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Abstract: A class of estimating functions is introduced for the regression
parameter of the Cox proportional hazards model to allow unknown failure
statuses on some study subjects. The consistency and asymptotic normality
of the resulting estimators are established under mild conditions. An adap-
tive estimator which achieves the minimum variance-covariance bound of the
class is constructed. Numerical studies demonstrate that the asymptotic ap-
proximations are adequate for practical use and that the efficiency gain of the
adaptive estimator over the complete-case analysis can be quite substantial.
Similar methods are also developed for the nonparametric estimation of the
survival function of a homogeneous population and for the estimation of the
cumulative baseline hazard function under the Cox model.

1. Introduction

Let (Ti, Ci, Z
′
i) (i = 1, . . . , n) be n independent replicates of the random vector

(T, C, Z ′), where T and C denote the failure and censoring times, and Z denotes
a p × 1 vector of possibly time-varying covariates. The observations consist of
(Xi, δi, Z

′
i) (i = 1, . . . , n), where Xi = Ti ∧ Ci and δi = 1(Ti≤Ci). Assume that

Ti and Ci are conditionally independent given Zi.
The widely-used Cox semiparametric regression model [4] postulates that, con-

ditional on Z(t), the hazard function λ(t) for T takes the form eβ′
0Z(t)λ0(t), where

β0 is a p-dimensional regression parameter and λ0(·) is an unspecified baseline haz-
ard function. The maximum partial likelihood estimator β̂f for β0 is obtained by
maximizing

(1.1) L(β) =
n∏

i=1

{
eβ′Zi(Xi)∑n

j=1 1(Xj≥Xi)e
β′Zj(Xi)

}δi

,
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or by solving {S(β) = 0}, where

(1.2) S(β) =
n∑

i=1

∫ ∞

0

{
Zi(t) −

∑n
j=1 1(Xj≥t)e

β′Zj(t)Zj(t)∑n
j=1 1(Xj≥t)eβ′Zj(t)

}
δid1(Xi≤t).

Under suitable regularity conditions, n−1/2S(β0)
d→ N (0, V ) and n1/2(β̂f − β0)

d→
N (0, V −1), where V = − limn→∞ n−1∂S(β0)/∂β [1]. These asymptotic properties
provide the basis for making inference about β0. For the one-dimensional (dichoto-
mous) Z, the nonparametric test based on S(0) for testing β0 = 0 has been better
known as the (two-sample) log rank test.

The estimation of the cumulative hazard function Λ(t) =
∫ t

0
λ(s)ds and the

survival function F (t) = e−Λ(t) is also of interest. In the one-sample case, where no
covariates are modeled, Λ(t) is commonly estimated by the Nelson-Aalen estimator

(1.3) Λ̂NA(t) =
∫ t

0

∑n
i=1 δid1(Xi≤s)∑n

j=1 1(Xj≥s)
,

and the corresponding survival function estimator F̂NA(t) = e−Λ̂NA(t) is asymptot-
ically equivalent to the well-known Kaplan-Meier estimator

(1.4) F̂KM (t) =
∏

Xi≤t

{
1 − δi∑n

j=1 1(Xj≥Xi)

}
.

Motivated by the Nelson-Aalen estimator, Breslow [2] suggested that the cumulative
baseline hazard function Λ0(t) =

∫ t

0
λ0(s)ds under the Cox model be estimated by

(1.5) Λ̂B(t) =
∫ t

0

∑n
i=1 δid1(Xi≤s)∑n

j=1 1(Xj≥s)e
β̂′

f
Zj(s)

.

Both n1/2{Λ̂NA(·) − Λ(·)} and n1/2{Λ̂B(·) − Λ0(·)} converge weakly to zero-mean
Gaussian processes [1, 3, 6, 14].

All of the aforementioned procedures assume complete measurements on the
failure indicators δi (i = 1, . . . , n). In many applications, however, the values of
{δi} are missing for some study subjects. We shall distinguish between two types of
missingness. For Type I missingness, {δi} are missing completely at random among
all subjects. For Type II missingness, {δi} take value 0 for some subjects and are
missing completely at random among the remaining subjects. By missing completely
at random, we mean that the missing mechanism is independent of everything else.
The following two examples demonstrate how such missingness arises in practice.

Example 1. (Type I missingness). Suppose that a series system has two indepen-
dent components I and II and let T and C represent times to failure of I and II
respectively. The potential observations for a single system consist of X = T ∧ C
and δ = 1(T≤C). Suppose that a large number of systems are operated until failure.
Also suppose that the diagnosis of a system to identify which component failed is
so costly that it can only be done for a random sample of the systems under testing.
Thus we observe all {Xi} and a random subset of {δi}.
Example 2. (Type II missingness). In the medical study, investigators are often
interested in the time to death attributable to a particular disease, in which case
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δi = 1 if and only if the ith subject died from that disease. Typically, the causes of
death are unknown for some deaths because it requires extra efforts (e.g., performing
autopsies or obtaining death certificates) to gather such information. Thus the
values of {δi} may be missing among the deaths. On the other hand, if the ith
subject has been withdrawn from the study before its termination or is still alive
at the end of the study, then δi must be 0. Hence, we have Type II missingness
provided that the deaths with known causes are representative of all the subjects
who died.

The most commonly adopted strategy for handling missing values is the complete-
case analysis, which totally disregards all the subjects with unknown failure sta-
tuses. This approach is valid under Type I missingness; however, it can be highly
inefficient if there is heavy missingness. For Type II missingness, the complete-case
analysis does not even yield consistent estimators.

There have been a few articles on estimating the survival distribution of a homo-
geneous population in the presence of missing failure indicators. Notably, [5] used
the nonparametric maximum likelihood method in conjunction with the EM algo-
rithm to derive an estimator that is analogous to the Kaplan-Meier estimator (1.4).
According to [10], however, the maximum likelihood as well as the self-consistent
estimators are in general nonunique and inconsistent. Two alternative estimators
are proposed in [10] under Type I missingness. As will be discussed in Section 3,
these estimators have some undesirable properties. On the more challenging regres-
sion problem, there has been little progress. The only solution seems to have been
the modified log rank test for Example 1.2 proposed [8]. As admitted by these au-
thors, they made some rather unrealistic assumptions, including the independence
between the covariate and the causes of death not under study as well as the pro-
portionality of the hazard rate for the cause of interest and that of the other causes.
On the other hand, further developments along the line of efficient estimation can
be found in [11, 13, 15]. Furthermore, [17] deals with the additive hazards regression
model.

This paper provides a treatment of the Cox regression analysis and the sur-
vival function estimation under both types of missingness. In the next section, we
introduce a class of estimating functions for β0 under Type I missingness which
incorporates the partial information from the individuals with unknown δi. The
consistency and asymptotic normality of the resulting estimators are established. A
simple adaptive estimator is constructed which has the smallest variance-covariance
matrix among the proposed class of estimators including the complete-case estima-
tor. Simulation studies show that the adaptive estimator is suitable for practical
use. Section 3 deals with the survival function estimation under Type I missingness.
For the one-sample case, we derive an adaptive estimator which offers considerable
improvements over the complete-case and Lo’s estimators [10]. Estimation of the
cumulative baseline hazard function for the Cox model is also studied. In Section
4, we apply the ideas developed in Sections 2 and 3 to Type II missingness to
obtain consistent estimators with similar optimality properties. Note that some of
the technical developments there are streamlined and may be traced to a technical
report [7]. We conclude this paper with some discussions in Section 5.

2. Cox regression under Type I missingness

In this section, we propose estimating functions for the parameter vector β0 which
utilize the partial information from the subjects with unknown failure indicators.
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The asymptotic properties of these functions and the resulting parameter estimators
are studied in detail. Throughout the paper, we shall make the following assump-
tion, which is satisfied in virtually all practical situations.

Boundedness condition. The covariate processes Zi(·) = {Zi1(·), . . . , Zip(·)}′ (i =
1, . . . , n) are of bounded variation with a uniform bound, i.e., there exists K > 0
such that for all i,

p∑
j=1

{
|Zij(0)| +

∫ ∞

0

|dZij(t)|
}

≤ K.

