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Spatial-temporal data mining

procedure: LASR
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The Cleveland Clinic Foundation, Case Western Reserve University and Cleveland FES center

Abstract: This paper is concerned with the statistical development of our
spatial-temporal data mining procedure, LASR (pronounced “laser”). LASR
is the abbreviation for Longitudinal Analysis with Self-Registration of large-
p-small-n data. It was motivated by a study of “Neuromuscular Electrical
Stimulation” experiments, where the data are noisy and heterogeneous, might
not align from one session to another, and involve a large number of mul-
tiple comparisons. The three main components of LASR are: (1) data seg-
mentation for separating heterogeneous data and for distinguishing outliers,
(2) automatic approaches for spatial and temporal data registration, and (3)
statistical smoothing mapping for identifying “activated” regions based on
false-discovery-rate controlled p-maps and movies. Each of the components is
of interest in its own right. As a statistical ensemble, the idea of LASR is
applicable to other types of spatial-temporal data sets beyond those from the
NMES experiments.

1. Introduction

Developments of medical and computer technology in the last two decades have
enabled us to collect huge amounts of data in both spatial and temporal dimen-
sions. These types of data have become common in medical imaging, epidemiol-
ogy, neuroscience, ecology, climatology, environmentology and other areas. Typical
spatial-temporal data can be denoted by y(s, t, i), where y is the intensity value at
the spatial location s ∈ S, time t ∈ T and for the subject indexed by i ∈ N . In
most applications, S = {1, . . . , S} is a 1, 2 or 3 dimensional space indexed by S
pixels; T = {1, 2, . . . , T} is a set of T time points; and N = {1, 2, . . . , n} is the set
of n subjects. In principle, the indexing can be done by continuous variables, but
in practice, only a discretized version is observed. It is often the case that the data
size n is much smaller than the data dimension p = S × T . Hence the data are of
large-p-small-n.

An example of such spatial-temporal data is the data from our Neuromuscu-
lar Electrical Stimulation (NMES) experiments to prevent pressure sores. Pressure
sores (also called pressure ulcers, bed sores, or decubitus ulcers) [3] are areas of
injured skin and tissue. They are usually caused by sitting or lying in one position
for long periods of time. This puts pressure on certain areas of the body which in
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turn reduce the blood supply to the skin and the tissue under the skin and hence
a sore may form. Pressure sores are known to be a multi-factor complication that
occurs in many wheelchair users due to reduced mobility, e.g., those with spinal
cord injury (SCI).

Traditionally, techniques to reduce pressure sore incidence have focused on ex-
trinsic risk factors by providing cushions which improve pressure distribution and
educating individuals on the importance of regular pressure relief procedures. There
remains a significant number of people with SCI for whom pressure relief cushions
are inadequate and/or who are unable to maintain an adequate pressure relief
regime. NMES provides a unique technique to produce beneficial changes at the
user/support system interface by altering the intrinsic characteristics of the user’s
paralyzed tissue itself [4]. To quantify the effects of long-term NMES on the intrinsic
characteristics of the paralyzed muscles, data on the response to loading, including
interface pressure distribution when seated in a wheelchair, must be acquired over
a long period of time and be statistically analyzed.

In Section 2, we describe the background and challenges of data analysis from our
NMES experiments that motivated us to develop LASR. In Section 3, we address the
important data preprocessing issues in data mining. Two steps are proposed here,
data segmentation and data registration. An optimal threshold method with the
EM algorithm is proposed to classify the sitting (signal) region from the background
in data frames. We then introduce a self-registration technique, Self-Registration by
a Line and a Point (SRLP) for spatial registration, incorporated by a fast temporal
registration scheme, Intensity-based Correlation Registration (ICR). In Section 4,
we propose a Statistical Smoothing Mapping (SSM) algorithm for interface pressure
analysis, which includes the multivariate smoothing techniques. Since the number of
significance tests for testing the difference regions is equal to the number of pixels
per frame, an overall error rate of the tests must be controlled. Here we choose
to develop false-discovery-rate (FDR) controlled movies and maps, called FDR
movies and FDR maps, under dependency, to overcome the multiplicity effect from
testing “activation” pixels simultaneously. In Section 5, combining the techniques
in the previous sections, we present a data-mining scheme, the LASR procedure
for analyzing a large sequence of spatial-temporal data sets. LASR is shown to be
effective in the application to data from the NMES experiments. In Section 6, a
discussion on applications of LASR to other fields and future research is given.

2. Experimental data and challenges

Background. The primary hypothesis of our clinical study is that chronic use of
NMES improves pressure distribution at the seating support area, specifically by
the reduction of peak pressures over bony prominences. In addition, chronic NMES
will increase vascularity leading to improved tissue blood flow and resulting in
improved regional tissue health in individuals with SCI. Therefore, repeated as-
sessments of sitting interface pressures were obtained for a group of eight subjects
with SCI participating in a study to investigate the use of NMES for standing and
transfers. All subjects were full-time wheelchair users at entrance into the study and
had sustained traumatic SCI from 13-204 months prior to enrollment. All subjects
had complete SCI and were therefore considered to be at increased risk of tissue
breakdown, in part due to disuse muscle atrophy of the glutei.

