

In this paper, the EM algorithm [4] of Vardi [18] is extended from size-biased to
W -biased observations, where W is a known, positive, increasing and right con-
tinuous function. Specifically, the algorithm finds the distribution function G that
maximizes

(1.1)
m∏

i=1

dG(xi)
µ∗ ×

n∏
j=1

Ḡ(yj)
µ∗ ,

where µ∗ =
∫ ∞
0

W (x)dG(x), Ḡ = 1 − G and x1, . . . , xm and y1, . . . , yn are given
data points.

The function (1.1) is proportional to likelihoods that arise in reliability and sur-
vival studies when data are subject to both bias and censoring. Several authors
derive the nonparametric maximum likelihood estimator (NPMLE) of G in prob-
lems where the likelihood is a special case of (1.1). The size-biased case, W (x) = x,
appears in cross-sectional sampling if the population is in steady state. An early
work is Cox [3] who estimates G in the uncensored case (i.e., n = 0). Vardi [18]
presents four problems that result in likelihood proportional to (1.1) with W (x) = x
and develops a simple EM algorithm to find the NPMLE of G. In an earlier paper
[16], he develops an EM algorithm to estimate the underlying lifetime distribution
of a renewal process observed in a time window (see also [15]). Wijers [22] suggests
the EM algorithm for the same window sampling in a population model under
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the steady state assumptions. When the renewals or birth times are known for all
sampled individuals, the likelihood is proportional to (1.1) with W (x) = x + C
where C is the window width. Motivated by data on HIV infection, Kalbfleisch
and Lawless [7] consider a population model in which entrances are according to
an inhomogeneous Poisson process. Their likelihood is similar to the uncensored
part of (1.1) with W being the cumulative rate of the process. They briefly remark
on the censored case at the end of their paper. The random left truncation model
is commonly used for survival data [12, 21, 23]. In that model, two independent
variables A ∼ W and X ∼ G are truncated to the region A ≤ X. The variable X
may be censored by A+C, where C is independent of (A, X). When the truncation
distribution is known, the likelihood of the model is proportional to (1.1). More
models that give rise to likelihoods proportional to (1.1) are reviewed in Section 3.

In Section 2, we suggest a unified EM algorithm that provides the NPMLE for
the general likelihood (1.1) and discuss its convergence properties. Two methods
for developing the EM algorithm are considered; the first uses an extension of
Vardi’s multiplicative censoring model [18], and the second utilizes the random left
truncation model. By presenting the two approaches, the similarity between the two
seemingly unrelated models is highlighted. In Section 3 we derive the likelihoods
of the above mentioned papers and other models and show that they are special
cases of (1.1). In Section 4 we compare the performances of estimators with full
and no knowledge on W by simulation. The algorithm is then used to reanalyze the
Channing House data [6]. We complete the paper with discussion in Section 5.

Throughout the paper, we will refer to (1.1) and to similar expressions as “like-
lihood”, although they may be only proportional to the likelihood of the data. We
will refer to the maximizer of (1.1) as the NPMLE of G. To distinguish, we will call
the maximizer of G when W is not known the product-limit estimator (PLE). The
latter is presented in Section 3.4 and is used in the simulation and application for
comparison purposes.

2. An EM algorithm

There are several ways to develop the EM algorithm. We first adopt the approach
used in [18] and solve a seemingly unrelated multiplicative censoring problem (simi-
lar to [18] problem A). This is shown to be almost equivalent to our original problem
of maximizing (1.1). The second approach is motivated by cross-sectional sampling
where subjects are selected to the sample at a random time point (similar to [18]
problem B). It is assumed that ages at sampling are observed for all sampled indi-
viduals and residual lifetimes are subject to random censoring. Here the censoring
times are independent, and are independent of the ages at sampling and the residual
lifetimes. Both approaches eliminate the bias of the data and deal only with cen-
soring. They demonstrate that bias is a secondary problem for estimation relative
to censoring (when the bias is known and does not cause identification problems).
After developing the algorithm, several convergence properties are discussed.