Let ξi indicate, by the value 1 vs. 0, whether δi is known or not. Under Type I
missingness, the data consist of i.i.d random vectors (Xi, ξi, ξiδi, Z

′
i) (i = 1, . . . , n),

where ξi is independent of (Xi, δi, Z
′
i) for every i. Write ρ = P (ξ1 = 1).

Note that the partial likelihood score function (1.2) is the sum over all the
observed failure times of the differences between the covariate vectors of the subjects
who fail and the weighted averages of the covariate vectors among the subjects under
observation. In view of this fact, we introduce the following estimating function:

(2.1) S1(β) =
n∑

i=1

∫ ∞

0

{
Zi(t) − Z̄(β, t)

}
ξidNu

i (t),

where Z̄(β, t) =
∑n

j=1 1(Xj≥t)e
β′Zj(t)Zj(t)/

∑n
j=1 1(Xj≥t)e

β′Zj(t) and Nu
i (t) =

δi1(Xi≤t). In the sequel, we shall also use the notation Yi(t) = 1(Xi≥t), Ni(t) =
1(Xi≤t) and N c

i (t) = (1 − δi)1(Xi≤t). Note that {Nu
i , N c

i } may not be fully observ-
able whereas {Ni, ξiN

u
i , ξiN

c
i } are always observed. Another way of deriving (2.1)

is to modify the partial likelihood function (1.1) by omitting the factors for which
the δi are missing. Then S1(β) can be obtained by the usual way of differentiating
the “log-likelihood function”.

Theorem 2.1. Let S1(β, t) =
∑n

i=1

∫ t

0

{
Zi(s) − Z̄(β, s)

}
ξidNu

i (s).
(i) The process n−1/2S1(β0, ·) converges weakly to a zero-mean Gaussian mar-

tingale with variance function

(2.2) V1(t) = E

[∫ t

0

{Z1(s) − z̄(β0, s)}⊗2
ξ1dNu

1 (s)
]

,

where z̄(β, t) = E
{

Y1(t)eβ′Z1(t)Z1(t)
}

/E
{

Y1(t)eβ′Z1(t)
}
.

(ii) Define β̃ as the root of {S1(β) = 0}. If V1 = V1(∞) is nonsingular, then
n1/2(β̃ − β0)

d→ N (0, V −1
1 ).

Remarks. (1) It is simple to show that V1 = ρV , where V is the limiting covariance
matrix for β̂f defined in Section 1. By the arguments of [1], V1(t) can be consistently
estimated by

V̂1(t) = n−1
n∑

i=1

∫ t

0

{∑n
j=1 Yj(s)eβ̃′Zj(s)Z⊗2

j (s)∑n
j=1 Yj(s)eβ̃′Zj(s)

− Z̄⊗2(β̃, s)

}
ξidNu

i (s).

(2) The nonsingularity of V1 is a very mild assumption and it is true in practically
all meaningful situations.
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(3) The difference between the process S1(β, t) and the partial likelihood score
process under the complete-case analysis

Sd(β, t) =
n∑

i=1

∫ t

0

{
Zi(s) − Z̄d(β, s)

}
ξidNu

i (s),

where Z̄d(β, t) =
∑n

j=1 ξjYj(t)eβ′Zj(t)Zj(t)/
∑n

j=1 ξjYj(t)eβ′Zj(t), is that the sub-
jects with unknown failure indicators are included in the calculation of Z̄, but not
in that of Z̄d. It is somewhat surprising to note that Sd(β, ·) and the correspond-
ing estimator β̂d have the same asymptotic distributions as those of S1(β, ·) and
β̃, respectively, even though Z̄(β, t) is a more accurate estimator of z̄(β, t) than
Z̄d(β, t) is. As will be seen in the proof of Theorem 2.1, however, Sd(β, ·) and β̂d

themselves are not asymptotically equivalent to S1(β, ·) and β̃. Simulation results
to be reported later in the section reveal that β̃ tends to be slightly more efficient
than β̂d for small and moderate-sized samples.

(4) The use of S1(β) may incur substantial loss of information, especially when
ρ is small, since the asymptotic distribution of β̃ is the same as that of β̂d, which
only uses data with known failure indicators. Indeed, the purpose of this section
is to construct a new estimator that combines S1(β) with an estimating function
utilizing the counting processes Ni(·) associated with ξi = 0. In this connection,
the estimating function S1 plays only a transitional role.

Proof of Theorem 2.1. For notational simplicity, assume p = 1. Let Mi(t) =
Nu

i (t) −
∫ t

0
Yi(s)eβ0Zi(s)λ0(s)ds, which are martingale processes with respect to

an appropriate σ-filtration [1]. Decompose S1(β0, t) into two parts

S1(β0, t) =
n∑

i=1

∫ t

0

{
Zi(s) − Z̄(β0, s)

}
ξidMi(s)

+
n∑

i=1

(ξi − ρ)
∫ t

0

{
Zi(s) − Z̄(β0, s)

}
eβ0Zi(s)Yi(s)λ0(s)ds

= S11(t) + S12(t), say.

Now n−1/2S11(·) is a martingale. By the arguments of [1], n−1/2S11(t) is asymp-
totically equivalent to n−1/2S̃11(t) = n−1/2

∑n
i=1

∫ t

0
Wi(s)ξidMi(s), where Wi(s) =

Zi(s) − z̄(β0, s), and converges weakly in D[0,∞) to a Gaussian martingale with
variance function V1(t). Note that the tightness of n−1/2S11(·) at ∞ can be easily
handled along the lines of [6]. From Lemma 1(i) given at the end of the section,
n−1/2S12(t) is also tight and is asymptotically equivalent to

n−1/2S̃12(t) = n−1/2
n∑

i=1

(ξi − ρ)
∫ t

0

Wi(s)eβ0Zi(s)Yi(s)λ0(s)ds.

Hence, n−1/2S1(β0, ·) is asymptotically equivalent to n−1/2
{

S̃11(·) + S̃12(·)
}

, which
converges weakly to a zero-mean Gaussian process with covariance function at (t, t′)
that can be shown to be equal to

n−1E
[
{S̃11(t) + S̃12(t)}{S̃11(t′) + S̃12(t′)}

]
= V1(t ∧ t′).

To prove part (ii) of the theorem, note that −n−1∂S1(β)/∂β is positive (positive
definite for p > 1) and converges to E

[∫ ∞
0

{Z1(t) − z̄(β, t)}2
ξ1dNu

1 (t)
]
. Thus, β̃
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is uniquely defined and the arguments of [1] entail the convergence of n1/2(β̃ − β0)
to N (0, V −1

1 ).

To incorporate the partial survival information from those subjects with missing
δi, it is natural to consider the counting processes (1− ξi)Ni(·) and to subtract off
the jumps due to censoring. In this connection, we introduce
(2.3)

S2(β, t) =
n∑

i=1

∫ t

0

{
Zi(s) − Z̄(β, s)

} {
(1 − ξi)dNi(s) − ρ̂−1(1 − ρ̂)ξidN c

i (s)
}

,

where ρ̂ = n−1
∑n

i=1 ξi, noting that E
{
(1 − ξ1)N1(t) − ρ−1(1 − ρ)ξ1N

c
1 (t)

}
= E {Nu

1 (t)}.

Theorem 2.2. The process n−1/2S2(β0, ·) is asymptotically independent of n−1/2×
S1(β0, ·) and converges weakly to a zero-mean Gaussian process with covariance
function

V2(t, t′) = E

{∫ t∧t′

0

W⊗2
1 (s)(1 − ξ1)dNu

1 (s)

}

+ρ−1(1 − ρ)E
[{

NCZ
1 (t) − ENCZ

1 (t)
} {

NCZ
1 (t′) − ENCZ

1 (t′)
}′]

,

where NCZ
i (t) =

∫ t

0
{Zi(s) − z̄(β0, s)} dN c

i (s) (i = 1, . . . , n).