Seating interface pressures were determined using a Tekscan Advanced Clinseat
Pressure Mapping System (Tekscan Inc., Boston, Massachusetts). Assessments were
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carried out prior to commencing regular use of stimulation, to obtain a baseline
value, and then at intervals of 3–12 months during their participation in the study,
giving an overall time frame of up to five years for repeated assessments of each
study participant.

In order to perform an assessment of seating interface pressures the subject
transferred out of the wheelchair and a pressure sensor mat was placed over the
wheelchair cushion. The sensor mat is comprised of a matrix of pressure sensitive
cells (38 rows, 41 columns). The subject then transferred back into the wheelchair
and was asked to sit in their customary sitting posture. Care was taken to insure
that the sensor mat was not creased or folded under the subject in order to avoid
inaccurate high spots. The sensor was then calibrated based on the assumption
that 80 percent of the subject’s body weight was acting through the seat base.
Calibration took less than 20 seconds to complete. Interface pressure data was then
collected for 200 seconds at a rate of 2 frames/sec. The subject was then asked to
perform a pressure relief procedure and sit back in the same position. The sensor
was then recalibrated and a second set of pressure data was collected at the same
rate of data collection while left/right alternating gluteal stimulation was applied
to provide dynamic side-to-side weight shifting for 200 seconds. Interface pressure
data was collected concurrently at a rate of 2 frames/sec. Stimulation was then
discontinued and subjects were asked to repeat the pressure relief procedure and
sit back in the same position before collecting a third set of interface pressure
data with subjects in a quiet sitting posture. Real-time two-dimensional pressure
intensity data at the seating interface were produced with the use of the assessment
device.

Data. In summary, for each subject in each session done over time our data sets
consist of three sub-data sets each of which is under one of three subsequent assess-
ment conditions: no stimulation, on-off alternation stimulation, and no stimulation,
as shown in Figure 1. Each of the sub-data sets consists of a sequence of 400 data
frames. Each data frame represents spatial pressure intensity over the sitting inter-
face (with S= 38 × 41 pixels) at a certain time point. Hence the data size is n = 8
and the data dimension is at least p = S×T = (38×41)× (400×3×3) = 5,608,800

Fig 1. Data structure in the NMES experiment. There are three sub-data sets in each of assess-
ment sessions, under condition: no stimulation, on-off alternation stimulation, and no stimu-
lation, respectively. Each of the sub-data sets consists of 400 data frames, and may be called a
segment.
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Fig 2. Top 6 panels are raw data images for the subjects before treatment; and bottom 6 panels
are corresponding images after treatment.

where the last number 3 is the minimal number of the sessions we had for the
patients who received treatments.

Figure 2 displays the first data frame from each of six sub-data sets (representing
six subjects) at the first segment of the first session (before treatment) and at
the third segment of the last session (after treatment). Two other subjects are
used as control subjects. The numbers of columns and rows correspond to spatial
coordinates of a subject’s sitting interface. In the movie representation, the x -axis
and y-axis in three-dimensional Cartesian coordinate system denote the spatial
coordinates of the sitting interface of subjects; the z -axis denotes the pressure
intensities. A movie can be generated for each sub-data set. One can then easily
see the dynamic changes of pressure intensities. Examples of movies can be found
at http://stat.case.edu/lasr, in MPEG format.

The left picture of Figure 3 shows idealized changes in pressure contour across
the region of the ischial tuberosities. This is based on comparison with no electrical
stimulation. Note that the baseline contour shows high mean interface pressures
bilaterally in the ischial region which indicates a high risk of local tissue breakdown.
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Fig 3. Left: Idealized changes in pressure contour across the region of the ischial tuberosities
under no stimulation; Note the difference in the pressure distributions. Right: Idealized changes
in gluteal pressure variation with electrical stimulation over time. Note the change in amplitudes.

Improved pressure distribution with reduced ischial region interface pressures and
more evenly distributed seating pressures indicates a lower risk of tissue breakdown.

Clinicians are also interested in exploring the dynamic changes of interface pres-
sure distribution during electrical stimulation. The right picture of Figure 3 displays
idealized changes in pressure variation based on comparison with electrical stimula-
tion over time. Regional interface pressures vary cyclically with applied stimulation
before treatment. Variations about the mean increase in amplitude (after treatment)
because of increasing strength of muscle contraction after long-term treatment. In
order to show whether this objective has been met over time and/or with different
seating setups there must be some basis for comparison between measurements, so
that true differences can be determined.

