
IMS Lecture Notes–Monograph Series
High Dimensional Probability
Vol. 51 (2006) 155–172
c© Institute of Mathematical Statistics, 2006
DOI: 10.1214/074921706000000824

Revisiting two strong approximation

results of Dudley and Philipp

This paper is dedicated to the memory of Walter Philipp.

Philippe Berthet1 and David M. Mason2,∗

Université Rennes 1 and University of Delaware

Abstract: We demonstrate the strength of a coupling derived from a Gaussian
approximation of Zaitsev (1987a) by revisiting two strong approximation re-
sults for the empirical process of Dudley and Philipp (1983), and using the
coupling to derive extended and refined versions of them.

1. Introduction

Einmahl and Mason [17] pointed out in their Fact 2.2 that the Strassen–Dudley
theorem (see Theorem 11.6.2 in [11]) in combination with a special case of Theorem
1.1 and Example 1.2 of Zaitsev [42] yields the following coupling. Here |·|N , N ≥ 1,
denotes the usual Euclidean norm on RN .

Coupling inequality. Let Y1, . . . , Yn be independent mean zero random vectors in
R

N , N ≥ 1, such that for some B > 0,

|Yi|N ≤ B, i = 1, . . . , n.

If (Ω, T , P) is rich enough then for each δ > 0, one can define independent nor-
mally distributed mean zero random vectors Z1, . . . , Zn with Zi and Yi having the
same variance/covariance matrix for i = 1, . . . , n, such that for universal constants
C1 > 0 and C2 > 0,

(1.1) P

{∣∣∣∣∣
n∑

i=1

(Yi − Zi)

∣∣∣∣∣
N

> δ

}
≤ C1N

2 exp
(
− C2δ

N2B

)
.

(Actually Einmahl and Mason did not specify the N2 in (1.1) and they applied
a less precise result in [43], however their argument is equally valid when based
upon [42].) Often in applications, N is allowed to increase with n. This result
and its variations, when combined with inequalities from empirical and Gaussian
processes and from probability on Banach spaces, has recently been shown to be
an extremely powerful tool to establish a Gaussian approximation to the uniform
empirical process on the d−dimensional cube (Rio [34]), strong approximations for
the local empirical process (Einmahl and Mason [17]), extreme value results for the
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Hopfield model (Bovier and Mason [3] and Gentz and Löwe [19]), laws of the iter-
ated logarithm in Banach spaces (Einmahl and Kuelbs [15]), moderate deviations
for Banach space valued sums (Einmahl and Kuelbs [16]), and a functional large
deviation result for the local empirical process (Mason [26]). In this paper we shall
further demonstrate the strength of (1.1) by revisiting two strong approximation
results for the empirical process of Dudley and Philipp [14], and use (1.1) to derive
extended and refined versions of them.

Dudley and Philipp [14] was a path breaking paper, which introduced a very
effective technique for obtaining Gaussian approximations to sums of i.i.d. Banach
space valued random variables. The strong approximation results of theirs, which
we shall revisit, were derived from a much more general result in their paper. Key
to this result was their Lemma 2.12, which is a special case of an extension by
Dehling [8] of a Gaussian approximation in the Prokhorov distance to sums of
i.i.d. multivariate random vectors due to Yurinskii [41]. In essence, we shall be
substituting the application of their Lemma 2.12 by the above coupling inequality
(1.1) based upon Zaitsev [42]. We shall also update and streamline the methodology
by employing inequalities that were not available to Dudley and Philipp, when they
wrote their paper.

1.1. The Gaussian approximation and strong approximation problems

Let us begin by describing the Gaussian approximation problem for the empirical
process. For a fixed integer n ≥ 1 let X, X1, . . . , Xn be independent and identically
distributed random variables defined on the same probability space (Ω, T , P) and
taking values in a measurable space (X ,A). Denote by E the expectation with
respect to P of real valued random variables defined on (Ω, T ) and write P = P

X .
Let M be the set of all measurable real valued functions on (X ,A). In this paper we
consider the following two processes indexed by a sufficiently small class F ⊂ M.
First, define the P -empirical process indexed by F to be

(1.2) αn(f) =
1√
n

n∑
i=1

{f(Xi) − Ef(X)} , f ∈ F .

Second, define the P -Brownian bridge G indexed by F to be the mean zero Gaussian
process with the same covariance function as αn,

(1.3) 〈f, h〉 = cov(G(f), G(h)) = E (f(X)h(X)) − E (f(X)) E(h(X)), f, g ∈ F .

Under entropy conditions on F , the Gaussian process G has a version which is
almost surely continuous with respect to the intrinsic semi-metric

(1.4) dP (f, h) =
√

E (f(X) − h(X))2, f, g ∈ F ,

that is, we include dP -continuity in the definition of G.
Our goal is to show that a version of X1, . . . , Xn and G can be constructed on

the same underlying probability space (Ω, T , P) in such a way that

(1.5) ‖αn − G‖F = sup
f∈F

|αn(f) − G(f)|

is very small with high probability, under useful assumptions on F and P . This
is what we call the Gaussian approximation problem. We shall use our Gaussian
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approximation results to define on the same probability (Ω, T , P) a sequence X1, X2,
. . . , i.i.d. X and a sequence G1, G2, . . . , i.i.d. G so that with high probability,

(1.6) n−1/2 max
1≤m≤n

∥∥∥∥∥√mαm −
m∑

i=1

Gi

∥∥∥∥∥
F

is small. This is what we call the strong approximation problem.