2.1. Vardi’s approach

Since W (x) > 0 and known, (1.1) is proportional to

(2.1)
m∏

i=1

dGW (xi)
n∏

j=1

∫ ∞

yj

1
W (u)

dGW (u)
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where GW (x) =
∫ x

0
W (u)dG(u)/µ∗ is the W -weighted version of G. The problem

can be divided into two parts; maximization of (2.1) for GW , and transformation
using G(dx) ∝ GW (dx)/W (x). To maximize (2.1), consider first the following mul-
tiplicative censoring model which extends the problem studied by Vardi [18].

Let X0
1 , . . . , X0

m, Z0
1 , . . . , Z0

n be positive random variables from the distribution
G0 supported on (0,∞) and let U1, . . . , Un ∼ U(0, 1) where all the random vari-
ables are independent. Let Y 0

i = W (Z0
i )Ui (i = 1, . . . , n). Similar to Vardi who

solves the problem for the special case W (x) = x, the Y 0
i ’s describe the transforma-

tion from the ‘complete data’ (X0
1 , . . . , X0

m, Z0
1 , . . . , Z0

n) to the observed ‘incomplete
data’. This transformation is used in the E-step of the EM algorithm. The statis-
tical problem is of estimating G0 using (x0

1, . . . , x
0
m, y0

1 , . . . , y0
n), a realization of

(X0
1 , . . . , X0

m, Y 0
1 , . . . , Y 0

n ).
First note that the density of Y 0 with respect to Lebesgue measure is

fY 0(t) =
∫

v≥t

1
v
dFW (Z0)(v) =

∫
{v:W (v)≥t}

1
W (v)

dG0(v)

where fV and FV denote the density and distribution of a random variable V . The
likelihood of the data (x0,y0) = (x0

1, . . . , x
0
m, y0

1 , . . . , y0
n) is given by:

L(G0;x0,y0) =
m∏

i=1

dG0(x0
i )

n∏
j=1

∫
{v:W (v)≥y0

j
}

1
W (v)

dG0(v).

By defining W−1(y) = min{v : W (v) ≥ y} (which exists from the right continuity
assumption) and recalling that W is increasing, we can rewrite the likelihood as

L(G0;x0,y0) =
m∏

i=1

dG0(x0
i )

n∏
j=1

∫
v≥W−1(y0

j
)

1
W (v)

dG0(v)(2.2)

and the similarity to our original likelihood (2.1) is apparent.
When W is strictly increasing, no information is lost by the transformation X0 �→

W (X0), and Vardi’s EM algorithm [18] can be applied to W (X0
1 ), . . . , W (X0

m),
Y 0

1 , . . . , Y 0
n . This gives the NPMLE of FW (X0) and the NPMLE of G0 is obtained

by a simple transformation. Specifically, let t1 < t2 < · · · < th be the distinct values
of x0

1, . . . , x
0
m, W−1(y0

1), . . . , W−1(y0
n), and let ξj , ζj be the multiplicity of the X0

and W−1(Y 0) samples at tj :

ξj =
m∑

i=1

I{x0
i = tj}, ζj =

n∑
i=1

I{W−1(y0
i ) = tj}.

Denote by pj the mass G0 assigns to tj , p = (p1, . . . , ph); then the problem can be
rewritten as

maximize L(p) =
h∏

j=1

p
ξj

j


∑

k≥j

1
W (tk)

pk




ζj

subject to
∑

j

pj = 1(2.3)

pj ≥ 0(j = 1, . . . , h).
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And an EM step is

(2.4) pnew
j = (n + m)−1


ξj + [W (tj)]−1pold

j

∑
k≤j

ζk∑
l≥k[W (tl)]−1pold

l


 ,

where pold
j and pnew

j are the current and updated estimates of pj .
The derivation of (2.4) from (2.3) holds true whether or not W is strictly increas-

ing. Maximization of (2.2) reduces to the discrete problem (2.3) by showing that
the support of the NPMLE is discrete and determining t1, . . . , th. This somewhat
technical point is deferred to the Appendix for the case of a general non-decreasing
W .