Challenges. (1) Segmentation and registration for a large sequence of data frames.
In a data mining process, raw data often require some initial processing in order
to become useful for further statistical inference, e.g. filtering, scaling, calibration
etc. In our NMES study: i) Raw data frames contain background noises; ii) Data
frames recorded at different sessions over time from the same subject may not
align spatially because, either the subject did not sit in the same relative position
on the sensor mat or with the same posture at each assessment, or the image
target regions differ from one session to another; iii) Artificial differences between
alternating left/right simulation responses can obscure true differences if the data
frames from different phases of the stimulation cycle are not aligned temporally
between sessions.

Registration techniques have been well developed in the medical imaging area
[7, 10]. However, most existing image registration procedures require a reference
image and a similarity measure for each candidate image. They are not efficient
for calibrating a large number of spatial-temporal data sets, such as registering se-
quences of data frames or movies in pressure mapping. It would be “labor intensive”
to identify the landmarks one by one for each data frame if we used correspond-
ing landmark-based registration for thousands of data frames. Developing effective
and fast spatial and temporal registration/calibration algorithms for a large vol-
ume of spatial-temporal data sets is important. In Section 3, we first develop a
segmentation procedure and then a spatial and temporal registration procedure.

(2) Analysis of large-p-small-n data. The experimental protocol for this NMES
study produced many time points and three assessment conditions for each subject.
Thus, the data obtained from the NMES experiment exhibit a large-p-small-n prob-
lem; that is, a large number of features (pressure intensities) over space and time
relative to a small number of subject samples. As given in Section 2, p is greater
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than 5 million and n = 8. Traditional statistical approaches usually are based on
the assumption that p < n and are not applicable here without a “transformation”.
Here, we resolve this problem by performing the subject-by-subject comparisons
based on the before and after treatment differences. The differences (after registra-
tions) at these pixel values (frame-by-frame) will become a difference movie and
will be treated as if they were regression data points. Hence we have literally trans-
ferred S pixels into the “subjects” domain, with now n = S × 8 and p ≤ 400, and
hence a statistical smoothing mapping can be developed – See details in Section 4.

3. Data preprocessing

We propose two procedures for pre-processing raw data in this section: (1) Data
Segmentation for data cleaning; and (2) Data Registration for data calibration.
Segmentation is important here in that it makes the next step, registration based on
random landmarks (estimated from data), more robust. Registration is the process
of transforming the different sets of data into one coordinate system. Registration is
necessary both spatially and temporally in order to be able to compare and model
the data obtained at different times and from different perspectives that are in
different coordinate systems.

3.1. Data segmentation

As shown in Figure 2, noise and outliers appeared outside of the sitting region
(i.e. the buttock and thigh region). It is critical to detect the edge of the sitting
region of subjects by segmenting the data into the spatial regions of interest and
the background in each frame and to remove the background noise by zeroing the
corresponding values, before automatically estimating the landmarks illustrated in
the next registration step.

We propose a density-based segmentation method in which a pixel will be classi-
fied into the background, ie the non-sitting region, if its intensity value is less than
a threshold T . Let Z(i, j) denote the intensity value of the ith row and the jth
column of a data frame. Then the segmented image will have the intensity values:

Z̃(i, j) =

{
Z(i, j), if Z(i, j) > T ;
0, if Z(i, j) ≤ T .

A simple and effective way of computing T is to model the density of intensity
values at all pixels in each frame by a mixture of normal distributions:

(1) f(z) =
m∑

i=1

αi
1
σi

φ

(
z − µi

σi

)
≡ β1f1(z) + β2f2(z)

where φ is the standard normal density, and the parameters are θ = (α1, . . . , αm,
µ1, . . . , µm, σ1, . . . σm), such that 0 < ε < σi < ∞, αi > 0 and

∑m
i=1 αi = 1.

The first component density f1(z) = φ ((z − µ1)/σ1) /σ1 represents the background
distribution, while the second component density

(2) f2(z) =
1
β2

m∑
i=2

αi
1
σi

φ

(
z − µi

σi

)
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Fig 4. Segmentation by analyzing the histogram and density plot of a data frame. A simple
threshold is the red point which corresponds to the first deepest valley point between the first two
consecutive major peaks in the density curve.

is the signal distribution from the sitting region, which can be approximated well
by a finite mixture of normal distributions. Here β1 = α1, β2 =

∑m
i=2 αi. See Figure

4 for the histogram and density plot of the data frame shown in the first subplot of
Figure 2 (subject 1). Our analyses of data from NMES experiments showed that a
mixture of two or three component normal distributions fitted our data quite well.
In fact, the optimal estimate of T developed below is fairly robust even if f2 departs
from a mixture of normal distributions slightly.

The following is our segmentation algorithm for determining the threshold T :

1). For a set of reasonable values of m, compute the estimates of θ by the
Expectation-Maximization (EM) algorithm proposed by [6] for each given m.
It is important to start from good initial values of θ in running an EM algo-
rithm. We recommend choosing the initial values based on an under-smoothed
histogram and summary statistics.

2). Estimate the final m based on the Bayesian information criterion [13]. (In our
NMES study, the final m for all treatment subjects ended up to be 2 or 3.)