1.2. Basic assumptions

We shall assume that F satisfies the following boundedness condition (F.i) and
measurability condition (F.ii).

(F.i) For some M > 0, for all f ∈ F , ‖f‖X = supx∈X |f (x)| ≤ M/2.
(F.ii) The class F is point-wise measurable, i.e. there exists a countable subclass

F∞ of F such that we can find for any function f ∈ F a sequence of
functions {fm} in F∞ for which limm→∞ fm(x) = f(x) for all x ∈ X .

Assumption (F.i) justifies the finiteness of all the integrals that follow as well as
the application of the key inequalities. The requirement (F.ii) is imposed to avoid
using outer probability measures in our statements – see Example 2.3.4 in [38].

We intend to compute probability bounds for (1.5) holding for any n and some
fixed M in (F.i) with ensuing constants independent of n.

2. Entropy approach based on Zaitsev [42]

We shall require that one of the following two L2-metric entropy conditions (VC)
and (BR) holds on the class F . These conditions are commonly used in the context
of weak invariance principles and many examples are available – see e.g. van der
Vaart and Wellner [38] and Dudley [12]. In this section we shall state our main
results. We shall prove them in Section 5.

2.1. L2-covering numbers

First we consider polynomially scattered classes F . Let F be an envelope function
for the class F , that is, F a measurable function such that |f (x)| ≤ F (x) for all
x ∈ X and f ∈ F . Given a probability measure Q on (X ,A) endow M with the
semi-metric dQ, where d2

Q(f, h) =
∫
X (f − h)2dQ . Further, for any f ∈ M set

Q(f2) = d2
Q(f, 0) =

∫
X f2dQ. For any ε > 0 and probability measure Q denote by

N(ε,F , dQ) the minimal number of balls {f ∈ M : dQ(f, h) < ε} of dQ-radius ε
and center h ∈ M needed to cover F . The uniform L2-covering number is defined
to be

(2.1) NF (ε,F) = sup
Q

N
(
ε
√

Q(F 2),F , dQ

)
,

where the supremum is taken over all probability measures Q on (X ,A) for which
0 < Q(F 2) < ∞. A class of functions F satisfying the following uniform entropy
condition will be called a VC class.



158 P. Berthet and D. M. Mason

(VC) Assume that for some c0 > 0, ν0 > 0, and envelope function F ,

(2.2) NF (ε,F) ≤ c0ε
−ν0 , 0 < ε < 1.

The name “VC class” is given to this condition in recognition to Vapnik and
Červonenkis [39] who introduced a condition on classes of sets, which implies (VC).
In the sequel we shall assume that F := M/2 as in (F.i).

Proposition 1. Under (F.i), (F.ii) and (VC) with F := M/2 for each λ > 1 there
exists a ρ (λ) > 0 such that for each integer n ≥ 1 one can construct on the same
probability space random vectors X1, . . . , Xn i.i.d. X and a version of G such that

(2.3) P
{
‖αn − G‖F > ρ (λ)n−τ1 (log n)τ2

}
≤ n−λ,

where τ1 = 1/(2 + 5ν0) and τ2 = (4 + 5ν0)/(4 + 10ν0).

Proposition 1 leads to the following strong approximation result. It is an indexed
by functions generalization of an indexed by sets result given in Theorem 7.4 of
Dudley and Philipp [14].

Theorem 1. Under the assumptions and notation of Proposition 1 for all 1/
(2τ1) < α < 1/τ1 and γ > 0 there exist a ρ (α, γ) > 0, a sequence of i.i.d.
X1, X2, . . . , and a sequence of independent copies G1, G2, . . . , of G sitting on the
same probability space such that

(2.4) P

{
max

1≤m≤n

∥∥∥∥∥√mαm −
m∑

i=1

Gi

∥∥∥∥∥
F

> Cρ (α, γ)n1/2−τ(α) (log n)τ2

}
≤ n−γ

and

(2.5) max
1≤m≤n

∥∥∥∥∥√mαm −
m∑

i=1

Gi

∥∥∥∥∥
F

= O
(
n1/2−τ(α) (log n)τ2

)
, a.s.,

where τ (α) = (ατ1 − 1/2) /(1 + α) > 0.

2.2. Bracketing numbers

A second way to measure the size of the class F is to use L2(P )-brackets instead of
L2(Q)-balls. Let l ∈ M and u ∈ M be such that l ≤ u and dP (l, u) < ε. The pair
of functions l, u form an ε-bracket [l, u] consisting of all the functions f ∈ F such
that l ≤ f ≤ u. Let N[ ](ε,F , dP ) be the minimum number of ε-brackets needed to
cover F . Notice that trivially we have N(ε,F , dP ) ≤ N[ ](ε/2,F , dP ).

(BR) Assume that for some b0 > 0 and 0 < r0 < 1,

(2.6) log N[ ](ε,F , dP ) ≤ b2
0ε

−2r0 , 0 < ε < 1.