Finally, the connection between G0 and GW is apparent from (2.1) and (2.2),
where the only difference appears in the left limits of the integrals. These were used
only to determine the points t1, . . . , th and their multiplicity in the two samples.
Thus, to use the algorithm for maximizing (2.1), one needs to define t1, . . . , th as
the distinct values of x1, . . . , xm, y1, . . . , yn (the original data) and to change ξj and
ζj accordingly. The support of our original problem is a subset of the observations
as discussed in the Appendix. After finding it, the problem reduces to (2.3) for
which the algorithm (2.4) derives the NPMLE of GW . The corresponding estimate
of G is achieved by the inversion formula dG(x) ∝ [W (x)]−1dGW (x), as mentioned
above.

The Kaplan-Meier estimate of G [8] is obtained by using W ≡ 1 in (2.4) (see
Section 3.1 for more details). This estimator does not use the correct weights when
it redistributes the mass of the censored observations, and in general it is inappro-
priate.

2.2. A direct approach

Cross-sectional samples of lifetimes usually contain the age at sampling A and the
residual lifetime R; the latter is subject to random censoring. Vardi’s approach
uses the sufficient statistic A + R [see (2.7) below] to develop an EM algorithm.
In this subsection, the statistic (A, R) is used. The two approaches give different
perspectives about the formation of the bias and censoring.

Assume that W (0) = 0, W (t)Ḡ(t) → 0 as t → ∞, and
∫ ∞
0

W (dt)Ḡ(dt) = 0.
Mathematically this means that µ∗ ≡

∫ ∞
0

W (t)G(dt) =
∫ ∞
0

Ḡ(t)W (dt). Practically
it means that the probability of leaving the population at the very instant of sam-
pling is zero; hence, one does not need to worry about inclusion or exclusion of such
observations in the sample.
Let

fA(a) =
Ḡ(a)
µ∗ dW (a), a > 0,(2.5)

fR|A(r|a) =
dG(a + r)

Ḡ(a)
, r ≥ 0(2.6)

so the joint density at (a, r) is

(2.7) fA,R(a, r) =
dG(a + r)

µ∗ dW (a), a > 0, r ≥ 0.

Now suppose we have one sample of m pairs (ai, ri) from fA,R and another indepen-
dent sample of n variables yj from fA. This describes the so-called incomplete data
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and by denoting xi = ai + ri (i = 1, . . . , m) we arrive at the likelihood (1.1). Since
W is known, the product

∏
i dW (ai)

∏
j dW (yj) is irrelevant for maximization.

The complete data are of course x1, . . . , xm and y1 + r̃1, . . . , yn + r̃n, where r̃j

is the unobserved residual lifetime of subject j of the second sample. Using the
sum xi = ai + ri instead of its components is justified by noticing that the sum
is the sufficient statistic for the complete data problem. By variables changing and
integrating a out in (2.7), it can be easily verified that the likelihood of xi (or the
density of yj + r̃j) is

(2.8)
W (xi)dG(xi)

µ∗ .

For the support points t1, . . . , th described in the appendix, the E-step uses (2.6):

(2.9) EΠold (I{Ai + Ri = tj}|Ai = yi) =
πold

j∑
k πold

k I{tk ≥ yi}
I{tj ≥ yi},

where Πold = (πold
1 , . . . , πold

h ) is the current estimate of the unbiased distribution
G, i.e., the estimate at tj of the weighted distribution GW is pold

j ∝ W (tj)πold
j .

The complete likelihood is a product of terms such as (2.8) which is the likelihood
of a weighted sample. An M-step estimates the weighted distribution GW by the
empirical distribution function. Combining the E-step and the M-step, an iteration
is given by:

(2.10) pnew
j = (n + m)−1


ξj +

∑
k≤j

ζkπold
j∑

l≥k πold
l


 ,

where ξj and ζj are the multiplicities of uncensored and censored observations,
respectively. Put πold

j = [W (tj)]−1pold
j /

∑
k{[W (tk)]−1pold

k } in the equation above
to get (2.4).

2.3. Convergence of the algorithm

Several properties of the problem and the algorithms are sketched below. The ap-
pendix shows that for some functions W , such as step functions, the NPMLE is not
unique and different choices of the support points yield the same (maximum) value
of the likelihood. The properties below hold for a given choice of support points.

Property 2.1. Given the points t1, . . . , th, the maximizer of (2.3) is unique.