3). Select T that is the solution of

(3) α1
1
σ1

φ

(
T − µ1

σ1

)
=

m∑
i=2

αi
1
σ2

φ

(
T − µi

σi

)

where αi, µi and σi are the EM estimates from Step 1 and m from Step 2.

That T defined in (3) is optimal follows immediately from the following simple
lemma by defining f1 and f2 as those in (2).

Lemma 3.1. In a two-class classification problem assume that the probability den-
sity functions of the two populations are fi(z) ∈ C2, each has a mean µi, for i = 1, 2,
such that µ1 < µ2 < ∞. Furthermore, assume that the prior probability of popula-
tion i is βi > 0, such that β1 +β2 = 1. Then the optimal threshold T that minimizes
the overall probability of misclassification (PMC) of a “simple” classification rule,
such that an observation is classified into class one if x ≤ T and class two if x > T ,
is one such that β1f1(T ) = β2f2(T ). Further, if fi’s are normal densities with finite
nonsingular variances, then the simple classification rule with T defined above is
also one that minimizes the overall PMC among all two-class classification rules.

The proof of this lemma is straightforward. For example, for the general fi ∈ C2

case in which the classification rule is simple, one can simply write down the overall
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Fig 5. Examples of comparison of images after data segmentation using optimal thresholds. The
upper two subplots are for Subject 1 and the lower two subplots are for Subject 2. Note that the
sitting regions in the data frames are segmented and the background noises are removed.

PMC for a fixed T and then differentiate the PMC with respect to T . The result for
the mixture of normal densities can be obtain by tracing the equivalence between
minimizing the overall PMC and maximizing the “posterior” probability, as shown
in, for example, Result 11.5 in [12].

Figure 5 shows two examples of our data segmentation methods. The optimal
thresholds in the data frames of subject 1 and subject 2 are 12.7 and 14.3, re-
spectively. The sitting regions in the data frames are clearly segmented and the
background noise is removed.

3.2. Data Registration

In the NMES study the image object was the anatomical seating contact area of the
body, specifically the buttock and thigh region. The current experimental protocol
entailed obtaining several data sets from each subject during their participation
in the experiment. Since a subject may not sit at the same relative position on
the sensor mat or with the same posture as previously, or the image target regions
may differ from one session to another, some images from different sessions were
not aligned. Recall Figure 2 where misalignment for some subjects is more obvious
than the others. For example, the image in the second row for the fourth subject
has been rotated 90 degrees in the last session. The image for subject 6 has non-
overlapping areas between two images. Non-overlapping regions will be chopped
out or trimmed during final analysis.

Since the subjects were not restrained in any way during the assessment it was
also possible for some change in seating orientation to occur from one assessment
condition to another during the same session. In order to determine any changes
due to the effect of using NMES we first had to ensure that any changes due
solely to seating orientation were fully compensated. This was achieved by spatial
registration.

In the middle segment of each session as shown in Figure 1, a left/right alter-
nating stimulation is given to a subject. To compare middle segments from two
sessions a temporal registration is necessary to avoid artificial differences caused by
stimulation cycle phase obscuring true image differences due to treatment.
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3.2.1. Spatial registration scheme: SRLP

Generally, registration can be done by a geometrical transformation, which is a
mapping of points from the space A of one view to the space B of a second view.
The transformation T applied to a point in A represented by the column vector
a = (ai, aj)T produces a transformed point a′ = (a′

i, a
′
j)

T = a′ = T(a). If the point
b = (bi, bj)T ∈ B corresponds to a, then any nonzero displacement T(a) − b is a
registration error. Fortunately, the images within one segment in one session, and
between different data sets in one session, do not appear to need spatial registration.
Thus, we only need to spatially register images from different sessions. So, the first
stable image of the first movie in each session can be used as a reference to register
or align movies from different sessions, before we compute difference images or
movies for statistical analysis of clinical relevance.

For spatial registration of data, a key is to choose appropriate landmarks. In our
analysis of data from the NMES experiments, a natural landmark is the “midline”
of the seating contact area for each patient. The midline and an obvious “end”
point in each image will be used as our landmarks for registration leads to a
midline-to-midline and endpoint-to-endpoint alignment. A scale change of images
is not expected unless a subject has a significant change in body weight between
two sessions. Thus we propose the following SRLP algorithm.

Algorithm 3.1. Automatic Spatial Registration by a line and a point (SRLP)

1. Determine the midpoints for each image,

midpt =
rowcount

2
+

(c1 − c2)
2

where c1 = the number of non-zero values from the lower half image, c2 =
the number of non-zero values from the upper half image, and rowcount is
the total number of non-zero values in each column of the image.

2. Determine the midline. The midline is the regression line estimated by fitting a
simple regression to the midpoints.

3. Perform a rigid transformation based on the midline, by rotation and translation
through matrix R


 a′

i

a′
j

1


 = R


 ai

aj

1


 =


 cos θ − sin θ u

sin θ cos θ v
0 0 1





 ai

aj

1




where tan θ is the slope of the midline and (u, v) is the last point of the fitted
midline in the image that is to be transformed.

