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Where do statistical models come from?

Revisiting the problem of specification

Aris Spanos∗1

Virginia Polytechnic Institute and State University

Abstract: R. A. Fisher founded modern statistical inference in 1922 and iden-
tified its fundamental problems to be: specification, estimation and distribu-
tion. Since then the problem of statistical model specification has received scant
attention in the statistics literature. The paper traces the history of statistical
model specification, focusing primarily on pioneers like Fisher, Neyman, and
more recently Lehmann and Cox, and attempts a synthesis of their views in the
context of the Probabilistic Reduction (PR) approach. As argued by Lehmann
[11], a major stumbling block for a general approach to statistical model speci-
fication has been the delineation of the appropriate role for substantive subject
matter information. The PR approach demarcates the interrelated but comple-
menatry roles of substantive and statistical information summarized ab initio
in the form of a structural and a statistical model, respectively. In an attempt
to preserve the integrity of both sources of information, as well as to ensure the
reliability of their fusing, a purely probabilistic construal of statistical mod-
els is advocated. This probabilistic construal is then used to shed light on a
number of issues relating to specification, including the role of preliminary
data analysis, structural vs. statistical models, model specification vs. model
selection, statistical vs. substantive adequacy and model validation.

1. Introduction

The current approach to statistics, interpreted broadly as ‘probability-based data
modeling and inference’, has its roots going back to the early 19th century, but it
was given its current formulation by R. A. Fisher [5]. He identified the fundamental
problems of statistics to be: specification, estimation and distribution. Despite its
importance, the question of specification, ‘where do statistical models come from?’
received only scant attention in the statistics literature; see Lehmann [11].

The cornerstone of modern statistics is the notion of a statistical model whose
meaning and role have changed and evolved along with that of statistical modeling
itself over the last two centuries. Adopting a retrospective view, a statistical model
is defined to be an internally consistent set of probabilistic assumptions aiming to
provide an ‘idealized’ probabilistic description of the stochastic mechanism that
gave rise to the observed data x := (x1, x2, . . . , xn). The quintessential statistical
model is the simple Normal model, comprising a statistical Generating Mechanism
(GM):

(1.1) Xk = µ + uk, k ∈ N := {1, 2, . . . n, . . .}
∗I’m most grateful to Erich Lehmann, Deborah G. Mayo, Javier Rojo and an anonymous

referee for valuable suggestions and comments on an earlier draft of the paper.
1Department of Economics, Virginia Polytechnic Institute, and State University, Blacksburg,

VA 24061, e-mail: aris@vt.edu
AMS 2000 subject classifications: 62N-03, 62A01, 62J20, 60J65.
Keywords and phrases: specification, statistical induction, misspecification testing, respecifica-

tion, statistical adequacy, model validation, substantive vs. statistical information, structural vs.
statistical models.

98



Statistical models: problem of specification 99

together with the probabilistic assumptions:

(1.2) Xk ∼ NIID(µ, σ2), k ∈ N,

where Xk∼NIID stands for Normal, Independent and Identically Distributed. The
nature of a statistical model will be discussed in section 3, but as a prelude to that,
it is important to emphasize that it is specified exclusively in terms of probabilistic
concepts that can be related directly to the joint distribution of the observable
stochastic process {Xk, k∈N}. This is in contrast to other forms of models that
play a role in statistics, such as structural (explanatory, substantive), which are
based on substantive subject matter information and are specified in terms of theory
concepts.

The motivation for such a purely probabilistic construal of statistical models
arises from an attempt to circumvent some of the difficulties for a general approach
to statistical modeling. These difficulties were raised by early pioneers like Fisher
[5]–[7] and Neyman [17]–[26], and discussed extensively by Lehmann [11] and Cox
[1]. The main difficulty, as articulated by Lehmann [11], concerns the role of sub-
stantive subject matter information. His discussion suggests that if statistical model
specification requires such information at the outset, then any attempt to provide
a general approach to statistical modeling is unattainable. His main conclusion is
that, despite the untenability of a general approach, statistical theory has a contri-
bution to make in model specification by extending and improving: (a) the reservoir
of models, (b) the model selection procedures, and (c) the different types of models.