Proof. We show that the problem can be replaced with a maximization of a strictly
concave function over a convex region. Following [18], write qj = pj/W (tj) , Qj =∑

k≥j qk. Since W (tj) is constant in the likelihood, we can replace (2.3) with:

maximize log
( h∏

j=1

q
ξj

j Q
ζj

j

)

subject to
∑

j

qjW (tj) ≤ 1(2.11)

qj ≥ 0(j = 1, . . . , h).
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Now log
( ∏h

j=1 q
ξj

j Q
ζj

j

)
=

∑h
j=1 ξj log(qj) +

∑h
j=1 ζj log(Qj), and the assertion fol-

lows from log of a partial sum being a strictly concave function from R
+h to R,

and since sum of concave functions is concave (recall that for all j, ξj , ζj ≥ 0 and
ξj + ζj ≥ 1).

Property 2.2. Let pn and Ln = L(pn) be the value of p and the value of the likeli-
hood assigned by the EM algorithm (2.4) after its n’th iteration; then Ln converges
to a point L∗.

Proof. [1] and later [4] show that the likelihood increases in each iteration of the
EM algorithm. The assertion follows from (2.3) that shows that the likelihood is
bounded from above.

Property 2.3. If the maximizer of (2.3) assigns positive mass to all points t1, . . . ,
th, then the algorithm (2.4) converges to that maximizer.

Proof. This follows from Theorem 4 of [24] by using the uniqueness proved in
Property 2.1 and the fact that L is a polynomial on the simplex (which establishes
the regularity conditions).

3. Examples

Many examples are easily described using the Lexis diagram (see Figure 1) that
depicts changes in a population S over time. The horizontal and vertical axes of
the diagram represent the calendar time and the lifetime or duration of subjects
in S, respectively. Subjects of S are represented by 45◦ lines that start at their
time of entering S and end at leaving. Lines that cross the vertical line x = t
correspond to the population of S at t. In particular, a cross-sectional sample at
time 0 contain those subjects (or lines) that intersect with the line x = 0. For a
review of the Lexis diagram and its utility for studying different sampling designs
and population quantities see [2] and [11].

3.1. Random censorship

A common sampling plan is of collecting data on subjects entering S during the
time window [0, C]. This widely used design is known as the random censorship
model and it is depicted in the top left panel of Figure 1. According to the model,
a random sample Ti (i = 1, 2, . . . ,m + n) is selected from a distribution G, but
instead of the Ti’s, observations are independent realizations of min(Ti, Ci), where
Ci ∼ FC is independent of Ti. The data contain also the information whether the
observations were censored or not.
Denote the uncensored observation by x1, . . . , xm and the censored ones by y1, . . . ,
yn, then the likelihood of the data is

(3.1)
m∏

i=1

dG(xi)
n∏

j=1

Ḡ(yj) ×
m∏

i=1

F̄C(xi)
n∏

j=1

dFC(yj).

The NPMLE is the celebrated Kaplan-Meier estimator [8] and is based only on the
left part of (3.1). This is a special case of (1.1) with W = 1, and can be solved
(in somewhat a redundant way) by the EM algorithm (2.4). At convergence, the
algorithm is exactly the self-consistent estimate of Efron [5] and (2.4) illustrates the
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Fig 1. Sampling designs in the Lexis diagram. Each 45◦ line represents a subject in the population.
The horizontal axis is the calendar time and the vertical axis is duration or lifetime. Observed
data are depicted as solid lines.
Top left - random censoring model. I = (0, C)
Top right - follow-up on cross-sectional sampling. I = (−∞, 0).
Bottom left - window sampling. I = (−∞, C).
Bottom right - cross-sectional with truncation. I = (−β,−α).

redistributed to the right principle. As Efron shows, it reduces to the non-iterative
Kaplan-Meier estimator.

According to Lemma A.3, an NPMLE assigns mass only to the uncensored obser-
vations, because W is constant everywhere (if the last observation is censored, then
it assigns mass also to max{yj}). This is a well-known feature of the Kaplan-Meier
estimator.