Proof. Again assume p = 1. Since ρ̂ − ρ = Op(n−1/2), by the usual delta method,

S2(β0, t) =

[
n∑

i=1

∫ t

0

{
Zi(s) − Z̄(β0, s)

}
(1 − ξi)dMi(s)

+
n∑

i=1

∫ t

0

{
Zi(s) − Z̄(β0, s)

}
{1 − ξi − (1 − ρ)}eβ0Zi(s)Yi(s)λ0(s)ds

]

+

[
n∑

i=1

∫ t

0

{
Zi(s) − Z̄(β0, s)

}
dN c

i (s)ρ−1(ρ − ξi)

+
n∑

i=1

∫ t

0

{
Zi(s) − Z̄(β0, s)

}
dN c

i (s)ρ−1(ρ̂ − ρ)

]

+ rn(t)
= S21(t) + S22(t) + rn(t), say.

Here the remainder term rn is uniformly negligible in the sense that supt |rn(t)| =
op(n1/2). Note that S21(t) is the same as S1(t) except that {ξi} there are replaced
by {1 − ξi}. Thus S21(t) is tight in D[0,∞) and is asymptotically equivalent to

S̃21(t) =
n∑

i=1

∫ t

0

Wi(s)(1 − ξi)dMi(s) +
n∑

i=1

∫ t

0

Wi(s)(ρ − ξi)eβ0Zi(s)Yi(s)λ0(s)ds.

By Lemma 1(ii), S22(t) is asymptotically equivalent to

S̃22(t) = −
n∑

i=1

ρ−1(ξi − ρ)
{
NCZ

i (t) − ENCZ
i (t)

}
.
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By writing

S̃21(t) =
n∑

i=1

∫ t

0

Wi(s)(1 − ρ)dMi(s) +
n∑

i=1

∫ t

0

Wi(s)dNu
i (s)(ρ − ξi),

we can show that, for any t and t′,

(2.4) E
{

S̃21(t)S̃22(t′)
}

= 0.

Thus n−1/2
{

S̃21(·) + S̃22(·)
}

converges weakly to a zero-mean Gaussian process
with V2 as its covariance function.

Similar to (2.4), E
[
{S̃11(t) + S̃12(t)}S̃22(t′)

]
= 0 for any t and t′. Thus to prove

the asymptotic independence between S1 and S2, it suffices to show

E
[
{S̃11(t) + S̃12(t)}S̃21(t′)

]
= 0.

To this end, we can apply the same covariance calculation as employed in the proof
of Theorem 2.1 to show that

E
[
{S̃11(t) + S̃12(t)}S̃21(t′)

]

= nE

{∫ t

0

W1(s)ξ1dM1(s)
∫ t′

0

W1(s′)(1 − ξ1)dM1(s′)

}
= 0.

By combining S1 and S2, more efficient estimators of β0 may be obtained. Specif-
ically, given a p × p matrix D, we can define β̂ as a solution to

(2.5) S1(β) + DS2(β) = 0.

Theorem 2.3. Suppose that {ρV +(1−ρ)DV } is nonsingular. Let V2 = V2(∞,∞).
Then n1/2(β̂ − β0)

d→ N (0, Σ(D)), where

(2.6) Σ(D) = {ρV + (1 − ρ)DV }−1 (ρV + DV2D
′) {ρV + (1 − ρ)V D′}−1

.

In particular, D∗ = (1 − ρ)V V −1
2 yields

Σ(D∗) =
{
ρV + (1 − ρ)2V V −1

2 V
}−1

and is optimal in the sense that Σ(D) − Σ(D∗) is nonnegative definite for any D.

Remarks. (1) Let VCZ = E
{
NCZ

1 (∞) − ENCZ
1 (∞)

}⊗2. Then V2 = (1 − ρ)V +
ρ−1(1 − ρ)VCZ . For p = 1, D∗ = V/(V + ρ−1VCZ) and Σ(D∗) = (V + ρ−1VCZ)/
{V (V + VCZ)}. This variance will be close to the ideal V −1 if either ρ is close to 1
(light missingness) or VCZ is close to zero (light censorship).

(2) A consistent estimator for Σ(D) may be obtained by replacing ρ, V and V2

in (2.6) by ρ̂, V̂ (β̂) and V̂2(β̂), where

V̂ (β) =
1∑n

i=1 ξi

n∑
i=1

∫ ∞

0

{∑n
j=1 Yj(t)eβ′Zj(t)Z⊗2

j (t)∑n
j=1 Yj(t)eβ′Zj(t)

− Z̄⊗2(β, t)

}
ξidNu

i (t),
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Table 1

Monte Carlo estimates for the sampling means and variances of four estimators of β0 and for
the sizes of the corresponding 0.05-level wald tests for testing H0 : β0 = 0

under the Model λ(t|Z) = 1

20% Censoring 50% Censoring 70% Censoring
ρ Estimator Mean Var. Size Mean Var. Size Mean Var. Size

0.8 β̂f –0.001 0.015 0.056 –0.001 0.023 0.054 0.002 0.038 0.052

β̂d –0.001 0.018 0.053 –0.002 0.030 0.052 0.002 0.049 0.049

β̃ –0.001 0.018 0.054 –0.001 0.029 0.053 0.002 0.049 0.050

β̂∗ –0.001 0.015 0.056 –0.002 0.027 0.055 0.002 0.046 0.051

0.5 β̂f –0.001 0.015 0.056 –0.001 0.023 0.054 0.002 0.038 0.052

β̂d –0.002 0.032 0.057 –0.002 0.054 0.053 0.001 0.092 0.049

β̃ 0.001 0.029 0.050 –0.001 0.048 0.052 0.003 0.082 0.050

β̂∗ –0.001 0.017 0.056 –0.002 0.037 0.052 0.002 0.071 0.048

NOTE: Z is standard normal. The censoring time is exponentially distributed with hazard rate
λc, where λc is chosen to achieve the desired censoring percentage. The sample size is 100. Each

block is based on 10,000 replications. The random number generator of [16] is used.

V̂2(β) = (1 − ρ̂)V̂ (β) + ρ̂−1(1 − ρ̂)V̂CZ(β),

V̂CZ(β) =
1∑n

i=1 ξi

n∑
i=1

∫ ∞

0

{
Zi(t) − Z̄(β, t)

}⊗2
ξidN c

i (t)

−
[

1∑n
i=1 ξi

n∑
i=1

∫ ∞

0

{
Zi(t) − Z̄(β, t)

}
ξidN c

i (t)

]⊗2

.

Since we can estimate the optimal weight D∗ consistently by D̂∗ = (1− ρ̂)V̂ (β̃)×
V̂ −1

2 (β̃), an “adaptive” estimator of β0 that achieves the lower variance-covariance
bound Σ(D∗) may be constructed. Specifically, we can first use β̃ from {S1(β) = 0}
to compute D̂∗ and then obtain the adaptive estimator by solving

(2.7) S1(β) + D̂∗S2(β) = 0.

Corollary 1. Let β̂∗ be the estimator given by (2.7). Then under the same as-
sumptions as Theorem 2.3, n1/2(β̂∗ − β0)

d→ N (0, Σ(D∗)). In addition, Σ(D∗) can

be consistently estimated by
{

ρ̂V̂ (β̂∗) + (1 − ρ̂)2V̂ (β̂∗)V̂ −1
2 (β̂∗)V̂ (β̂∗)

}−1

.

We have carried out extensive Monte Carlo experiments to investigate the finite-
sample behaviour of the proposed adaptive estimator β̂∗ and to compare it with the
full-data estimator β̂f , the complete-case estimator β̂d and the S1(β) estimator β̃.
The key results are summarized in Tables 1 and 2. The biases of all four estimators
and of their variance estimators (the latter not shown here) are negligible, and the
associated Wald tests have proper sizes. The adaptive estimator is always more
efficient than β̂d and β̃, as is reflected in the sampling variances of the estimators
as well as in the powers of the Wald tests. The gains in the relative efficiencies in-
crease as the missing probability increases and decrease as the censoring probability
increases. The efficiency of β̂∗ relative to β̂f is close to 1 when censoring is light.
The estimator β̃ seems to have slightly better small-sample efficiency than β̂d.