If the patient is sitting asymmetrically the two halves of the image will have
an unequal number of non-zero pixel values. For example, if the patient is leaning
toward the lower half of the image there will be more non-zero pixel values in the
lower half than in the upper half of the image, i.e c1 > c2. A positive correction
(c1 − c2)/2 to the rowcount/2 should then be applied so that the location of the
midpoint value moves up. After computation of the corrected midpoints, the midline
can readily be found through linear regression. In Figure 6, the upper graph displays
the midline of a patient in one frame; the lower graph displays the images after
spatial registration for the same subject.
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Fig 6. An example of spatial registration by a line and a point (SRLP). The middle line is
determined by a simple linear regression and rigid transformation is used in the registration.

Remark. The idea of SRLP is simple but highly effective. It allows for self-
registering any image based on its own midline found automatically by an algo-
rithm. It can correct the bias and save the labor in determining the middle line
manually. It is also a consistent algorithm in a statistical sense for a random land-
mark registration problem as shown in Theorem A.1 in the Appendix.

3.2.2. A temporal registration scheme: ICR

As part of the assessment protocol for this study electrical stimulation of the gluteal
muscles was applied to produce dynamic weight-shifting from side to side. Temporal
registration is required to align stimulation periods (on-off times) for all data sets
collected for one subject under the same assessment conditions.

If the intensities in images A and B are linearly related, then the correlation
coefficient is the ideal similarity measure. Few registration applications will precisely
conform to this linear requirement, but many intra-modality applications, such as
aligning on-off signals for two simulation sessions in our case, come sufficiently close
for this to be an effective measure.

Algorithm 3.2. Intensity-based correlation registration (ICR)

1. Discard the first m0 unstable data frames from each of the sub-data sets with
the NMES stimulation (Here we choose m0 = 10).

2. For the remaining images A1, . . . , An and B1, . . . , Bn from the middle seg-
ments of two on-off stimulation sessions, compute the correlation coefficient
corij(AB) of Ai and Bi+j for i = 1, . . . , n − j and j = 0, . . . , n − 1. Let

CorAvgj =
1

n − j

∑
i

corij(AB).

Find j0 such that
CorAvgj0 = max

j
(CorAvgj).

3. Align images Ai with Bi+j0 .
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4. Statistical smoothing mapping

Our primary questions of interest in the NMES study are: 1) Does the long-term
gluteal NMES improve intrinsic characteristics of the paralyzed muscles? 2) Can
we identify the areas in which interface pressure has significantly improved?

In statistical methods of brain imaging (e.g. MRI), one of the most common
analysis approaches currently in use, called statistical parametric mapping (SPM)
[8, 9], analyzes each voxel’s change independently of the others and builds a map
of statistic values for each voxel. The significance of each voxel can be ascertained
statistically with a Student’s t-test, an F-test, a correlation coefficient, etc. SPM is
widely used to identify functionally specialized brain regions and is the most preva-
lent approach to characterizing functional anatomy and disease-related changes.
The success of SPM is due largely to the simplicity of the idea. Namely, one an-
alyzes each and every voxel using any standard (univariate) statistical parametric
test. The resulting statistical parameters are assembled into an image – the SPM.

Motivated by the SPM, we propose a statistical smoothing mapping (SSM) pro-
cedure based on multivariate smoothing, to allow for more flexible modeling than
parametric models. Since we are comparing many voxel values simultaneously across
the entire image, the multiplicity of these tests must be adjusted to overcome an
overall false-positive error rate. Our significance threshold for deciding which voxel
is significantly different (between two sessions) will be chosen with a Benjamini
and Yekutieli false discovery rates (BH-FDR) controlling procedure [1] that ac-
counts for the multiplicity of tests. Then an FDR map can be built to provide
the significance of voxels. Those with p-values less than the BH critical value are
the points or areas for which stimulation has had a significant effect (difference) in
terms of measurements.

Let x̃ = (x1, x2) denote a pixel of a data frame. Then rx̃,C , rx̃,T denote the
intensities of the (registered) images before treatment and after treatment. We
propose the following statistical smoothing mapping algorithm.

Algorithm 4.1. Statistical Smoothing Mapping (SSM)

1. Compute the difference map, yx̃ = rx̃,T − rx̃,C which is the pixel-by-pixel sub-
traction before treatment and after treatment. Then pad the same values of
yx̃ at the edge of sitting regions into a small rim of the background region to
overcome the possible edge effects of smoothing techniques in the next step.

2. Smooth padded yx̃ by multivariate local polynomial regression.
3. Compute the “t-type” statistic Tx̃ (defined below) and p-value for each pixel.

Then chop off the “padded t”-values outside the sitting region.
4. Compute adjusted p-values using the BH-FDR controlling procedure. Generate

an FDR map/movie based on the adjusted p-values.