3.2. Population models with poisson entrance process

The likelihood (1.1) is obtained in many designs where entrances to the studied pop-
ulation S are according to a Poisson process. Specifically, the model assumes a Pois-
son entrance process N(t) on (−∞, C) with rate ρ(·). The lifetimes, X1, X2, . . ., are
determined by the law G, and N(·), X1, X2, . . . are independent. The sample consists
of all subjects who entered S during I and are in S sometime during (0, C), where I
is a subset of (−∞, C), usually an interval. Figure 1 presents several common exam-
ples and the corresponding samples. It is assumed that ρ(x) = λ×λ0(x) where λ0 is
known and that

∫
I λ0(u)Ḡ(−u)du = µ∗ < ∞. For each sampled subject, we observe

the entrance time a and the possibly censored residual lifetime r with the failure
indicator δ. Denote by (a1, x1), . . . , (am, xm) and (am+1, ym+1), . . . , (am+n, ym+n)
the data on the m uncensored and n censored observations, then the likelihood is



Nonparametric estimation under bias and censoring 231

given by

(3.2) L(G) =
m∏

i=1

dG(xi)λ0(ai)
µ∗

m+n∏
j=m+1

Ḡ(yj)λ0(aj)
µ∗ × e−λµ∗ (λµ∗)n+m

(n + m)!
.

The NPMLE of λµ∗ is n + m and since λ0 is assumed known, the problem reduces
to maximizing for G the function

(3.3) L(G|n + m) =
m∏

i=1

dG(xi)
µ∗

m+n∏
j=m+1

Ḡ(yj)
µ∗

which has the form of (1.1). In this case W (x) =
∫
(−x,C)∩I λ0(u)du which is con-

tinuous and increasing.
Examples:

A homogeneous poisson process - cross-sectional sampling - I = (−∞, 0). Early
studies of this design are [14] and [9]. It is depicted in Figure 1 in the top right panel.
The sample consists of all subjects who are in S at time 0 and the data contain
their entrance time and follow-up until time C. Here W (x) = x and µ∗ = EX is
the mean lifetime. The algorithm (2.4) for this special case is derived by [18] who
studies a slightly different model.

A homogeneous poisson process - window sampling - I = (−∞, C). Here the sam-
ple consists of the cross-sectional population and those entering during the follow-up
period (see the bottom left panel of Figure 1). Thus, there are two samples: i) a size
biased sample comprising of subjects who entered S before 0, and ii) an unbiased
sample comprising of those who entered during the time window [0, C]. Both sam-
ples are censored at C. This model is a mixture of the random censorship and the
cross-sectional models discussed above, with random number of observations from
each model. Here W (x) = x + C and µ∗ = µ + C. The model is studied by [9]; [22]
provides an EM algorithm for it.

An inhomogeneous poisson process - a window sampling - I = (−∞, C). Kalbflei-
sch and Lawless [7] study entrances according to an inhomogeneous process in a
somewhat different model, mainly focusing on the uncensored case. They consider
many models in this framework and estimate both the rate function and the dis-
tribution of lifetimes. Under this model, W (x) =

∫ C

−x
λ0(t)dt is proportional to the

cumulative rate.
A truncated poisson process - I = (−β,−α). Wang [20] derives the NPMLE of G

when data are collected only for subjects whose ages at sampling time are in [α, β]
for some known 0 ≤ α < β. This design is depicted in the bottom right panel of
Figure 1 and it is natural when data started to be recorded only β years ago (in
that case α = 0) or when there is a specific interest on subjects who entered during
the period (−β,−α) (e.g., when S is defined by some epidemic status and a specific
treatment was used during (−β,−α)). Wang shows that when entrances to S are
according to a homogeneous Poisson process the likelihood is given by

∏
i

dG(xi)∫ β

α
Ḡ(u)du

∏
j

Ḡ(yj)∫ β

α
Ḡ(u)du

.

A simple calculation shows that the likelihood is of the form (1.1) with µ∗ =
E[min(X, β)−α]+ so the algorithm (2.4) can be applied with W (x) = [min(x, β)−
α]+. We note that in this case W (x) = 0 for x ∈ [0, α] so implementation of the
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algorithm looks problematic. However, under this setting, G is not identifiable on
[0, α] [20] and one can only hope to estimate G given X > α where W > 0. This
model is used in Section 4 to analyze the Channing House data [6].