Proof of Theorem 2.3. From its definition, −∂S1(β)/∂β is, with probability 1, posi-
tive definite. Thus, following [1], we can show that (ρn)−1 S1(β) converges uniformly
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Table 2

Monte Carlo estimates for the sampling means and variances of four estimators of β0 and for
the powers of the corresponding 0.05-level wald tests for testing h0 : β0 = 0

under the Model λ(t|Z) = e0.5Z

20% Censoring 50% Censoring 70% Censoring
ρ Estimator Mean Var. Power Mean Var. Power Mean Var. Power

0.8 β̂f 0.509 0.017 0.984 0.511 0.026 0.912 0.514 0.041 0.755

β̂d 0.511 0.021 0.956 0.514 0.033 0.844 0.518 0.053 0.655

β̃ 0.510 0.021 0.955 0.513 0.033 0.844 0.516 0.052 0.653

β̂∗ 0.509 0.018 0.980 0.512 0.030 0.876 0.516 0.049 0.684

0.5 β̂f 0.509 0.017 0.984 0.511 0.026 0.912 0.514 0.041 0.755

β̂d 0.516 0.038 0.813 0.522 0.061 0.624 0.530 0.102 0.435

β̃ 0.511 0.035 0.821 0.514 0.054 0.642 0.520 0.088 0.450

β̂∗ 0.509 0.021 0.960 0.512 0.042 0.757 0.518 0.077 0.514

NOTE: See NOTE of Table 1.

in any compact set to the nonrandom function

m(β) = E

[∫ ∞

0

{Z1(t) − z̄(β, t)} dNu
1 (t)

]
.

For S2(β), we have, by the law of large numbers,

n−1
n∑

i=1

∫ ∞

0

{
Zi(t) − Z̄(β, t)

}
(1 − ξi)dNi(t)

− n−1
n∑

i=1

∫ ∞

0

{
Zi(t) − Z̄(β, t)

}
(1 − ρ)dNi(t)

= op(1) +
∫ ∞

0

Z̄(β, t)d

{
n−1

n∑
i=1

Ni(t)(ξi − ρ)

}

= op(1),

where the last equality follows from the facts that supt

∣∣n−1
∑n

i=1 Ni(t)(ξi − ρ)
∣∣ =

op(n−1/4) and that the total variation of Z̄(β, ·) is at most O(log n) uniformly for
β in any compact region. Thus the order op(1) is also uniform. Continuing this line
of arguments, we get

n−1S2(β) = n−1
n∑

i=1

∫ ∞

0

{
Zi − Z̄(β, t)

}
(1 − ρ)dNu

i (t) + op(1)

= (1 − ρ)m(β) + op(1)

with the same uniformity. Thus n−1 {S1(β) + DS2(β)} is uniformly approximated
by {ρI +(1 − ρ)D}m(β), which has a unique root β0. Hence, β̂

p→ β0.
The asymptotic normality is easier to show now. Taking the Taylor series expan-

sion of
{

S1(β̂) + DS2(β̂)
}

at β0, we get

n1/2(β̂ − β0) = [{ρI + (1 − ρ)D}V ]−1
n−1/2 {S1(β0) + DS2(β0)} + op(1),

which, by Theorems 2.1 and 2.2 and a straightforward matrix manipulation, con-
verges to the desired normal distribution.
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To verify the optimality of D∗, we note that the estimating function can be
linearized around β0 and the limiting normal random vectors may be used in place
of n−1/2Sk(β0) (k = 1, 2). Specifically, we can consider the following “limiting”
linear model 


S∗

1 = ρV b + S∗
01,

S∗
2 = (1 − ρ)V b + S∗

02,

where S∗
0k (k = 1, 2) are independent N (0, Vk) (k = 1, 2). Recall that V1 = ρV and

V2 = (1−ρ)(V +ρ−1VCZ). By the Gauss-Markov theorem, the best linear estimator
is

b̂∗ =
{
ρV + (1 − ρ)2V V −1

2 V
}−1 {

S∗
1 + (1 − ρ)V V −1

2 S∗
2

}
with variance-covariance matrix

{
ρV + (1 − ρ)2V V −1

2 V
}−1

, which is exactly
Σ(D∗).

Lemma 1. (i) The process

n−1/2S12(t) = n−1/2
n∑

i=1

(ξi − ρ)
∫ t

0

{
Zi(s) − Z̄(β0, s)

}
eβ′

0Zi(s)λ0(s)ds

is tight in D[0,∞) and is asymptotically equivalent to

n−1/2S̃12(t) = n−1/2
n∑

i=1

(ξi − ρ)
∫ t

0

{Zi(s) − z̄(β0, s)} eβ′
0Zi(s)λ0(s)ds

in the sense that supt n−1/2‖S̃12(t) − S12(t)‖ = op(1).
(ii) The process n−1/2

∑n
i=1(ξi − ρ)

∫ t

0

{
Zi(s) − Z̄(β0, s)

}
dN c

i (s) is tight and as-
ymptotically equivalent to

n−1/2
n∑

i=1

(ξi − ρ)
∫ t

0

{Zi(s) − z̄(β0, s)} dN c
i (s).

Proof. Without loss of generality, assume p = 1. For any t1 < t2, we have

lim
n→∞

E
{

n−1/2S12(t2) − n−1/2S12(t1)
}4

= lim
n→∞

n−2
∑
i 	=j

E

[
(ξi − ρ)

∫ t2

t1

{
Zi(s) − Z̄(β0, s)

}
eβ0Zi(s)Yi(s)λ0(s)ds

× (ξj − ρ)
∫ t2

t1

{
Zj(s) − Z̄(β0, s)

}
eβ0Zj(s)Yj(s)λ0(s)ds

]2

≤ (2K)4 lim
n→∞

n−2
∑
i 	=j

E

{
(ξi − ρ)

∫ t2

t1

eβ0Zi(s)Yi(s)λ0(s)ds

× (ξj − ρ)
∫ t2

t1

eβ0Zj(s)Yj(s)λ0(s)ds

}2

= (2K)4 {ρ(1 − ρ)}2

[
E

{∫ t2

t1

Y1(s)eβ0Z1(s)λ0(s)ds

}2
]2

.
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Since µ[t1, t2] = E
{∫ t2

t1
Y1(s)eβ0Z1(s)λ0(s)ds

}2

is a finite measure on [0,∞), the

moment criterion ([12], page 52, formula (30)) implies the tightness of n−1/2S12.
Likewise, n−1/2S̃12 is also tight. Furthermore, let t0 = inf{t : EY1(t) = 0}. Then it is
easy to see that sups≤t |Z̄(β0, s)− z̄(β0, s)|

p→ 0 for any t < t0. Thus the equivalence
of n−1/2S12 and n−1/2S̃12 follows from the tightness just proved. Hence (i) holds.

The proof of (ii) is very much the same as that of (i). Because of possible dis-
continuity of EN c

1(t) in t, another moment condition ([12], page 51, formula (25))
should be used. Note that the tightness continues to hold even if the measure µ
there is discontinuous.

3. Cumulative hazard function estimation under Type I missingness

In this section, we first deal with the problem of nonparametric estimation of the
cumulative hazard function for a homogeneous population under Type I missing-
ness. We shall discuss the estimators proposed in [10] and give our own solutions.
We then apply the ideas to the estimation of the cumulative baseline hazard func-
tion for the Cox model. In both cases, asymptotic distributions of the relevant
estimators are derived.