4.1. T-type tests

In the SSM algorithm, we consider the following nonparametric regression model
to smooth yx̃,

Yi = m(X̃i) + εi

where X̃ = (X1, X2) is a two-dimensional predictor which denotes the coordinates
of an image; the response variable Yi is the corresponding intensity at x̃; m(·, ·) is
an unknown smooth function and εi is an error term, representing random errors
in the observations and variability from sources not included in the X̃i. A smooth
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function m can be approximated in a neighborhood of a point x̃ = (x1, x2) by a
local polynomial. Here we consider a local quadratic approximation:

m(ũ|ã) ≈ a0 + a1(u1 − x1) + a2(u2 − x2)

+
a3

2
(u1 − x1)2 +

a4

2
(u2 − x2)2 + a5(u1 − x1)(u2 − x2)

where ũ = (u1, u2), ã = (a1, a2, a3, a4, a5, a6). The coefficient vector ã can be esti-
mated by minimizing a locally weighted sum of squares:

n∑
i=1

wi(x̃)(Yi − m(x̃i|ã))2

where wi(x̃) is a spherically symmetric weight function that gives an observation x̃i

the weight wi = W (||x̃i − x̃||/h). The local regression estimate of m(x̃) is defined
as m̂(x̃) = â0. (See [17] about computational aspects and bandwidth selections in
details.)

Our hypotheses at x̃ here are: H0 : m(x̃) = 0 vs. H1 : m(x̃) > 0. Since m̂(x̃) can
be written as a linear combination of the response variables,

(4) m̂(x̃) =
n∑

i=1

pi(x̃)Yi,

where p(x̃)T = (p1(x), . . . , pn(x)) is the rows of the hat matrix specified by the
quadratic approximation, the estimated standard deviation of the local estimate m̂
is Ŝ(x̃) = σ̂||p(x̃)||. A proper test statistic is then the “t-type” statistics:

(5) T (x̃) = Tx̃ =
m̂(x̃)
Ŝ(x̃)

.

The null hypothesis H0 would be rejected at x̃ if T (x̃i) > t1−α(δ2
1/δ2) with a

given significance level α, where the degrees of freedom δ1 and δ2 can be obtained
by two-moment chi-square approximations [5, 16, 17], if we used a pointwise test.

Since the above test statistic T is a weighted average of y values in a neighbor-
hood of x, T (x̃) and T (x̃′) are often correlated if x̃ and x̃′ are not far away.

4.2. Multiple testing problem

For multiple comparisons, an overall error must be controlled to overcome the
multiplicity problem that occurs with simultaneously testing many hypotheses,
H0 : m(x̃) = 0 for all x̃ in the sitting region. The family-wise error rate (FWER)
and false discovery rate (FDR) are two typical overall error rates. The simplest
multiple comparison procedure that controls the FWER is the Bonferroni proce-
dure. However, the Bonferroni procedure is too conservative when the number of
hypotheses is very large. It is important to note that the conservativeness of the
Bonferroni procedure comes from two sources: (1) the Bonferroni procedure was
based on a very conservative upper bound for the FWER. (2) FWER is a more
stringent error than FDR. To overcome (1), there are sharper upper bounds for
FWER developed for finite m cases (see [11] and reference therein); there are also
exact and accurate approximations to FWER by tube formulas such as those shown
in [14–16, 18]. As to when to use FWER or FDR, see Section 4.2 of [19]. In this
paper, we choose FDR.
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The step-up procedure for strong control of the false discovery rate introduced
by [1] can be easily implemented, even for very large data sets. We call this BH-FDR
procedure. Returning to the NMES study, it is observed that the approximate T sta-
tistics of the multiple tests are dependent as they are from the estimated regression
function. [2] showed that the BH-FDR procedure is valid under “positive regres-
sion dependency on subsets” (PRDS). They also proposed a simple conservative
modification of the procedure which controls the false discovery rate for arbitrary
dependence structures by letting cm =

∑m
i=1 1/i. Note that

∑m
i=1 1/i ≈ ln m + γ

where γ is the Euler’s constant. For a large number m of hypotheses, the penalty
in this conservative procedure is about log m, (as compared to the BH-FDR pro-
cedure) which can be still too large and can be more conservative than the tube
methods or random field methods by [15, 16]. Rather than using this conservative
procedure with a factor lnm+γ, we prove that the joint distribution of the T-type
test statistics in multivariate local regression is PRDS on the subset of test statis-
tics corresponding to true null hypotheses, and thereby the BH-FDR procedure is
still valid – See Appendix B.

5. LASR – A new data mining procedure

5.1. LASR

Combining the techniques we developed, we present a complete data-mining scheme,
the LASR procedure for analyzing a large sequence of spatial-temporal data sets.