3.3. A discrete entrance process

Mandel and Rinott (unpublished) study a discrete version of the Poisson entrance
model in which entrances to S occur at fixed time points σK < · · · < σ2 < σ1 ≤ 0.
At σk, Nk new subjects joining S with lifetimes Xk1, . . . , XkNk

. The model assumes
that Nk has a Poisson distribution with parameter λ × λ0(k), where λ0 is known,
Xki ∼ G (k = 1, . . . , K; i = 1, . . . , Nk), and {N1, . . . , NK , X11, X12, . . . , XKNK

}
are independent. Under this model, the NPMLE is obtained by maximizing (1.1)
with

W (x) =
∑

{k:−σk≤x}
λ0(k).

Here W is a step function and Lemma A.3 should be used to determine the support
of G. When σk = −k, λ0 is constant and lifetimes are integer valued, the model is
a discrete size-biased model.

3.4. Truncation models

The left truncation model [12, 21, 23] assumes that two independent variables
A ∼ W and T ∼ G can be observed only on the region A ≤ T . In addition,
there is a random censoring variable C which is independent of T and satisfies
P (C > A) = 1. Data comprise of (ai, min(ti, ci), δi) (i = 1, . . . , m + n) which are
m+n realizations of (A, min(T, C), ∆) restricted to the region A ≤ T , where ∆ = 1
if T ≤ C and ∆ = 0 otherwise. Let µ∗ = P (A ≤ T ) = EW (T ). Changing the
notations as in (3.2), the likelihood of the data is

(3.4)
m∏

i=1

dW (ai)dG(xi)
µ∗

m+n∏
j=m+1

dW (aj)Ḡ(yj)
µ∗

(note the similarity to (3.2)). If W is known, then dW (ui) can be omitted from the
likelihood and the problem of maximizing (3.4) is equivalent to maximizing (1.1).

Equation (3.4) can be reexpressed as

(3.5)
m∏

i=1

dG(xi)
Ḡ(ai−)

m+n∏
j=m+1

Ḡ(yj)
Ḡ(aj−)

×
m∏

i=1

dW (ai)Ḡ(ai−)
µ∗

m+n∏
j=m+1

dW (aj)Ḡ(aj−)
µ∗ ,

where the first term is the likelihood of T |A = a, A ≤ T and the second term is
the likelihood of A|A ≤ T . If W is completely unknown, maximizing (3.4) for G is
equivalent to maximizing the left term in (3.5) and the maximizer is the product-
limit estimator (PLE) defined by

(3.6)
G̃(dt)

1 − G̃(t−)
=

∑m
i=1 I{xi = t}∑m

i=1 I{ai ≤ t ≤ xi} +
∑m+n

j=m+1 I{aj ≤ t ≤ yj}
,

see [20]. In the next section, the PLE and the NPMLE are compared on real and
simulated data.
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4. Illustration

Channing House data. The data set comprises of 97 males who were residents of
the Channing House retirement community in Palo Alto, California [6]. It contains
the age at entry to the community and the age at death or censoring accompanied
by the event indicator. In terms of Section 3.4, the age at entry is A and the age
at death is T . The parameter of interest, G, is the distribution of age at death (in
months) of male residents of the community.

Wang [20] estimates the distribution of age (in months) at entry to be uniform
on (782,1073). Assuming W is the uniform distribution function on (782,1073),
G(·)/Ḡ(782) was estimated using algorithm (2.4) and W (x) = [min(x, 1073)−782]+.
Note that this is similar to the bias of the truncated Poisson process model described
at the end of Section 3.2. The NPMLE and the PLE are depicted in the right panel
of Figure 2. The survival under the uniform assumption is estimated to be somewhat
higher.

For the analysis in the right panel of Figure 2, only 93 out of the 97 residents
were used. Using all 97 individuals was problematic since the PLE approaches zero
after the first two failures. This is shown in the left panel of Figure 2. Also shown is
the survival estimated by (2.4) based on all 97 individuals and after estimating W
to be U(751, 1073) (by the minimum and maximum age at entry of all 97 residents).
The NPMLE is seen to be less sensitive to outliers. It shows that (2.4) can provide
reasonable estimates when the PLE fails, a common phenomenon in small truncated
data sets.