We derive the following rate of Gaussian approximation assuming an exponen-
tially scattered index class F , meaning that (2.6) holds. Note that we get a slower
rate in Proposition 2 than that given Proposition 1.
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Proposition 2. Under (F.i), (F.ii) and (BR) for each λ > 1 there exists a ρ (λ) > 0
such that for each integer n ≥ 1 one can construct on the same probability space
random vectors X1, . . . , Xn i.i.d. X and a version of G such that

(2.7) P
{
‖αn − G‖F > ρ (λ) (log n)−κ

}
≤ n−λ,

where κ = (1 − r0)/2r0.

Proposition 2 leads to the following indexed by functions generalization of an
indexed by sets result given in Theorem 7.1 of Dudley and Philipp [14].

Theorem 2. Under the assumptions and notation of Proposition 2, with κ < 1/2
(1/2 < r0 < 1), for every H > 0 there exist ρ (τ, H) > 0 and a sequence of i.i.d.
X1, X2, . . . , and a sequence of independent copies G1, G2, . . . , of G sitting on the
same probability space such that

(2.8) P

{
max

1≤m≤n

∥∥∥∥∥√mαm −
m∑

i=1

Gi

∥∥∥∥∥
F

>
√

nρ (τ, H) (log n)−τ

}
≤ (log n)−H

and

(2.9) max
1≤m≤n

∥∥∥∥∥√mαm −
m∑

i=1

Gi

∥∥∥∥∥
F

= O
(√

n(log n)−τ
)
, a.s.,

where τ = κ (1/2 − κ) / (1 − κ).

3. Comments on the approach based on KMT

Given F , the rates obtained in Proposition 1 and Theorem 1 are universal in P .
If one specializes to particular P , the rates in Propositions 1 and 2 and Theorem
1 and 2 are far from being optimal. In such situations one can get better and
even unimprovable rates by replacing the use of Zaitsev [42] by the Komlós, Major
and Tusnády [KMT] [22] Brownian bridge approximation to the uniform empirical
process or one based on the same dyadic scheme. (More details about this approx-
imation are provided in [4, 13, 25, 27, 28].) This is especially the case when the
underlying probability measure P is smooth. To see how this works in the empirical
process indexed by functions setup refer to Koltchinskii [21] and Rio [33] and in
the indexed by smooth sets situation turn to Révesz [32] and Massart [29]. One can
also use the KMT–type bivariate Brownian bridge approximation to the bivariate
uniform empirical process as a basis for further approximation. For a brief outline
of this approximation consult Tusnády [36] and for detailed presentations refer to
Castelle [5] and Castelle and Laurent-Bonvalot [6].

4. Tools needed in proofs

For convenience we shall collect here the basic tools we shall need in our proofs.

4.1. Inequalities for empirical processes

On a rich enough probability space (Ω, T , P), let X, X1, X2, . . . , Xn be i.i.d. random
variables with law P = P

X and ε1, ε2, . . . , εn be i.i.d. Rademacher random variables
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independent of X1, . . . , Xn. By a Rademacher random variable ε1, we mean that
P(ε1 = 1) = P(ε1 = −1) = 1/2. Consider a point-wise measurable class G of
bounded measurable real valued functions on (X ,A).

The following exponential inequality is due to Talagrand [35].

Talagrand’s inequality. If G satisfies (F.i) and (F.ii) then for all n ≥ 1 and
t > 0 we have, for suitable finite constants A > 0 and A1 > 0,

P

{
||αn||G > A

(
E

(∥∥∥∥∥ 1√
n

n∑
i=1

εig(Xi)

∥∥∥∥∥
G

)
+ t

)}
(4.1)

≤ 2 exp
(
−A1t

2

σ2
G

)
+ 2 exp

(
−A1t

√
n

M

)
,

where σ2
G := supg∈G V ar(g(X)).

Moreover the constants A and A1 are independent of G and M . Next we state
two upper bounds for the above expectation of the supremum of the symmetrized
empirical process.

We shall require two moment bounds. The first is due to Einmahl and Mason
[18] – for a similar bound refer to Giné and Guillou [20].

Moment inequality for (VC). Let G satisfy (F.i) and (F.ii) with envelope func-
tion G and be such that for some positive constants β, υ, c > 1 and σ ≤ 1/(8c) the
following four conditions hold,

E(G2(X)) ≤ β2; NG(ε,G) ≤ cε−υ, 0 < ε < 1; sup
g∈G

E(g2(X)) ≤ σ2;

and

sup
g∈G

‖g‖X ≤
√

nσ2/ log(β ∨ 1/σ)
2
√

υ + 1
.

Then we have for a universal constant A2 not depending on β,

(4.2) E

(∥∥∥∥∥ 1√
n

n∑
i=1

εig(Xi)

∥∥∥∥∥
G

)
≤ A2

√
υσ2 log(β ∨ 1/σ).

Next we state a moment inequality under (BR). For any 0 < σ < 1, set

(4.3) J (σ,G) =
∫

[0,σ]

√
log N[ ](s,G, dP ) ds

and

(4.4) a (σ,G) =
σ√

log N[ ](σ,G, dP )
.

