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Random sets of isomorphism of linear

operators on Hilbert space

Roman Vershynin1,∗

University of California, Davis

Abstract: This note deals with a problem of the probabilistic Ramsey theory
in functional analysis. Given a linear operator T on a Hilbert space with an
orthogonal basis, we define the isomorphic structure Σ(T ) as the family of all
subsets of the basis so that T restricted to their span is a nice isomorphism.
Our main result is a dimension-free optimal estimate of the size of Σ(T ). It
improves and extends in several ways the principle of restricted invertibility
due to Bourgain and Tzafriri. With an appropriate notion of randomness, we
obtain a randomized principle of restricted invertibility.

1. Introduction

1.1. Randomized Ramsey-type problems

Finding a nice structure in a big unstructured object is a recurrent theme in math-
ematics. This direction of thought is often called Ramsey theory, although Ramsey
theory was originally only associated with combinatorics. One celebrated example
is Van der Waerden’s theorem: for any partition of the integers into two sets, one
of these sets contains arbitrary long arithmetic progressions.

Ramsey theory meets probability theory when one asks about the quality of
most sub-structures of a given structure. Can one improve the quality of a struc-
ture by passing to its random sub-structure? (a random subgraph, for example).
A remarkable example of the randomized Ramsey theory is Dvoretzky’s theorem
in geometric functional analysis in the form of V.Milman (see [4], 4.2). One of its
corollaries states that, for any n-dimensional finite-dimensional Banach space, a
random O(log n)-dimensional subspace (with respect to some natural measure) is
well isomorphic to a Hilbert space.

1.2. The isomorphism structure of a linear operator

In this note we are trying to find a nice structure in an arbitrary bounded linear
operator on a separable Hilbert space. Let T be a bounded linear operator on a
Hilbert space H with an orthonormal basis (ei)i∈N. We naturally think of T as being
nice if it is a nice isomorphism on H. However, this situation is rather rare; instead,
T may be a nice isomorphism on the subspace spanned by some subsets of the basis.
So, instead of being a “global” isomorphism, T may be a “local” isomorphism when
restricted to certain subspaces of H. A central question is then – how many such
subspaces are there? Let us call these subspaces an isomorphism structure of T :
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Definition 1.1. Let T be a bounded linear operator on a Hilbert space H, and
(ei)i∈N be an orthonormal basis of H. Let 0 < ε < 1. A set σ of N is called a set of
ε-isomorphism of T if the equivalence

(1) (1 − ε)
∑
i∈σ

‖aiTei‖2 ≤ ‖
∑
i∈σ

aiTei‖2 ≤ (1 + ε)
∑
i∈σ

‖aiTei‖2

holds for every choice of scalars (ai)i∈σ. The ε-isomorphism structure Σ(T, ε) con-
sists of all such sets σ.

How big is the isomorphism structure? From the probabilistic point of view, we
can ask for the probability that a random subset of (a finite interval of) the basis is
the set of isomorphism. Unfortunately, this probability is in general exponentially
small. For example, if T acts as Tei = e�(i+1)/2�, then every set of isomorphism
contains no pairs of the form {2i−1, 2i}. Hence a random subset of a finite interval
is unlikely to be a set of isomorphism of T . However, an appropriate notion of
randomness yields a clean optimal bound on the size of the isomorphic structure.
This is the main result of this note, which extends in several ways the Bourgain-
Tzafriri’s principle of the restricted invertibility [1], as we will see shortly.

Theorem 1.2. Let T be a norm-one linear operator on a Hilbert space H, and let
0 < ε < 1. Then there exists a probability measure ν on the isomorphism structure
Σ(T, ε), such that

(2) ν{σ ∈ Σ(T, ε) | i ∈ σ} ≥ cε2‖Tei‖2 for all i.

Here and thereafter c, C, c1, . . . denote positive absolute constants.

Theorem 1.2 gives a lower bound on the average of the characteristic functions
of the sets of the isomorphism. Indeed, the left hand side in (2) clearly equals∫
Σ(T,ε)

χσ(i) dν(σ). Thus, in absence of “true” randomness in the isomorphic struc-
ture Σ(T, ε), we can still measure the size of Σ(T, ε) by bounding below the average
of the characteristic functions of its sets. It might be that considering this weak type
of randomness might help in other problems, in which the usual, strong randomness,
fails.

1.3. Principle of restricted invertibility

One important consequence of Theorem 1.2 is that there always exists a big set of
isomorphism of T . This extends and strengthens a well known result due to Bour-
gain and Tzafriri, known under the name of the principle of restricted invertibility
[1]. We will show how to find a big set of isomorphism; its size can be measured
with respect to an arbitrary measure µ on N. For the rest of the paper, we denote
the measure of the singletons µ({i}) by µi. Summing over i with weights µi in (2)
and using Theorem 1.2, we obtain

∫
Σ(T,ε)

µ(σ) dν(σ) =
∑

i

µi

∫
Σ(T,ε)

χσ(i) dν(σ)

(3)
=

∑
i

µi ν{σ ∈ Σ(T, ε) | i ∈ σ} ≥ cε2
∑

i

µ(i)‖Tei‖2.