In the one-sample case, the observations consist of i.i.d. random vectors (Xi, ξi,
ξiδi) (i = 1, . . . , n), where Xi = Ti ∧ Ci, δi = 1(Ti≤Ci) and ξi is the missing
indicator independent of (Xi, δi). Assume that Ti is independent of Ci and that Ti

has a continuous distribution function. Let F (t) = P (T1 ≤ t), Λ(t) =
∫ t

0
dF (s)/{1−

F (s)}, G(t) = P (C1 ≤ t), ΛG(t) =
∫ t

0
dG(s)/{1 − G(s−)}, H(t) = {1 − F (t)}{1 −

G(t−)}, A(t) =
∫ t

0
dΛ(s)/H(s) and AG(t) =

∫ t

0
dG(s)/{(1 − G(s−))H(s)}. The

notation for Yi, Ni, N
u
i , N c

i , ρ, ρ̂, etc. introduced in Section 2 will also be used.
Under the setup described above, [10] shows that the nonparametric maximum

likelihood method typically does not yield a consistent estimator for F , indicating
that this is far more complicated than the complete-data situation. Two alternative
estimators, F̂1 and F̂B , are also proposed there. It can be shown, by expanding
log(1− F̂A), that F̂A is not a consistent estimator; in particular, Theorem 3 of [10]
is not valid. In our notation, the second estimator is given by

(3.1) F̂B(t) = 1 −
∏

Xi≤t

{
1 − 1∑n

j=1 Yj(Xi)

}ξiδi/ρ̂

.

Motivated by (3.1), we modify (1.3) to obtain the following estimator for Λ(t):

(3.2) Λ̂1(t) =
∫ t

0

∑n
i=1 ξidNu

i (s)
ρ̂

∑n
j=1 Yj(s)

.

By the exponentiation formula of Doleans-Dade ([1], p. 897), the corresponding
estimator for F (t) is

(3.3) F̂1(t) = 1 −
∏

Xi≤t

{
1 − ξiδi

ρ̂
∑n

j=1 Yj(Xi)

}
.

It is easily seen that F̂1 and F̂B are asymptotically equivalent; however, the cu-
mulative hazard function approach is more convenient for our later developments.
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Expression (3.2) also reveals that Λ̂1 (and hence F̂B and F̂1) does not utilize the
counting process information from the subjects with ξi = 0. To recover this infor-
mation, we introduce

(3.4) Λ̂2(t) =
∫ t

0

∑n
i=1(1 − ξi)dNi(s) − ρ̂−1(1 − ρ̂)

∑n
i=1 ξidN c

i (s)
(1 − ρ̂)

∑n
i=1 Yi(s)

,

which shares the same spirit as estimating function S2(β) given in (2.3). Thus, Λ(t)
can be estimated by

(3.5) Λ̂(α, t) = αΛ̂1(t) + (1 − α)Λ̂2(t),

where α ∈ [0, 1].

Theorem 3.1. Let t0 < H−1(0). Then n1/2
{

Λ̂(α, ·) − Λ(·)
}

converges weakly in
D[0, t0] to a zero-mean Gaussian process with covariance function

Γα(t, t′) =
α2

ρ
{A(t ∧ t′) − (1 − ρ)Λ(t)Λ(t′)}(3.6)

+α(1 − α)
{
2Λ(t)Λ(t′) + ρ−1Λ(t)ΛG(t′) + ρ−1Λ(t′)ΛG(t)

}
+

(1 − α)2

1 − ρ

[
A(t ∧ t′) + ρ−1AG(t ∧ t′)

−ρ
{
Λ(t) + ρ−1ΛG(t)

} {
Λ(t′) + ρ−1ΛG(t′)

}]
.

For fixed t, n1/2
{

Λ̂(α, t) − Λ(t)
}

d→ N (0, Γα(t)), where

Γα(t) =
α2

ρ

{
A(t) − (1 − ρ)Λ2(t)

}
+ 2α(1 − α)

{
Λ2(t) + ρ−1Λ(t)ΛG(t)

}
(3.7)

+
(1 − α)2

1 − ρ

[
A(t) + ρ−1AG(t) − ρ

{
Λ(t) + ρ−1ΛG(t)

}2
]
,

which reaches its minimum when α equals

α∗ =
ρ

{
A(t) − Λ2(t)

}
+ AG(t) − Λ2

G(t) − (1 + ρ)Λ(t)ΛG(t)
A(t) − Λ2(t) + AG(t) − Λ2

G(t) − 2Λ(t)ΛG(t)
.

Remarks. (1) If we choose αn
p→ α, then Λ̂(αn, ·) has the same asymptotic distri-

bution as Λ̂(α, ·). Since α∗ can be estimated consistently, the “optimal” estimator
of Λ can be constructed adaptively. To be specific, α∗ may be estimated by

α̂∗ =
ρ̂

{
Â1(t) − Λ̂2

1(t)
}

+ ÂG(t) − Λ̂2
G(t) − (1 + ρ̂)Λ̂1(t)Λ̂G(t)

Â1(t) − Λ̂2
1(t) + ÂG(t) − Λ̂2

G(t) − 2Λ̂1(t)Λ̂G(t)
,

where Â1(t) = n
∫ t

0
dΛ̂1(s)/

∑n
j=1 Yj(s), and Λ̂G(t) and ÂG(t) are the obvious

analogs of Λ̂1(t) and Â1(t).
(2) A consistent estimator for Γα(t, t′) may be obtained by replacing ρ, A, Λ,

AG and ΛG in (3.6) by ρ̂, Â1, Λ̂1, ÂG and Λ̂G.
(3) Two special cases deserve extra attention. If α = 1, then Λ̂(α, t) reduces

to Λ̂1(t). In that case, the asymptotic variance Γ1(t) = ρ−1
{
A(t) − (1 − ρ)Λ2(t)

}
,

which agrees with Lo’s result when the exponentiation is taken into account, and
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Table 3

Simulation summary statistics for the adaptive estimator F̂ (α̂∗, t) at t = F−1(0.5) under the
exponential model F (t) = 1 − e−t

20% Censoring 50% Censoring 70% Censoring
ρ = 0.8 ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8 ρ = 0.5

Mean of α̂∗ 0.84 0.60 0.90 0.75 0.94 0.85

Mean of F̂ (α̂∗, t) 0.497 0.497 0.496 0.495 0.493 0.490

Var of n1/2F̂ (α̂∗, t) 0.284 0.325 0.419 0.566 0.786 1.161

Mean of V̂F̂ (α̂∗, t) 0.283 0.323 0.413 0.547 0.747 1.039

Var of F̂d(t) / Var of F̂ (α̂∗, t) 1.21 1.72 1.14 1.36 1.12 NA

Var of F̂B(t) / Var of F̂ (α̂∗, t) 1.10 1.33 1.06 1.13 1.06 1.08

NOTE: The censoring time is exponential. The sample size n = 100. Each block is based on
10,000 replications. V̂F̂ (α̂∗, t) is the variance estimator for n1/2F̂ (α̂∗, t), which is F̂ 2(α̂∗, t)

multiplied by the estimator for Γα∗ (t, t) mentioned in Remark (2) of Theorem 3.1. F̂d(t) is the

estimator based on complete cases only and F̂B(t) is Lo’s second estimator. “Mean” and “Var”
refer to the sampling mean and variance. NA indicates that the result for the complete-case

estimator is not obtainable.

which is less than ρ−1A(t), the variance of the complete-case estimator. On the
other hand, if we let α = ρ̂, then

Λ̂(α, t) =
∫ t

0

∑n
i=1

{
ξidNu

i (s) + (1 − ξi)dNi(s) − ρ̂−1(1 − ρ̂)ξidN c
i (s)

}∑n
i=1 Yi(s)

with asymptotic variance Γρ(t) = A(t) + ρ−1(1 − ρ)
{
AG(t) − Λ2

G(t)
}

. Clearly,
Γρ(t) ≤ Γ1(t) if and only if AG(t)−Λ2

G(t) ≤ A(t)−Λ2(t). Note that AG(t)−Λ2
G(t) =

Var
{∫ t

0
dN c(s)/H(s)

}
and A(t) − Λ2(t) = Var

{∫ t

0
dNu(s)/H(s)

}
.