The second moment bound follows from Lemma 19.34 in [37] and a standard sym-
metrization inequality, and is reformulated by using (4.3).

Moment inequality for (BR). Let G satisfy (F.i) and (F.ii) with envelope G
and be such that supg∈G E

(
g2 (X)

)
< σ2 < 1. We have, for a universal constant

A3,

(4.5) E

(∥∥∥∥∥ 1√
n

n∑
i=1

εig(Xi)

∥∥∥∥∥
G

)
≤ A3

(
J (σ,G) +

√
n P
{
G (X) >

√
n a(σ,G)

})
.
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4.2. Inequalities for Gaussian processes

Let Z be a separable mean zero Gaussian process on a probability space (Ω, T , P)
indexed by a set T . Define the intrinsic semi–metric ρ on T by

(4.6) ρ (s, t) =
√

E (Zt − Zs)
2
.

For each ε > 0 let N (ε, T, ρ) denote the minimal number of ρ-balls of radius ε
needed to cover T. Write ‖Z‖T = supt∈T |Zt| and σ2

T (Z) = supt∈T E
(
Z

2
t

)
. The

following large deviation probability estimate for ‖Z‖T is due to Borell [2]. (Also
see Proposition A.2.1 in [38].)

Borell’s inequality. For all t > 0,

(4.7) P {|‖Z‖T − E (‖Z‖T )| > t} ≤ 2 exp
(
− t2

2σ2
T (Z)

)
.

According to Dudley [9], the entropy condition

(4.8)
∫

[0,1]

√
log N (ε, T, ρ) dε < ∞

ensures the existence of a separable, bounded, dP -uniformly continuous modifica-
tion of Z. Moreover the above Dudley integral (4.8) controls the modulus of conti-
nuity of Z (see Dudley [10]) as well as its expectation (see Marcus and Pisier [24],
p. 25, Ledoux and Talagrand [23], p. 300, de la Peña and Giné [7], Cor. 5.1.6, and
Dudley [12]). The following inequality is part of Corollary 2.2.8 in van der Vaart
and Wellner [38].

Gaussian moment inequality. For some universal constant A4 > 0 and all σ > 0
we have

(4.9) E

(
sup

ρ(s,t)<σ

|Zt − Zs|
)

≤ A4

∫
[0,σ]

√
log N (ε, T, ρ) dε.

We shall be applying these inequalities to the Gaussian process Z = G defined
in introduction, so that T = F and ρ = dP .

4.3. A maximal inequality

The following version of a maximal inequality due to Montgomery–Smith [30] (see
also Theorem 1.1.5 in [7]) will come in handy.
A maximal inequality. Let X1, . . . , Xn, n ≥ 1, be i.i.d. random variables taking
values in a separable Banach space. Then for all t > 0,

(4.10) P

{
max

1≤m≤n

∥∥∥∥∥
m∑

i=1

Xi

∥∥∥∥∥ > t

}
≤ 9P

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ >
t

30

}
.
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5. Proofs of main results

5.1. Description of construction of (αn, G)

Under (F.i), (F.ii) and either (VC) or (BR) for any ε > 0 we can choose a grid

H (ε) = {hk : 1 ≤ k ≤ N (ε)}

of measurable functions on (X ,A) such that each f ∈ F is in a ball {f ∈ M :
dP (hk, f) < ε} around some hk, 1 ≤ k ≤ N (ε). The choice

(5.1) N (ε) ≤ N(ε/2,F , dP )

permits us to select hk ∈ F . Set

F (ε) =
{
(f, f ′) ∈ F2 : dP (f, f ′) < ε

}
.

Fix n ≥ 1. Let X, X1, . . . , Xn be independent with common law P = P
X and

ε1, . . . , εn be independent Rademacher random variables mutually independent of
X1, . . . , Xn. Write for ε > 0,

µn (ε) = E

{
sup

(f,f ′)∈F(ε)

∣∣∣∣∣ 1√
n

n∑
i=1

εi (f − f ′) (Xi)

∣∣∣∣∣
}

and

µ (ε) = E

{
sup

(f,f ′)∈F(ε)

|G(f) − G(f ′)|
}

.

Given ε > 0 and n ≥ 1, our aim is to construct a probability space (Ω, T , P) on
which sit X1, . . . , Xn and a version of the Gaussian process G indexed by F such
that for H (ε) and F (ε) defined as above and for all A > 0, δ > 0 and t > 0,

P {‖αn − G‖F > Aµn (ε) + µ (ε) + δ + (A + 1) t}

≤ P

{
max

h∈H(ε)
|αn (h) − G(h)| > δ

}

+ P

{
sup

(f,f ′)∈F(ε)

|αn (f) − αn (f ′)| > Aµn (ε) + At

}
(5.2)

+ P

{
sup

(f,f ′)∈F(ε)

|G(f) − G(f ′)| > t + µ (ε)

}

=: Pn (δ) + Qn (t, ε) + Q (t, ε) ,

with all these probabilities simultaneously small for suitably chosen A > 0, δ > 0
and t > 0. Consider the n i.i.d. mean zero random vectors in R

N(ε),

Yi :=
1√
n

(
h1 (Xi) − E(h1 (X)), . . . , hN(ε) (Xi) − E(hN(ε) (X))

)
, 1 ≤ i ≤ n.