Replacing the integral in the left hand side of (4) by the maximum shows that there
exists a big set of isomorphism:
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Corollary 1.3. Let T be a norm-one linear operator on a Hilbert space H, and let
µ be a measure on N. Then, for every 0 < ε < 1, there exists a set of ε-isomorphism
σ of T such that

(4) µ(σ) ≥ cε2
∑

i

µi‖Tei‖2.

Earlier, Bourgain and Tzafriri [1] proved a weaker form of Corollary 1.3 with
only the lower bound in the definition (1) of the set of isomorphism, for a uniform
measure µ on an interval, under an additional assumption on the uniform lower
bound on ‖Tei‖, and for some fixed ε.

Theorem 1.4 (Bourgain-Tzafriri’s principle of restricted invertibility).
Let T be a linear operator on an n-dimensional Hilbert space H with an orthonormal
basis (ei). Assume that ‖Tei‖ = 1 for all i. Then there exits a subset σ of {1, . . . , n}
such that |σ| ≥ cn/‖T‖2 and

‖Tf‖ ≥ c‖f‖
for all f ∈ span(ei)i∈σ.

This important result has found applications in Banach space theory and har-
monic analysis. Corollary 1.3 immediately yields a stronger result, which is
dimension-free and which yields an almost isometry:

Corollary 1.5. Let T be a linear operator on a Hilbert space H with an orthonormal
basis (ei). Assume that ‖Tei‖ = 1 for all i. Let µ be a measure on N. Then, for
every 0 < ε < 1, there exits a subset σ of N such that µ(σ) ≥ cε2/‖T‖2 and such
that

(5) (1 − ε)‖f‖ ≤ ‖Tf‖ ≤ (1 + ε)‖f‖

for all f ∈ span(ei)i∈σ.

Szarek [5] proved a weaker form of Corollary 1.3 with only the upper bound in
the definition (1) of the set of isomorphism, and with some fixed ε.

For the counting measure on N, Corollary 1.3 was proved in [7]. In this case,
bound (4) reads as

(6) |σ| ≥ cε2‖T‖2
HS,

where ‖T‖HS denotes the Hilbert-Schmidt norm of T . (If T is not a Hilbert-Schmidt
operator, then an infinite σ exists).

2. Proof of Theorem 1.2

Corollary 1.3 is a consequence of two suppression results due to Szarek [5] and
Bourgain-Tzafriri [2]. We will then deduce Theorem 1.2 from Corollary 1.3 by a
simple separation argument from [2].

To prove Corollary 1.3, we can assume by a straighforward approximation that
our Hilbert space H is finite dimensional. We can thus identify H with the n-
dimensional Euclidean space �n

2 , and identify the basis (ei)n
i=1 of H with the canon-

ical basis of �n
2 . Given a subset σ of {1, . . . , n} (or of N), by �σ

2 we denote the
subspace of �n

2 (of �2 respectively) spanned by (ei)i∈σ. The orthogonal projection
onto �σ

2 is denoted by Qσ.
With a motivaiton different from ours, Szarek proved in ([5], Lemma 4) the

following suppression result for operators in �n
2 .
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Theorem 2.1 (Szarek). Let T be a norm-one linear operator on �n
2 . Let λ1, . . . , λn,∑n

i=1 λi = 1, be positive weights. Then there exists a subset σ of {1, . . . , n} such
that

(7)
∑
i∈σ

λi‖Tei‖−2 ≥ c

and such that the inequality

‖
∑
i∈σ

aiTei‖2 ≤ C
∑
i∈σ

‖aiTei‖2

holds for every choice of scalars (ai)i∈σ.

Remark 2.2. Inequality (7) for a probability measure λ on {1, . . . , n} is equivalent
to the inequality

(8) µ(σ) ≥ c
∑

i

µi‖Tei‖2

for a positive measure µ on {1, . . . , n}.
Indeed, (7) implies (8) with

λi =
µi‖Tei‖2∑
i µi‖Tei‖2

.

Conversely, (8) implies (7) with µi = λi‖Tei‖−2.

Theorem 2.1 and Remark 2.2 yield a weaker version of Corollary 1.3 – with only
the upper bound in the definition (1) of the set of isomorphism, and with some
fixed ε.

To prove Corollary 1.3 in full strength, we will use the following suppression
analog of Theorem 1.2 due to Bourgain and Tzafriri [2].

Theorem 2.3 (Bourgain-Tzafriri). Let S be a linear operator on �2 whose matrix
relative to the unit vector basis has zero diagonal. For a δ > 0, denote by Σ′(S, δ)
the family of all subsets σ of N such that ‖QσSQσ‖ ≤ δ‖S‖. Then there exists a
probability measure ν′ on Σ′(S, δ) such that

(9) ν′{σ ∈ Σ′(S, δ) | i ∈ σ} ≥ cδ2 for all i.