Figure 7 displays the flow chart of our LASR procedure. Step 1: Perform Segmen-
tation for all images by the EM algorithm and by computing the optimal threshold.
Segment the spatial regions of interest from the background in each data frame
and then remove background noise and outliers from the data sets. Segmentation is
needed only for one image frame per movie. Step 2: Spatially register all (segmented)
images via our self-registration scheme SRLP. This step is done automatically for
all images so that all registered images have the middle line placed horizontally in
the middle of each image and the end point at the same location. If both movies
are static movies, go to step 3; if both are dynamic movies, temporally register the
spatially-registered movies. The temporal registration is based on the ICR algorithm
to maximize the correlations between images from two candidate movies, frame-by-
frame so that the left side that is stimulated in one movie is compared with the
left-side stimulated image in another movie (See movies at stat.case.edu/lasr/ ).
Step 3: Create difference images and movies by taking differences pixel-by-pixel

Data

Register Images

Spatial
Registration

Static
Movie?

Temporal 
Registration

Create difference 
Maps/moveis

Create smoothing 
Maps/moveis

Create T Maps/
moveis

Create P Maps/
moveis

Quantitative
Clinical Report

Segment Data

Yes

Fig 7. LASR procedure flow chart.
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(and frame-by-frame) between two sessions that are potentially of clinical interest.
Step 4: Smooth the difference images by the bivariate nonparametric local regression
as in Section 4.1. Step 5: Create T image maps and movies. Generate T images by
computing a t-type test statistic at each pixel. Step 6: Compute FDR-controlled P
maps and movies. Based on the T images and movies, we can compute (pointwise)
p-values at all pixels. The BH-FDR method is applied to adjust the p-values to
account for the multiplicity from simultaneously testing for differences at all pixels.
If a p-value p at x is less than the critical value derived from a 0.05 FDR-controlled
procedure, change the pixel value to 1 − p; if p is greater than the FDR cut-off
value, the pixel value is set to zero. These resulting FDR-controlled P maps or
movies show which areas are the elevated areas or the area that improve interface
pressures (implying improved tissue health).

The LASR output map gives a graphical representation of statistically signifi-
cant pressure changes across the entire mapped region. It helps us to decide if the
NMES is effective at a particular region, with an FDR no more than 0.05. The
algorithm is applied frame-by-frame to aligned pressure data sets. LASR maps can
thus be viewed as single frame “snapshots”, suitable for comparison of static seating
postures, or as videos for comparison of dynamically changing pressures.

5.2. Statistical results

In this subsection we present three typical analysis results: one for a control subject
who did not receive any NMES, one for a treatment subject with static mappings
and another for a treatment subject with dynamic mappings. The results for other
five subjects support the conclusion we can draw from these three analysis results.

Control case: Subject A. Seating pressure assessments were obtained for subject
A at an interval of three months, during which time no NMES was used. From the
upper subplot of Figure 8, it is noted that some spatial misalignment is apparent
between baseline and repeat assessment. After applying the LASR algorithm, it
could be seen from the blank P-map that there was no significant differences in
interface pressure distributions obtained at a three month interval for an individual
who was not receiving NMES.

NMES users: Subject B in static model, subject C in dynamic model. Seating
pressure assessments were obtained for subject B and subject C at an interval
of six months, during which time NMES was used regularly. After applying the
LASR algorithm to assess changes between baseline and post-treatment interface

Fig 8. LASR analysis results for control data.
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(b)

(c)

Fig 9. LASR analysis for pressure mappings to identify the regions of the pressure reduction.
(b) (upper 4 pictures): Subject B in static mode; (c) (lower 4 pictures): Subject C in dynamic
mode.

pressure data sets it could be seen that pressures were reduced bilaterally over time.
Figure 9 (b) shows long-term changes for subject B in static mode seated pressure
distribution. The left sacro-ischial region was more extensively affected than the
right side. Figure 9 (c) shows long-term changes for subject C in dynamic mode
seated pressure distribution. The left and right sacro-ischial regions were equally
affected. Relevant LASR movies can be viewed at stat.case.edu/lasr/.

6. Discussion

The development of the multi-stage statistical LASR algorithm allows both clini-
cians and researchers to derive useful, objective information from pressure maps,
such as the location of significant pressure changes or the relative efficacy of pres-
sure relief procedures. Furthermore, spatial registration allows global analysis of
pre- and post-intervention differences without any subjective bias in selecting areas
of interest. In the specific study of the effects of NMES it was found that subjects
who received a gluteal stimulation system showed statistically significant changes in
ischial region pressure over time, when baseline/post-treatment comparisons were
made. The region of significant change was not symmetrical in all cases which re-
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flects the asymmetric nature both of gluteal muscle recruitment area and contractile
responses.

The last two decades have seen remarkable developments in imaging technology.
Medical images are increasingly widely used in health care and biomedical research;
a wide range of imaging modalities is now available. The clinical significance of
medical imaging in the diagnosis and treatment of diseases is overwhelming. The
commonly used medical imaging modalities capable of producing multidimensional
images for clinical applications are: X-ray Computed Tomography (X-ray CT), Mag-
netic Resonance Imaging (MRI), Single Photon Emission Computed Tomography
(SPECT), Positron Emission Tomography (PET) and Ultrasound (US).