First note that by hk ∈ F and (F.i), we have

|Yi|N(ε) ≤ M

√
N (ε)

n
, 1 ≤ i ≤ n.
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Therefore by the coupling inequality (1.1) we can define Y1, . . . , Yn i.i.d.

Y :=
(
Y 1, . . . , Y N(ε)

)
and Z1, . . . , Zn i.i.d.

Z :=
(
Z1, . . . , ZN(ε)

)
mean zero Gaussian vectors on the same probability space such that

(5.3) Pn (δ) ≤ P



∣∣∣∣∣

n∑
i=1

(Yi − Zi)

∣∣∣∣∣
N(ε)

> δ


 ≤ C1N (ε)2 exp

(
− C2

√
n δ

(N (ε))5/2
M

)
,

where cov(Zl, Zk) = cov(Y l, Y k) = 〈hl, hk〉. Moreover by Lemma A1 of Berkes
and Philipp [1] (also see Vorob’ev [40]) this space can be extended to include a
P -Brownian bridge G indexed by F such that

G(hk) = n−1/2
n∑

i=1

Zk
i .

The Pn (δ) in (5.2) is defined through this G. Notice that the probability space on
which Y1, . . . , Yn, Z1, . . . , Zn and G sit depends on n ≥ 1 and the choice of ε > 0
and δ > 0.

Observe that the class

G (ε) = {f − f ′ : (f, f ′) ∈ F (ε)}

satisfies (F.i) with M/2 replaced by M , (F.ii) and

σ2
G(ε) = sup

(f,f ′)∈F(ε)

V ar(f(X) − f ′(X)) ≤ sup
(f,f ′)∈F(ε)

d2
P (f, f ′) ≤ ε2.

Thus with A > 0 as in (4.1) we get by applying Talagrand’s inequality,

Qn (t, ε) = P
{
||αn||G(ε) > A (µn (ε) + t)

}
(5.4)

≤ 2 exp
(
−A1t

2

ε2

)
+ 2 exp

(
−A1

√
n t

M

)
.

Next, consider the separable centered Gaussian process Z(f,f ′) = G(f) − G(f ′)
indexed by T = F (ε). We have

σ2
T (Z) = sup

(f,f ′)∈F(ε)

E
(
(G(f) − G(f ′))2

)
= sup

(f,f ′)∈F(ε)

V ar (f(X) − f ′(X))

≤ sup
(f,f ′)∈F(ε)

d2
P (f, f ′) ≤ ε2.

Borell’s inequality (4.7) now gives

(5.5) Q (t, ε) = P

{
sup

(f,f ′)∈F(ε)

|G(f) − G(f ′)| > t + µ (ε)

}
≤ 2 exp

(
− t2

2ε2

)
.
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Putting (5.3), (5.4) and (5.5) together we obtain, for some positive constants A, A1

and A5 with A5 ≤ 1/2,

P { ‖αn − G‖F > Aµn (ε) + µ (ε) + δ + (A + 1) t}

≤ C1N (ε)2 exp

(
− C2

√
n δ

(N (ε))5/2
M

)
(5.6)

+ 2 exp
(
−A1

√
n t

M

)
+ 4 exp

(
−A5t

2

ε2

)
.

Proof of Proposition 1. Let us assume that (VC) holds with F := M/2, so that for
some c0 > 0 and ν0 > 0, with c1 = c0(2

√
PF 2)ν0 = c0M

ν0 ,

N (ε) ≤ N(ε/2,F , dP ) ≤ c1ε
−ν0 , 0 < ε < 1.

Notice that both

N(ε,G(ε), dP ) ≤ (N(ε/2,F , dP ))2 ≤ c2
1ε

−2ν0

and
N(ε,F(ε), dP ) ≤ (N(ε/2,F , dP ))2 ≤ c2

1ε
−2ν0 .

Therefore we can apply the moment bound assuming (VC) given in (4.2) taken
with G = G(ε), G := M , υ = 2ν0 and β = M , to get for any 0 < ε < 1/e and n ≥ 1
so that

(5.7)
√

nε

2
√

1 + 2ν0

√
log(M ∨ 1/ε)

> M

the bound
µn (ε) ≤ A2ε

√
2ν0 log(M ∨ 1/ε).

Whereas, by the Gaussian moment bound (4.9), we have for all 0 < ε < 1/e,

µ (ε) ≤ A4

√
2ν0

∫
[0,ε]

√
log(1/x)dx.

Hence, for some D > 0 it holds for all 0 < ε < 1/e and n ≥ 1 so that (5.7) holds,

(5.8) Aµn (ε) + µ (ε) ≤ Dε
√

log (1/ε).

Therefore, in view of (5.8) and (5.6) it is natural to define for suitably large positive
γ1 and γ2,

δ = γ1ε
√

log (1/ε) and t = γ2ε
√

log (1/ε).