Simulation. A simulation study was conducted to compare the performances of
the NPMLE and the PLE under the left truncation model described in Section
3.4. We used the EXP(1) model for both G and W and generated 400 data sets of
50 observations each. The first row of Figure 3 compares the performance of the
estimators in terms of log MSE at the deciles of G, calculated by the average over
the repeated replicates. Since the PLE is not well defined when the risk group is
empty before the last observation [21], such data sets were not used to calculate
the MSE of the PLE. They were used to calculate the MSE of the NPMLE. The
columns of Figure 3 show the effect of censoring. Lifetime were censored at A + C
for a fixed C such that the probability of censoring is 10,25 and 50 percent from

Fig 2. Comparison of the PLE (dashed line) and the NPMLE (solid line) of survival in the
Channing House community. Left - all 97 individuals. Right - excluding the first two failures.
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Fig 3. Comparison of log MSE of the NPMLE (solid line) and the PLE (dashed line) calculated
at deciles. Data were generated using W=EXP(1). Sample size of 50 (top) and 200 (bottom),
censoring probability of 0.1,0.25 and 0.5 from left to right.

left to right. The second row of Figure 3 shows the results of the same analysis
applied to data sets of 200 observations. These were generated by combining the
simulated data sets of 50 observations (total of 100 data sets). Figure 4 shows
the sensitivity of the estimators to the assumption on W . The analysis was done
assuming the exponential distribution as before while the data were generated using
W=Gamma(2,1).

The results show that using knowledge on the bias improves estimation by 10%-
25% in terms of MSE. Increasing the probability of censoring results in a higher
MSE of both estimators especially in the right tail. The relative performance does
not change much by censoring, but some indication of better relative performance
of the NPMLE in the right tail is seen in the simulation with 50% probability of
censoring. More interesting are the results of the sensitivity study that show that
the NPMLE is quite sensitive to the assumption on W . In general, the MSE of the
PLE is smaller than that of the NPMLE. Moreover, the performance of the PLE
improves when sample size increases from 50 to 200 while the performance of the
NPMLE does not change. However, the performance of the NPMLE is better than
that of the PLE in the left tail even when the model is incorrect. This phenomenon
is seen in simulation with other distributions (not shown) and is probably attributed
to the small risk group in the left tail that results in unstable estimation.

In the simulated data sets, the PLE was not well defined in 2% to 20% of the
samples depending on the setting.
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Fig 4. Sensitivity analysis. Log MSE of the NPMLE (solid line) and the PLE (dashed line) at
deciles. Data were generated using W=Gamma(2,1) and the NPMLE was calculated assuming
W=EXP(1). Sample size of 50 (top) and 200 (bottom), censoring probability of 0.1,0.25 and 0.5
from left to right.

5. Discussion

The principal aim of this article is to provide a general framework and a unified
algorithm for problems involving bias and censoring. A secondary aim is to contrast
Vardi’s multiplicative censoring model with truncated data and to compare the
NPMLE to the PLE. An important question is which of the two estimators to use.
The PLE cannot be calculated when all observations are censored or when data
do not contain the truncation times a1, . . . , am+n (see Section 3.4), and may not
be well defined in data sets that do contain the truncation times as illustrated by
the Channing House example. In all of these situations, the NPMLE exists and can
be used. The simulation study shows that the NPMLE is more efficient when the
model is correctly specified. However, it also indicates that it is quite sensitive to
the assumed form of W . The use of the NPMLE, therefore, should be limited to
situations where there is a theoretical justification for the assumed model of W .
Furthermore, when data contain truncation times, the assumed form of W can and
should be tested. Wang [20] suggests a graphical goodness-of-fit test by plotting
an estimate of W versus the assumed model, and [10] study generalized Pearson
statistics that can provide formal goodness-of-fit tests for the current model. These
and other goodness-of-fit tests are studied in [13].