(4) Let ρ ↑ 1, i.e., the proportion of missing δi’s shrinks to 0. Then α∗ → 1. The
resulting estimator is Λ̂1(t). On the other hand, if the censorship shrinks to 0, which
entails ΛG(t) → 0 and AG(t) → 0, then α∗ → ρ, which was the case discussed in
the previous remark.

Table 3 displays the main results from our Monte Carlo studies on the adaptive
estimator F̂ (α̂∗, t) = 1 − e−Λ̂(α̂∗,t). The biases of the adaptive estimator and its
variance estimator are small. The efficiency improvements of the adaptive estimator
over the complete-case analysis and (to a lesser extent) over estimator (3.1) are
impressive, especially for light censoring and substantial missingness.

Proof of Theorem 3.1. In analogy with the approximations given in Lemma 1, we
can show that

Λ̂1(t) − Λ(t) =
1
nρ

{
n∑

i=1

∫ t

0

dMi(s)
H(s)

ξi +
n∑

i=1

∫ t

0

Yi(s)dΛ(s)
H(s)

(ξi − ρ)(3.8)

−
n∑

i=1

Λ(t)(ξi − ρ)

}
+ op(n− 1

2 )

= L1(t) + op(n− 1
2 ), say,
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and

Λ̂2(t) − Λ(t) =
1

n(1 − ρ)

[
n∑

i=1

∫ t

0

dMi(s)
H(s)

(1 − ξi) −
n∑

i=1

∫ t

0

Yi(s)dΛ(s)
H(s)

(ξi − ρ)(3.9)

+
n∑

i=1

Λ(t)(ξi − ρ) −
n∑

i=1

{∫ t

0

dN c
i (s)

H(s)
− ΛG(t)

}
ξi − ρ

ρ

]
+ op(n− 1

2 )

= L2(t) + op(n− 1
2 ), say.

Thus to characterize the limiting distribution of Λ̂(α, ·), it suffices to derive the
covariance functions E {Lj(t)Lk(t′)} (j, k = 1, 2). Through some tedious, but oth-
erwise routine calculations, we obtain

(3.10) E{L1(t)L1(t′)} = (nρ)−1 {A(t ∧ t′) − (1 − ρ)Λ(t)Λ(t′)} ,

(3.11) E {L1(t)L2(t′)} = n−1
{
Λ(t)Λ(t′) + ρ−1Λ(t)ΛG(t′)

}
,

E {L2(t)L2(t′)} = {n(1 − ρ)}−1 [
A(t ∧ t′) + ρ−1AG(t ∧ t′)(3.12)

−ρ
{
Λ(t) + ρ−1ΛG(t)

} {
Λ(t′) + ρ−1ΛG(t′)

}]
.

From (3.10)–(3.12), we can evaluate nE [{αL1(t) + (1 − α)L2(t)} {αL1(t′) +
(1 − α)L2(t′)}] to get the desired covariance function.

We now return to the regression model studied in Section 2. Let β̂ be as defined
by (2.5). To estimate the cumulative baseline hazard function Λ0, it is natural
to extend the class of estimators given in (3.5). To avoid complicated asymptotic
variances, we shall only consider α = 1 and α = ρ̂, the two special cases discussed
in Remarks (3) and (4) following Theorem 3.1. The two estimators for Λ0(t) are
given below

(3.13) Λ̂1(β̂, t) =
∫ t

0

∑n
i=1 ξidNu

i (s)

ρ̂
∑n

i=1 Yi(s)eβ̂′Zi(s)
,

(3.14) Λ̂2(β̂, t) =
∫ t

0

∑n
i=1{ξidNu

i (s) + (1 − ξi)dNi(s) − ρ̂−1(1 − ρ̂)ξidN c
i (s)}∑n

i=1 Yi(s)eβ̂′Zi(s)
.

Theorem 3.2. Suppose that the assumptions of Theorem 2.3 are satisfied. Let
t0 > 0 be any number such that EY1(t0) > 0.

(i) The process n1/2
{

Λ̂1(β̂, ·) − Λ0(·)
}

converges weakly in D[0, t0] to a zero-
mean Gaussian process with covariance function

Γ̃1(t, t′) = ρ−1

∫ t∧t′

0

dΛ0(s)
HZ(s)

− ρ−1(1 − ρ)Λ0(t)Λ0(t′)(3.15)

+a′(t)Σ(D)a(t′) − ρ−1(1 − ρ)
[
a′(t)ΩE

{
NCZ

1 (∞)
}

Λ0(t′)

+ a′(t′)ΩE
{
NCZ

1 (∞)
}

Λ0(t)
]
,
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where HZ(s) = E
{

Y1(s)eβ′
0Z1(s)

}
, a(t) =

∫ t

0
z̄(β0, s)dΛ0(s) and Ω = {ρV + (1 −

ρ)DV }−1D. For fixed t, n1/2
{

Λ̂1(β̂, t) − Λ0(t)
}

d→ N (0, Γ̃1(t)), where

Γ̃1(t) = ρ−1

∫ t

0

dΛ0(s)
HZ(s)

− ρ−1(1 − ρ)Λ2
0(t) + a′(t)Σ(D)a(t)(3.16)

−2ρ−1(1 − ρ)a′(t)ΩE
{
NCZ

1 (∞)
}

Λ0(t).

(ii) The process n1/2{Λ̂2(β̂, ·)−Λ0(·)} converges weakly to a zero-mean Gaussian
process with covariance function

(3.17)

Γ̃2(t, t′) =
∫ t∧t′

0

dΛ0(s)
HZ(s)

+ ρ−1(1 − ρ)Cov
{
NCH

1 (t), NCH
1 (t′)

}
+ a′(t)Σ(D)a(t′)

−ρ−1(1 − ρ)

(
a′(t)ΩE

[
NCZ

1 (∞)
{
NCH

1 (t′) − ENCH
1 (t′)

}]

+a′(t′)ΩE
[
NCZ

1 (∞)
{
NCH

1 (t) − ENCH
1 (t)

}])
,

where NCH
i (t) =

∫ t

0
dN c

i (s)/HZ(s) (i = 1, . . . , n). For fixed t, n1/2{Λ̂2(β̂, t) −
Λ0(t)} d→ N (0, Γ̃2(t)), where

Γ̃2(t) =
∫ t

0

dΛ0(s)
HZ(s)

+ ρ−1(1 − ρ)Var
{
NCH

1 (t)
}

+ a′(t)Σ(D)a(t)(3.18)

−2ρ−1(1 − ρ)a′(t)ΩE
[
NCZ

1 (∞)
{
NCH

1 (t) − ENCH
1 (t)

}]
.

Remarks. (1) Consistent estimators for variances Γ̃1(t) and Γ̃2(t) may be obtained
in a straightforward manner. For example, let â(t) =

∫ t

0
Z̄(β̂, s)dΛ̂1(β̂, s) and Ω̂ ={

ρ̂V̂ +(1 − ρ̂)V̂ D
}−1

D. Then a consistent estimator for Γ̃1(t) is

nρ̂−1

∫ t

0

dΛ̂1(β̂, s)∑n
i=1 Yi(s)eβ̂′Zi(s)

− ρ̂−1(1 − ρ̂)Λ̂2
1(β̂, t) + â′(t)Σ̂(D)â(t)

−2ρ̂−1(1 − ρ̂)â′(t)Ω̂

[
1∑n

i=1 ξi

n∑
i=1

∫ ∞

0

{
Zi(s) − Z̄(β̂, s)

}
ξidN c

i (s)

]
Λ̂1(β̂, t),

where Σ̂(D) is the consistent estimator given in Remark (2) following Theorem 2.3.
(2) If D = 0, then the last term on the right hand side of (3.16) disappears and

the sum of the first and the third terms becomes the variance of the complete-case
estimator. Thus, the use of Λ̂1(β̃, t) reduces the variance by ρ−1(1 − ρ)Λ2

0(t).