We now have for all 0 < ε < 1/e and n ≥ 1 so that (5.7) is satisfied on a suitable
probability space depending on n ≥ 1, ε and δ so that (5.6) holds,

P

{
‖αn − G‖F > (D + γ1 + (1 + A) γ2) ε

√
log (1/ε)

}

≤ C1c
2
1

ε2ν0
exp

(
−γ1C2

√
n

c
5/2
1 M

ε1+5ν0/2
√

log (1/ε)

)

+ 2 exp
(
−A1γ2

√
n

M
ε
√

log (1/ε)
)

+ 4 exp
(
−A5γ

2
2 log (1/ε)

)
.
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By taking ε = ((log n)/n)1/(2+5ν0), which satisfies (5.7) for all large enough n, we
readily obtain from these last bounds that for every λ > 1 there exist D > 0, γ1 > 0
and γ2 > 0 such that for all n ≥ 1, αn and G can be defined on the same probability
space so that

P

{
‖αn − G‖F > (D + γ1 + (1 + A) γ2)

(
log n

n

)1/(2+5ν0)
√

log n

2 + 5ν0

}
≤ n−λ.

It is clear now that there exists a ρ (λ) > 0 such that (2.3) holds. This completes
the proof of Proposition 1.

Proof of Proposition 2. Under (BR) as defined in (2.6) we have, for some 0 < r0 < 1
and b0 > 0,

N (ε) ≤ N(ε/2,F , dP ) ≤ N[ ](ε/2,F , dP ) ≤ exp
(

22r0b2
0

ε2r0

)
, 0 < ε < 1,

and as above both

N(ε,G(ε), dP ) ≤ N[ ](ε,G(ε), dP ) ≤
(
N[ ](ε/2,F , dP )

)2 ≤ exp
(

2
22r0b2

0

ε2r0

)

and

N(ε,F(ε), dP ) ≤ N[ ](ε,F(ε), dP ) ≤
(
N[ ](ε/2,F , dP )

)2 ≤ exp
(

2
22r0b2

0

ε2r0

)
.

Setting σ = ε in (4.3) and (4.4) we get

J (ε,G(ε)) ≤
√

2b0

∫
[0,ε]

ds

sr0
≤

√
2b0

1 − r0
ε1−r0

and

a (ε,G(ε)) =
ε√

log N[ ](ε,G(ε), dP )
≥ ε1+r0

√
2b0

.

Hence by the moment bound assuming (BR) given in (4.5) taken with G (X) = M ,

µn (ε) ≤ A3


 √

2b0

1 − r0
ε1−r0 +

√
n I{

M>
√

nε1+r0√
2b0

}



and, since in the same way we have

J (ε,F(ε)) ≤
√

2b0

1 − r0
ε1−r0 and a (ε,F(ε)) ≥ ε1+r0

√
2b0

,

we get by the Gaussian moment inequality,

µ (ε) ≤ A4

√
2b0

1 − r0
ε1−r0 .

As a consequence, for some D > 0 and

ε >
(DM)1/(1+r0)

n1/(2+2r0)



166 P. Berthet and D. M. Mason

it follows that
Aµn (ε) + µ (ε) ≤ Dε1−r0 .

Thus it is natural to take in (5.6) for some γ1 > 0 and γ2 > 0 large enough,

δ = γ1ε
1−r0 and t = γ2ε

1−r0 ,

which gives with ρ = D + γ1 + (A + 1) γ2,

P
{
‖αn − G‖F > ρε1−r0

}
≤ C1 exp

(
22r0+1b2

0

ε2r0
− γ1C2

√
n

M
ε1−r0 exp

(
−

5
(
22r0b2

0

)
2ε2r0

))

+ 2 exp
(
−A1γ2

√
n

M
ε1−r0

)
+ 4 exp

(
−A5γ

2
2

ε2r0

)
.

We choose

ε =
(

10b2
02

2r0

log n

)1/(2r0)

,

which makes

exp

(
−

5
(
22r0b2

0

)
2ε2r0

)
= n−1/4.

Given any λ > 0 we clearly see now from this last probability bound that for
ρ (λ) > 0 made large enough by increasing γ1 and γ2 we get for all n ≥ 1,

P

{
‖αn − G‖F > ρ (λ) (log n)−(1−r0)/2r0

}
≤ n−λ.

The proof of Proposition 2 now follows the same lines as that of Proposition 1.

5.2. Proofs of strong approximations

Notice that the conditions on F in Propositions 1 and 2 imply that there exists a
constant B such that

sup
n≥1

E

(∥∥∥∥∥ 1√
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
F

)
≤ B and E (‖G‖F ) ≤ B.

Therefore by Talagrand’s inequality (4.1) and the Montgomery–Smith inequality
(4.10) for all n ≥ 1 and t > 0 we have, for suitable finite constants C > 0 and
C1 > 0,

P

{
max

1≤m≤n

√
m||αm||F > C

√
n (B + t)

}
(5.9)

≤ 18 exp
(
−C1t

2

σ2
F

)
+ 18 exp

(
−C1t

√
n

M

)
,

where σ2
F := supf∈F V ar(f(X)). Furthermore, by Borell’s inequality (4.7), the

Montgomery–Smith inequality (4.10) and the fact that n−1/2
∑n

i=1 Gi =d G, for
i.i.d. Gi, we get for all n ≥ 1 and t > 0 that for a suitable finite constant D > 0,

(5.10) P

{
max

1≤m≤n

∥∥∥∥∥
m∑

i=1

Gi

∥∥∥∥∥
F

> D
√

n (B + t)

}
≤ 18 exp

(
− t2

2σ2
F

)
.
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Proof of Theorem 1. Choose any γ > 0. We shall modify the scheme described on
pages 236–238 of Philipp [31] to construct a probability space on which (2.4) and
(2.5) hold. Let n0 = 1 and for each k ≥ 1 set nk = [kα], where [x] denotes the
integer part of x and α is chosen so that

(5.11) 1/2 < τ1α < 1.