Algorithm (2.4) can be nested in more complex algorithms to provide nonpara-
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metric estimates for other interesting problems. Several examples are given in the
unpublished PhD dissertation of the author. For example, Wang [19] studies the
semi-parametric left truncation model {W ∈ Wθ, G unrestricted}, where Wθ is a
family of distributions indexed by θ. Her method, however, is applicable only for
uncensored data and hence is of limited use. Estimates under Wang’s model for
censored data can be obtained by an iterative algorithm that uses (2.4) in one of
its steps. Preliminary simulation results reveal better performance of this estimator
over the PLE.

The algorithm presented in this article can be easily extended to likelihood of
the form

(5.1)
S∏

s=1

{ ms∏
i=1

dG(xsi)
µ∗

s

×
ns∏

j=1

Ḡ(ysj)
µ∗

s

}
,

where µ∗
s =

∫ ∞
0

Ws(x)dG(x) for known increasing and right continuous functions
Ws (s = 1, . . . , S). This likelihood generalized the model of [17] to the multiplica-
tive censoring case. The complete likelihood in this problem involves products of
likelihoods from different weight functions. The E-step is equivalent to (2.9), and
the M-step uses Vardi’s algorithm for selection bias models [17].

Appendix A: The support of the NPMLE

This appendix discusses the determination of the support of the NPMLE for a
non increasing right continuous function W . Although the NPMLE is not always
unique (when W has steps) it is shown that there exists an NPMLE that assigns
mass only to the observed points (Lemma A.1). Furthermore, Lemmas A.2 and A.3
characterizes observed points that can be excluded from the support.

Let W−1(y) = min{v : W (v) ≥ y}, then for the likelihood (2.2) we have

Lemma A.1. There exists an NPMLE of G0 that assigns mass only to the critical
points x1, . . . , xm, W−1(y1), . . . , W−1(yn).

Proof. If mass is assigned to points other than the critical ones (i.e., points other
than xj or W−1(yi)), then shifting the mass to the closest critical point to the
left will not decrease the likelihood. The assertion follows after noticing that mass
assigned to the left of the minimal critical point contributes nothing to the likelihood
since the integrals have left limits.

Next, suppose that m = n = 1, W is constant on an interval [a, b) and a < x1 < b
and W−1(y1) = a. Drawing a step function W and inspecting the likelihood show
that the NPMLE assigns mass only to x1. In general, if there exist i and j such that
W (xi) = W (W−1(yj)), then the likelihood (2.2) increases if mass first assigned to
W−1(yj) is shifted to xi. This excludes several of the critical points from being in
the support of the NPMLE of G0 and it is summarized by

Lemma A.2. Let W−1(y|x) = min1≤i≤m{xi : W (xi) = W (W−1(y))} if such xi

exists, and W−1(y|x) = W−1(y) otherwise. Then there exists an NPMLE of (2.2)
that assigns mass only to the points x1, . . . , xm, W−1(y1|x), . . . , W−1(yn|x).

The support of the NPMLE of GW from the likelihood (2.1) is determined by
arguments similar to those leading to Lemma A.1 and Lemma A.2. This suggests
that the support is a subset of {x1, . . . , xm, y1, . . . , yn} (from the integrals appearing
in the likelihood (2.1) it is seen that the support points are the y’s and not the
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W−1(y)’s). Moreover, if observations yj < xi exist such that W (xi) = W (yj), then
the likelihood increases if mass initially assigned to yj is shifted to xi. Likewise,
if there are yj < yj′ such that W (yj) = W (yj′) then the likelihood increases if
mass initially assigned to yj is shifted to yj′ . The following lemma summarizes this
discussion:

Lemma A.3. There always exists an NPMLE for (1.1) which assigns mass only
to observed points. The complete observations xi (i = 1, . . . , m) are always points
of support. A censored observation yj is not a point of support if: (i) there exists
xi > yj such that W (xi) = W (yj) or (ii) there exists yj′ > yj such that W (yj′) =
W (yj).

Remark A.1. Lemma A.3 tells us which yj ’s are not points of support and not
which yj ’s are. The EM algorithm may assign mass zero to some of the yj ’s. One
can always use the inefficient approach of considering all observations as support
points and let the algorithm to assign zero mass to the redundant ones.
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