Proof of Theorem 3.2. Taking the Taylor expansions at β0, we get, for l = 1, 2,

(3.19) Λ̂l(β̂, t) = Λ̂l(β0, t) −
∫ t

0

Z̄ ′(β0, s)dΛ̂l(β0, s)(β̂ − β0) + op(n− 1
2 ).

By the approximations given in the proofs of Theorems 2.1 and 2.2, we can express
β̂ − β0 approximately as a sum of n i.i.d. random vectors. Furthermore, similar
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to (3.8),

Λ̂1(β0, t) − Λ0(t) = (nρ)−1

∫ t

0

∑
ξidMi(s)
HZ(s)

(3.20)

+(nρ)−1

∫ t

0

∑
(ξi − ρ)Ỹi(s)

HZ(s)
λ0(s)ds

−(nρ)−1Λ0(t)
n∑

i=1

(ξi − ρ) + op(n− 1
2 )

= J1(t) + J2(t) + J3(t) + op(n− 1
2 ), say,

where Ỹi(s) = Yi(s)eβ′
0Zi(s). Let S̃k = S̃k1(∞) + S̃k2(∞) (k = 1, 2), where S̃kj are

defined in the proofs of Theorems 2.1 and 2.2. Then E
{

S̃1J3(t)
}

= 0 and

E
{

S̃1J1(t)
}

= (1 − ρ)E
{∫ ∞

0

W1(s)Ỹ1(s)dΛ0(s)
∫ t∧s

0

dM1(u)
HZ(u)

}

= −(1 − ρ)E
∫ ∞

0

∫ t

0

1(u≤s)W1(s)Ỹ1(s)H−1
Z (u)Ỹ1(u)dΛ0(s)dΛ0(u).

Moreover, we can show that E
{

S̃1J2(t)
}

= −E
{

S̃1J1(t)
}

. Therefore

(3.21) E
[
S̃1 {J1(t) + J2(t) + J3(t)}

]
= 0.

Likewise, we can show that E
[
S̃21(∞) {J1(t) + J2(t) + J3(t)}

]
= 0. Thus

E
[
S̃2 {J1(t) + J2(t) + J3(t)}

]
(3.22)

= E
[
S̃22(∞) {J1(t) + J2(t) + J3(t)}

]
= −ρ−1(1 − ρ)E

[{
NCZ

1 (∞) − ENCZ
1 (∞)

} ∫ t

0

dNu
1 (s)

HZ(s)

]
= ρ−1(1 − ρ)ENCZ

1 (∞)Λ0(t).

From (3.21) and (3.22),

E
[{

S̃1 + DŜ2

}
{J1(t) + J2(t) + J3(t)}

]
(3.23)

= ρ−1(1 − ρ)DE
{
NCZ

1 (∞)
}

Λ0(t).

It is also not difficult to show that

E [{J1(t) + J2(t) + J3(t)} {J1(t′) + J2(t′) + J3(t′)}]

=
1
nρ

∫ t∧t′

0

dΛ0(s)
HZ(s)

− 1 − ρ

nρ
Λ0(t)Λ0(t′),

which, combined with (3.19), (3.20) and (3.23), yields the desired covariance func-
tion Γ̃1.
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For (ii), first note that

Λ̂2(β0, t) − Λ0(t)

= n−1
n∑

i=1

∫ t

0

dMi(s)
HZ(s)

(3.24)

− (nρ)−1
n∑

i=1

[
NCH

i (t) − E
{
NCH

i (t)
}]

(ξi − ρ) + op(n−1/2).

From (3.24), we can show that
{

Λ̂2(β0, t) − Λ0(t)
}

is asymptotically uncorrelated

with S̃1 and S̃21. The desired covariance formula (3.17) then follows by evaluating
the asymptotic covariance between

{
Λ̂2(β0, t) − Λ0(t)

}
and S̃22. The details are

omitted.

4. Cox regression and cumulative hazard function estimation under
Type II missingness

We now describe in detail the problem of Type II missingness mentioned in Sec-
tion 1 using a slightly different notation. Let (T (1)

i , T
(2)
i , Ci, Z

′
i) (i = 1, . . . , n) be

i.i.d. random vectors, where T
(1)
i and T

(2)
i denote two types of latent failure times,

of which the first is of interest, and Ci and Zi denote the censoring time and co-
variate vector as before. Suppose that, conditional on Zi, the failure time T

(1)
i is

independent of T
(2)
i and Ci, and has the hazard rate λ(t | Zi) = eβ′

0Ziλ0(t). Define
Ti = T

(1)
i ∧ T

(2)
i , φi = 1

(T
(1)
i

≤T
(2)
i

)
, Xi = Ti ∧ Ci and δi = 1(Ti≤Ci). Note that

φiδi indicates, by the value 1 vs. 0, whether or not the observation time Xi is the
failure time of interest T

(1)
i . In the standard competing risk setup, one observes

(Xi, δi, φiδi, Zi) for every i. With incomplete measurements on the failure types,
however, the data consist of (Xi, δi, ξi, ξiφiδi, Zi) (i = 1, . . . , n), where ξi indicates,
by the value 1 vs 0, whether φi is known or unknown. We assume that ξi is inde-
pendent of all other variables with P (ξi = 1 | Xi, δi, φi, Zi) = τ . This has the same
level of generality as assuming P (ξi = 1 | Xi, δi = 1, φi, Zi) = τ , since for δi = 0 the
value ξi does not have any effect on the observations and can therefore be redefined
to make the independence true. We define Nu

i , Yi, Z̄ and z̄ as in Section 2.
In the absence of missing values, the partial likelihood score function for β0 is

Sφ(β) =
n∑

i=1

∫ ∞

0

{
Zi(t) − Z̄(β, t)

}
φidNu

i (t).

By deleting all the cases with {δi = 1, ξi = 0}, the complete-case estimating function
is

Sφ
d (β) =

n∑
i=1

∫ ∞

0

[
Zi(t) −

∑n
j=1 {δjξj + (1 − δj)}Yj(t)eβ′Zj(t)Zj(t)∑n

j=1 {δjξj + (1 − δj)}Yj(t)eβ′Zj(t)

]
ξiφidNu

i (t).

Because the index set {j : (δjξj + (1 − δj))Yj(t) = 1} is not a random subset of
the risk set {j : Yj(t) = 1}, the complete-case analysis does not yield a consistent
estimator for β0. We shall use the ideas presented in Section 2 to estimate β0 under
Type II missingness.
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The analogs of estimating functions S1(β) and S2(β) studied in Section 2 are

Sφ
1 (β) =

n∑
i=1

∫ ∞

0

{
Zi(t) − Z̄(β, t)

}
ξiφidNu

i (t),

Sφ
2 (β) =

n∑
i=1

∫ ∞

0

{
Zi(t) − Z̄(β, t)

} {
(1 − ξi) − τ̂−1(1 − τ̂)ξi(1 − φi)

}
dNu

i (t),

where τ̂ =
∑n

i=1 δiξi/
∑n

i=1 δi. We have the following results for Sφ
k (β0) (k = 1, 2),

which are similar to those of Sk(β0) (k = 1, 2) given in Theorems 2.1 and 2.2.

Theorem 4.1. The random vector n−1/2
[
Sφ

1 (β0)′, S
φ
2 (β0)′

]′
is asymptotically zero-

mean normal with covariance matrix[
V φ

1 0
0 V φ

2

]
,

where V φ
1 = τV φ, V φ

2 = (1−τ)V φ+τ−1(1−τ)E(Nφ
1 −ENφ

1 )⊗2, Nφ
i =

∫ ∞
0

{Zi(t) −
z̄(β0, t)} (1 − φi)dNu

i (t) and V φ = E
[∫ ∞

0
{Z1(t) − z̄(β0, t)}⊗2

φ1dNu
1 (t)

]
.

In analogy with (2.5) for β̂, we define β̂φ as a solution to

Sφ
1 (β) + DSφ

2 (β) = 0,

where D is a given p×p matrix. Then the following theorem similar to Theorem 2.3
holds.