Notice that τ1 < 1/2 in Proposition 1 and thus α > 1.
Applying Proposition 1, we see that for each λ > 1 there exists a ρ = ρ (λ) > 0

such that one can construct a sequence of independent pairs (α(k)
nk , G(k))k≥1 sitting

on the same probability space satisfying for all k ≥ 1,

(5.12) P

{∥∥∥α(k)
nk

− G
(k)
∥∥∥
F

> ρn−τ1
k (log nk)τ2

}
≤ n−λ

k .

Set for k ≥ 1

tk =
∑
j<k

nj ∼ 1
1 + α

kα+1.

Using Lemma A1 of Berkes and Philipp [1] we can assume that each α
(k)
nk is formed

from Xtk+1, . . . , Xtk+1 i.i.d. X and that each G
(k) is formed as

G
(k) =

1√
nk

∑
tk<j≤tk+1

Gj ,

where Gtk+1, . . . , Gtk+1 are i.i.d. G. Moreover we can do this in such a way that
X1, X2 . . . , are i.i.d. X and G1, G2, . . . , are i.i.d. G. For any integer N ≥ 2 set
N (β) =

[
Nβ
]
, where β = α/ (1 + α). Define

s (N) =
N∑

k=N(β)

n
1/2−τ1
k (log nk)τ2 .

Now for some constants c1 > 0 and c > 0,

(5.13) s (N) ∼ c1N
(1+α)/2−(ατ1−1/2) (log N)τ2 ∼ c (tN )1/2−τ(α) (log tN )τ2 ,

where τ (α) = (ατ1 − 1/2) /(1 + α) > 0, by (5.11).
We have

P


 max

1≤m≤tN

∥∥∥∥∥∥
m∑

j=1

[f (Xj) − Ef (X) − Gj (f)]

∥∥∥∥∥∥
F

> ρs(N)




≤ P


 max

1≤m≤tN(β)

∥∥∥∥∥∥
m∑

j=1

[f (Xj) − Ef (X)]

∥∥∥∥∥∥
F

>
ρs(N)

4




+P


 max

1≤m≤tN(β)

∥∥∥∥∥∥
m∑

j=1

Gj (f)

∥∥∥∥∥∥
F

>
ρs(N)

4




+
N−1∑

k=N(β)

P


 max

t
k
+1≤m≤t

k+1

∥∥∥∥∥∥
m∑

j=t
k
+1

[f (Xj) − Ef (X)]

∥∥∥∥∥∥
F

>
ρs(N)

8
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+
N−1∑

k=N(β)

P


 max

t
k
+1≤m≤t

k+1

∥∥∥∥∥∥
m∑

j=t
k
+1

Gj (f)

∥∥∥∥∥∥
F

>
ρs(N)

8




+P


 max

N(β)≤j<N

∥∥∥∥∥∥
j∑

k=N(β)

(√
nkα(k)

nk
−√

nkG
(k)
)∥∥∥∥∥∥

F

>
ρs(N)

4


 =:

5∑
i=1

Pi (ρ, N) .

It is easy to show using inequalities (5.9) and (5.10), along with the choice of
1/2 < β = α/(1 + α) < 1, that for any γ > 0 for all large enough ρ,

(5.14)
2∑

i=1

Pi (ρ, N) ≤ t−γ
N /4, for all N ≥ 1.

For instance, consider P1 (ρ, N). Observe that

P1 (ρ, N) ≤ P

{
max

1≤m≤tN(β)

√
m||αm||F > C

√
tN(β) (B + τN )

}
,

where

τN =
(

ρs (N)
4

− B

)
/
(
C
√

tN(β)

)
.

Now
√

tN(β) ∼ c2N
α/2 for some c2 > 0. Therefore by (5.13) for some c3 > 0,

τN ∼ c3N
1−τ1α (log N)τ2 .

Since by (5.11) we have 1 − τ1α > 0, we readily get from inequality (5.9) that
for any γ > 0 and all large enough ρ, P1 (ρ, N) ≤ t−γ

N /8, for all N ≥ 1. In the
same way we get using inequality (5.10) that for any γ > 0 and all large enough ρ,
P2 (ρ, N) ≤ t−γ

N /8, for all N ≥ 1. Hence we have (5.14).
In a similar fashion one can verify that for any γ > 0 and all large enough ρ,

(5.15)
4∑

i=3

Pi (ρ, N) ≤ t−γ
N /4, for all N ≥ 1.

To see this, notice that

P3 (ρ, N) ≤ NP

{
max

1≤m≤nN

√
m||αm||F > ρs (N) /8

}

and

P4 (ρ, N) ≤ NP


 max

1≤m≤nN

||
m∑

j=1

Gj (f) ||F > ρs (N) /8


 .