It should be noted that these modern imaging methods involve sophisticated
instrumentation and equipment which employ high-speed electronics and computers
for data collection. Spatial-temporal (image) data occur in a broad range of medical
applications. It is now common for patients to be imaged multiple times, either by
repeated imaging with a single modality, or by imaging with different modalities.
It is also common for patients to be imaged dynamically, that is, to have sequences
of images acquired, often at many frames per second. The ever increasing amount
of image data acquired makes it more and more desirable to relate more than one
statistical tool to assist in extracting relevant clinical information.

Application of the LASR algorithm enhances data extraction and acquires sta-
tistical inferences from complex spatial-temporal data sets, as shown in the NMES
study. Thus the LASR analytical methodology has the potential to be applied to
other imaging modalities or to other imaging targets in which natural landmarks
may be different from the midline and an end point. Other potential clinical ap-
plications include images of soft tissues, which may not include bony landmarks.
Applications could include situations where an imaged object may change dimen-
sions and/or orientation over time.

Appendix A: Registration error of SRLP

Define the overall registration error (RE) of a transformation T to be

(6) RE =
1
n2

n∑
i=1

n∑
j=1

||T(aij) − bij ||2

where aij and bij (i, j = 1, . . . , n) are the corresponding points (i.e. pixel coordi-
nates) in spaces A and B, respectively.

Theorem A.1. Assume that the intensity values are bounded and are confined in
a bounded domain. Then the SRLP is consistent in terms of RE as the number of
pixels increases.

Proof. After SRLP registration, the a′
ij = (a′

i, a
′
j) has the representation

a′
i = ai cos θ̂ − aj sin θ̂ + u, a′

j = ai sin θ̂ + aj cos θ̂ + v̂

where tan θ̂ = β̂0, v̂ = tan θ̂u + β̂1, and β̂0, β̂1 are the estimates of the slope
and intercept of the midline. Notice that u is not an estimated value because the
horizontal axis of the last point in the fitted midline keeps immovable.

A perfect registration will make the transformed point equal to bij , so

b′i = ai cos θ − aj sin θ + u, b′j = ai sin θ + aj cos θ + v
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Then the registration error of SRLP is equal to

RE =
1
n2

n∑
i=1

n∑
j=1

{
[ai(cos θ̂ − cos θ) − aj(sin θ̂ − sin θ)]2

+ [ai(sin θ̂ − sin θ) − aj(cos θ̂ − cos θ) + (v̂ − v)]2
}

.

Note that β̂0, β̂1 are consistent estimators in the midline regression, and θ =
g(β1, β2), v = h(β1, β2) where g and h are continuous functions. Hence, θ̂ = g(β̂0, β̂1)
and v̂ = h(β̂0, β̂1) are also consistent by Slutsky’s theorem. Then by the bounded-
ness of intensities and ai, aj , it is easy to see that RE → 0 in probability as n → ∞
or the number of pixels tends to infinity.

Appendix B: PRDS of test statistics in multivariate local regression

Recall that a set D is called increasing if x ∈ D and y ≥ x, implies that y ∈ D as
well. The following property is called positive regression dependency on each one
from a subset I0, or PRDS on I0 [2].

Property B.1 (PRDS). For any increasing set D, and for each i ∈ I0, P (X ∈
D|Xi = x) is nondecreasing in x.

Proposition B.1 (PRDS of test statistics in multivariate local regres-
sion). Consider a vector of test statistics T = (T1, T2, . . . , Tm)T . Each Ti tests the
hypothesis m(x̃i) = 0 against the alternative m(x̃i) > 0 for i = 1, . . . , m, where Ti

is defined by (5) with the nonnegative weights p(x̃i) in (4). The distribution of T
is PRDS over I0, the set of true null hypotheses.

Proof. Let U = (U1, . . . , Um)T where Ui = m̂(x̃i)/||p(x̃i)||. We first verify that U
is PRDS on a subset I0. By (4), for any i �= j,

cov(Ui, Uj) =
cov

( ∑n
t=1 pt(x̃i)Yt,

∑n
k=1 pk(x̃j)Yk

)
||p(x̃i)|| · ||p(x̃j)||

=
σ2

∑n
t=1 pt(x̃i)pt(x̃j)

||p(x̃i)|| · ||p(x̃j)||
> 0

Under the normality assumption of errors, U follows a multivariate normal distri-
bution with the covariance matrix having positive elements. Then U is PRDS on
a subset I0 because the conditional distribution U(i) given Ui = ui increases sto-
chastically as ui increases (where U(i) denotes the remaining m − 1 test statistics
except Ui).

Since σ̂2 approximately follows χ2 distribution, let V = 1/σ̂. Then for j =
1, . . . , m the components of T, Tj = UjV are strictly increasing continuous functions
of the coordinates Uj and of V . Therefore, U is PRDS on I0 by applying Lemma
3.1 of [2].
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