Theorem 4.2. Suppose that
{
τV φ + (1 − τ)DV φ

}
is nonsingular. Then n1/2(β̂φ−

β0)
d→ N (0, Σφ(D)), where

Σφ(D) =
{
τV φ + (1 − τ)DV φ

}−1
(τV φ + DV φ

2 D′)
{
τV φ + (1 − τ)V φD′}−1

.

The optimal choice for D is D∗ = (1 − τ)V φ(V φ
2 )−1, in which case

Σφ(D∗) =
{

τV φ + (1 − τ)2V φ(V φ
2 )−1V φ

}−1

.

Proof of Theorem 4.1. As in the proofs of Theorems 2.1 and 2.2, we can define the
martingales Mφ

i (t) = φiN
u
i (t) −

∫ t

0
Yi(s)eβ′

0Zi(s)λ0(s)ds (i = 1, . . . , n) and derive
the following key approximations

Sφ
1 (β0) =

n∑
i=1

∫ ∞

0

{Zi(t) − z̄(β0, t)} ξidMφ
i (t)

+
n∑

i=1

∫ ∞

0

{Zi(t) − z̄(β0, t)} (ξi − τ)Yi(t)eβ′
0Zi(t)λ0(t)dt + op(n

1
2 ),

Sφ
2 (β0) =

n∑
i=1

∫ ∞

0

{Zi(t) − z̄(β0, t)} (1 − ξi)dMφ
i (t)

−
n∑

i=1

∫ ∞

0

{Zi(t) − z̄(β0, t)} (ξi − τ)Yi(t)eβ′
0Zi(t)λ0(t)dt

−τ−1
n∑

i=1

(Nφ
i − ENφ

i )(ξi − τ) + op(n
1
2 ).
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These two approximations can be used to show, through some tedious calcula-

tions, that the asymptotic variance-covariance matrix of n−1/2
[
Sφ

1 (β0)′, S
φ
2 (β0)′

]′
is Diag

{
V φ

1 , V φ
2

}
. Hence, the theorem follows from the multivariate central limit

theorem.

Proof of Theorem 4.2. This can be done by applying Theorem 4.1 and the argu-
ments given in the proof of Theorem 2.3.

Using β̂φ with its asymptotic distribution given by Theorem 4.2, we can construct
consistent estimators for the cumulative baseline hazard function Λ0(t). Two such
estimators which correspond to Λ̂1(β̂, t) and Λ̂2(β̂, t) defined by (3.13) and (3.14)
are

Λ̂φ
1 (β̂φ, t) =

∫ t

0

∑n
i=1 ξiφidNu

i (s)

τ̂
∑n

i=1 Yi(s)eβ̂φ′Zi(s)
,

Λ̂φ
2 (β̂φ, t) =

∫ t

0

∑n
i=1

{
ξiφi + (1 − ξi) − τ̂−1(1 − τ̂)ξi(1 − φi)

}
dNu

i (s)∑n
i=1 Yi(s)eβ̂φ′Zi(s)

.

The kind of asymptotic properties given in Theorem 3.2 for Λ̂k(β̂, t) (k = 1, 2)
also hold for Λ̂φ

k(β̂φ, t) (k = 1, 2). They can be derived from the arguments used
in the proof of Theorem 3.2. To simplify the statements, we shall only present the
asymptotic normality part although the weak convergence also holds.

Theorem 4.3. Suppose that the assumptions of Theorem 4.2 hold and that t satis-
fies EY1(t) > 0. Then n1/2

{
Λ̂φ

k(β̂φ, t) − Λ0(t)
}

d→ N (0, σ2
φ,k(t)) (k = 1, 2), where,

with HZ(t) and a(t) as defined in Theorem 3.2, Ωφ =
{
τV φ + (1 − τ)DV φ

}−1
D

and NφH
i (t) =

∫ t

0
(1 − φi)dNu

i (s)/HZ(s) (i = 1, . . . , n),

σ2
φ,1(t) = τ−1

∫ t

0

dΛ0(s)
HZ(s)

− τ−1(1 − τ)Λ2
0(t) + a′(t)Σφ(D)a(t)

−2τ−1(1 − τ)a′(t)ΩφENφ
1 Λ0(t),

σ2
φ,2(t) =

∫ t

0

dΛ0(s)
HZ(s)

+ τ−1(1 − τ)Var
{

NφH
1 (t)

}
+ a′(t)Σ(D)a(t)

−2τ−1(1 − τ)a′(t)ΩφE
[
Nφ

1

{
NφH

1 (t) − ENφH
1 (t)

}]
.

For the one-sample case, where the data consist of i.i.d. random vectors (Xi, δi, ξi,
ξiφiδi) (i = 1, . . . , n), we modify (3.2), (3.4) and (3.5) to obtain the following class
of consistent estimators for the cumulative hazard function of T

(1)
i :

Λ̂φ(α, t) = α

∫ t

0

∑n
i=1 ξiφidNu

i (s)
τ̂

∑n
i=1 Yi(s)

+ (1 − α)
∫ t

0

∑n
i=1

{
1 − ξi − τ̂−1(1 − τ̂)ξi(1 − φi)

}
dNu

i (s)
(1 − τ̂)

∑n
i=1 Yi(s)

.

The arguments given in the proof of Theorem 3.1 can be used to verify the following
asymptotic normality for Λ̂φ(α, t).
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Theorem 4.4. For t satisfying EY1(t) > 0, n1/2
{

Λ̂φ(α, t) − Λ(t)
}

d→ N (0, σ2
t (α)),

where

σ2
t (α) =

α2

τ

{
A(t) − (1 − τ)Λ2(t)

}
+ 2α(1 − α)

{
Λ2(t) + τ−1Λ(t)ΛQ(t)

}
+

(1 − α)2

1 − τ

[
A(t) + τ−1AQ(t) − τ

{
Λ(t) + τ−1ΛQ(t)

}2
]
,

where A(t) =
∫ t

0
dΛ(s)/EY1(s), AQ(t) =

∫ t

0
dΛQ(s)/EY1(s) and ΛQ is the cumula-

tive hazard function of T
(2)
i . In particular,

σ2
t (1) = τ−1

{
A(t) − (1 − τ)Λ2(t)

}
,

σ2
t (τ) = A(t) + τ−1(1 − τ)

{
AQ(t) − Λ2

Q(t)
}

.

The variance σ2
t (α) is minimized when α equals

α∗ =
τ

{
A(t) − Λ2(t)

}
+ AQ(t) − Λ2

Q(t) − (1 + τ)Λ(t)ΛQ(t)
A(t) − Λ2(t) + AQ(t) − Λ2

Q − 2Λ(t)ΛQ(t)
.

5. Discussions

We did not provide all the details for Type II missingness in Section 4 because of the
similarity with Type I missingness. It should be noted that consistent estimators for
the variance quantities such as Σφ(D), σ2

φ,k(t) (k = 1, 2) and σ2
t (α) can be obtained

in the same manners as their counterparts in Sections 2 and 3. Furthermore, the
asymptotic approximations under Type II missingness are expected to have similar
degrees of accuracy in finite samples as those of Type I missingness.

We have made the missing completely at random assumption in our develop-
ments. This assumption consists of two parts, the first part being the independence
between ξi and (Xi, δi, φi, Zi) for every i and the second being the i.i.d property of
ξi (i = 1, . . . , n). The first part of the assumption cannot be avoided without direct
modeling the missing processes. The second part can be relaxed to the extent that
a consistent estimator for P (ξi = 1) is available for every i. For example, in a multi-
institutional study, it may be reasonable to assume that the missing probabilities
are constant within the same institution but vary among different institutions. In
this case, we may stratify our data on the institutions and modify the methods
described in the previous sections to incorporate the stratification factor.

In many applications, the measurements on the covariate vectors are incomplete.
[9] and subsequent papers provide solutions to this problem. It is possible to combine
the techniques developed in this paper with those of [9] to handle the situation where
both the covariates and the failure indicators are partially measured. The details
will not be presented here.
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