Since
√

nN ∼ Nα/2 and N ∼ c3t
1/(α+1)
N for some c3 > 0, we get (5.15) by proceeding

as above using inequalities (5.9) and (5.10).
Next, recalling the definition of s (N), we get

P5 (ρ, N) ≤ P




N∑
k=N(β)

∥∥∥√nkα(k)
nk

−√
nkG

(k)
∥∥∥
F

>
ρs(N)

4




≤
N∑

k=N(β)

P

{∥∥∥√nkα(k)
nk

−√
nkG

(k)
∥∥∥
F

>
ρn

1/2−τ1
k (log nk)τ2

4

}
,
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which by (5.12) for any λ > 0 and ρ = ρ (α, λ) > 0 large enough is

≤ N
([

Nβ
]α)−λ

, for all N ≥ 1,

which, in turn, for large enough λ > 0 is ≤ t−γ
N /2. Thus for all γ > 0 there exists a

ρ > 0 so that
5∑

i=1

Pi (ρ, N) ≤ t−γ
N , for all N ≥ 1.

Since α can be any number satisfying 1/2 < τ1α < 1 and tN+1/tN → 1, this
implies (2.4) for ρ = ρ (α, λ) large enough. The almost sure statement (2.5) follows
trivially from (2.4) using a simple blocking and the Borel–Cantelli lemma on the
just constructed probability space. This proves Theorem 1.

Proof of Theorem 2. The proof follows along the same lines as that of Theorem 1.
Therefore for the sake of brevity we shall only outline the proof. Here we borrow
ideas from the proof of Theorem 6.2 of Dudley and Philipp [14]. Recall that in
Theorem 2 we assume that 1/2 < r0 < 1 in Proposition 2, which means that
0 < κ := (1 − r0)/2r0 < 1/2. For k ≥ 1 set

(5.16) tk =
[
exp
(
k1−κ

)]
and nk = tk − tk−1, where t0 = 1.

Now for some b > 0 we get nk ∼ b2k−κtk,
√

nk

(log nk)κ ∼ b
√

tk
kκ(1−κ)+κ/2

=
b
√

tk
kκ+θ

,

where θ = κ
(

1
2 − κ

)
> 0. Choose 0 < β < 1 and set N (β) =

[
Nβ
]
. Using an

integral approximation we get for suitable constants c1 > 0 and c2 > 0, for all large
N

(5.17)
c1

√
tN

Nθ
≤ s (N) :=

N∑
k=N(β)

√
nk

(log nk)κ ≤ c2

√
tN

Nθ
≤ c2

√
tN

(log(tN ))θ/(1−κ)
.

Also for all large N ,

(5.18) s (N) /
√

nN ≥ c1

2b
Nκ/2−κ( 1

2−κ) =: c0N
κ2

.

For later use note that for any 0 < β < 1 and ζ > 0

(5.19)
s (N)√
tN(β)N ζ

→ ∞, as N → ∞,

and observe that

(5.20) tN+1/tN → 1, as N → ∞.

Constructing a probability space and defining Pi (ρ, N), i = 1, . . . , 5, as in the proof
of Theorem 1, but with nk, tk and s (N) as given in (5.16) and (5.17) the proof
now goes much like that of Theorem 1. In particular, using inequalities (5.9) and
(5.10), and noting that N ∼ (log (tN ))1/(1−κ), one can check that for some ν > 0,
for all large enough N ,

4∑
i=1

Pi (ρ, N) ≤ exp (− (log (tN ))ν)
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and by arguing as in the proof of Theorem 1, but now using Proposition 2, we easily
see that for every H > 0 there is a probability space on which sit i.i.d. X1, X2...,
and i.i.d. G1, G2, . . . , and a ρ > 0 such that

P5 (ρ, N) ≤ (log (tN ))−H−1
, for all N ≥ 1.

Since for all H > 0,

log (tN )H
(
exp (− (log (tN ))ν) + (log (tN ))−H−1

)
→ 0, as N → ∞,

this in combination with (5.17) and (5.20) proves that (2.8) holds with τ = θ/ (1 − κ)
and ρ (τ, H) large enough. A simple blocking argument shows that (2.9) follows from
(2.8). Choose H > 1 in (2.8). Notice that for any k ≥ 1,

P




⋃
2k<n≤2k+1

{
max

1≤m≤n

∥∥∥∥∥√mαm −
m∑

i=1

Gi

∥∥∥∥∥
F

>
√

2nρ (τ, H) (log n)−τ

}


≤ P

{
max

1≤m≤2k+1

∥∥∥∥∥√mαm −
m∑

i=1

Gi

∥∥∥∥∥
F

>
√

2k+1ρ (τ, H) (log 2k+1)−τ

}

≤ ((k + 1) log 2)−H
.

Hence (2.9) holds by the Borel-Cantelli lemma.
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[20] Giné, E. and Guillou, A. (2001). On consistency of kernel density estima-
tors for randomly censored data: rates holding uniformly over adaptive inter-
vals. Ann. Inst. H. Poincaré 37 503–522.
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