Proof of Corollary 1.3. We define a linear operator T1 on H = �n
2 as

T1ei = Tei/‖Tei‖, i = 1, . . . , n.

Theorem 2.1 and the remark below it yield the existence of a subset σ of {1, . . . , n}
whose measure satisfies (8) and such that the inequality

‖T1f‖ ≤ C‖f‖

holds for all f ∈ span(ei)i∈σ. In other words, the operator

T2 = T1Qσ
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satisfies

(10) ‖T2‖ ≤ C.

We will apply Theorem 2.3 for the operator S on �σ
2 defined as

(11) S = T ∗
2 T2 − I and with δ = ε/‖S‖.

Indeed, S has zero diagonal:

〈Sei, ei〉 = ‖T2ei‖2 − 1 = ‖T1ei‖2 − 1 = 0 for all i ∈ σ.

Also, S has nicely bounded norm by (10):

‖S‖ ≤ ‖T2‖2 + 1 ≤ C2 + 1,

which yields a lower bound on δ:

(12) δ ≥ ε/(C2 + 1).

So, Theorem 2.3 yields a family Σ′(S, δ) of subsets of σ and a measure ν′ on this
family. It follows as before that Σ′(S, δ) must contain a big set, because

∫
Σ′(S,δ)

µ(σ′) dν′(σ′) =
∑
i∈σ

µi

∫
Σ′(S,δ)

χσ′(i) dν′(σ′)

=
∑
i∈σ

µi ν′{σ′ ∈ Σ′(S, δ) | i ∈ σ′}

≥
∑
i∈σ

µi · cδ2 ≥ c′ε2µ(σ)

where the last inequality follows from (12) with c′ = c(C2 +1)−2. Thus there exists
a set σ′ ∈ Σ′(S, δ) such that by (8) we have

µ(σ′) ≥ c′ε2µ(σ) ≥ c′′ε2
n∑

i=1

µi‖Tei‖2,

so with the measure as required in (4).
It remains to check that σ′ is a set of ε-isomorphism of T . Consider an f ∈

span(ei)i∈σ′ , ‖f‖ = 1. By the suppression estimate in Theorem 2.3 and by our
choice of S and δ made in (11), we have

ε = δ‖S‖ ≥ |〈Qσ′SQσ′f, f〉|
= |〈Sf, f〉| because Qσ′f = f

= |‖T2f‖2 − ‖f‖2| by the definition of S

= |‖T1f‖2 − 1| because Qσ′f = Qσf = f as σ′ ⊂ σ.

It follows by homogeneity that

(1 − ε)‖f‖2 ≤ ‖T1f‖2 ≤ (1 + ε)‖f‖2 for all f ∈ span(ei)i∈σ′ .

By the definition of T1, this means that σ′ is a set of ε-isomorphism of T . This
completes the proof.
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Proof of Theorem 1.2. We deduce Theorem 1.2 from Corollary 1.3 by a separation
argument, which is a minor adaptation of the proof of Corollary 1.4 in [2].

We first note that, by Remark 2.2, an equivalent form of the consequence of
Corollary 1.3 is the following. For every probability measure λ on N, there exists a
set σ ∈ Σ(T, ε) such that

(13)
∑
i∈σ

λi‖Tei‖−2 ≥ cε2.

We consider the space of continuous functions C(Σ(T, ε)) on the isomorphism
structure Σ(T, ε), which is compact in its natural topology (of pointwise convergence
of the indicators of the sets σ ∈ Σ(T, ε)). For each i ∈ N, define a function πi ∈
C(Σ(T, ε)) by setting

πi(σ) = χσ(i) ‖Tei‖−2, σ ∈ Σ(T, ε).

Let C be the convex hull of the set of functions {πi, i ∈ N}. Every π ∈ C can be
expressed a convex combination π =

∑
i λiπi. By Corollary 1.3 in the form (13),

there exists a set σ ∈ Σ(T, ε) such that π(σ) ≥ cε2. Thus ‖π‖C(Σ(T,ε)) ≥ cε2.
We conclude by the Hahn-Banach theorem that there exists a probability measure
ν ∈ C(Σ(T, ε))∗ such that

ν(π) =
∫

Σ(T,ε)

π(σ) dν(σ) ≥ cε2 for all π ∈ C.

Applying this estimate for π = πi, we obtain
∫

Σ(T,ε)

χσ(i) dν(σ) ≥ cε2‖Tei‖2,

which is exactly the conclusion of the theorem.

Remark 2.4. The proof of Theorem 1.2 given above is a combination of previously
known tools – two suppression results due to [5] and [2] and a separation argument
from [2]. The new point was to realize that the suppression result of Szarek [5],
developed with a different purpose in mind, gives a sharp estimate when combined
with the results of [2]. To find a set of the isomorphism as in (1), one needs to reduce
the norm of the operator with [5] before applying restricted invertibility principles
from [2].
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