In this paper it is argued that Lehmann’s case concerning (a)–(c) can be strength-
ened and extended by adopting a purely probabilistic construal of statistical mod-
els and placing statistical modeling in a broader framework which allows for fusing
statistical and substantive information in a way which does not compromise the
integrity of either. Substantive subject matter information emanating from the
theory, and statistical information reflecting the probabilistic structure of the data,
need to be viewed as bringing to the table different but complementary informa-
tion. The Probabilistic Reduction (PR) approach offers such a modeling framework
by integrating several innovations in Neyman’s writings into Fisher’s initial frame-
work with a view to address a number of modeling problems, including the role
of preliminary data analysis, structural vs. statistical models, model specification
vs. model selection, statistical vs. substantive adequacy and model validation. Due
to space limitations the picture painted in this paper will be dominated by broad
brush strokes with very few details; see Spanos [31]–[42] for further discussion.

1.1. Substantive vs. statistical information

Empirical modeling in the social and physical sciences involves an intricate blending
of substantive subject matter and statistical information. Many aspects of empirical
modeling implicate both sources of information in a variety of functions, and others
involve one or the other, more or less separately. For instance, the development of
structural (explanatory) models is primarily based on substantive information and
it is concerned with the mathematization of theories to give rise to theory models,
which are amenable to empirical analysis; that activity, by its very nature, cannot
be separated from the disciplines in question. On the other hand, certain aspects of
empirical modeling, which focus on statistical information and are concerned with
the nature and use of statistical models, can form a body of knowledge which is
shared by all fields that use data in their modeling. This is the body of knowledge
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that statistics can claim as its subject matter and develop it with only one eye on
new problems/issues raised by empirical modeling in other disciplines. This ensures
that statistics is not subordinated to the other applied fields, but remains a separate
discipline which provides, maintains and extends/develops the common foundation
and overarching framework for empirical modeling.

To be more specific, statistical model specification refers to the choice of a model
(parameterization) arising from the probabilistic structure of a stochastic process
{Xk, k∈N} that would render the data in question x :=(x1, x2, . . . , xn) a truly
typical realization thereof. This perspective on the data is referred to as the Fisher–
Neyman probabilistic perspective for reasons that will become apparent in section 2.
When one specifies the simple Normal model (1.1), the only thing that matters from
the statistical specification perspective is whether the data x can be realistically
viewed as a truly typical realization of the process {Xk, k∈N} assumed to be NIID,
devoid of any substantive information. A model is said to be statistical adequate
when the assumptions constituting the statistical model in question, NIID, are valid
for the data x in question. Statistical adequacy can be assessed qualitatively using
analogical reasoning in conjunction with data graphs (t-plots, P-P plots etc.), as
well as quantitatively by testing the assumptions constituting the statistical model
using probative Mis-Specification (M-S) tests; see Spanos [36].

It is argued that certain aspects of statistical modeling, such as statistical model
specification, the use of graphical techniques, M-S testing and respecification, to-
gether with optimal inference procedures (estimation, testing and prediction), can
be developed generically by viewing data x as a realization of a (nameless) sto-
chastic process {Xk, t∈N}. All these aspects of empirical modeling revolve around
a central axis we call a statistical model. Such models can be viewed as canonical
models, in the sense used by Mayo [12], which are developed without any reference
to substantive subject matter information, and can be used equally in physics, biol-
ogy, economics and psychology. Such canonical models and the associated statistical
modeling and inference belong to the realm of statistics. Such a view will broaden
the scope of modern statistics by integrating preliminary data analysis, statisti-
cal model specification, M-S testing and respecification into the current textbook
discourses; see Cox and Hinkley [2], Lehmann [10].

On the other hand the question of substantive adequacy, i.e. whether a structural
model adequately captures the main features of the actual Data Generating Mech-
anism (DGM) giving rise to data x, cannot be addressed in a generic way because
it concerns the bridge between the particular model and the phenomenon of inter-
est. Even in this case, however, assessing substantive adequacy will take the form
of applying statistical procedures within an embedding statistical model. More-
over, for the error probing to be reliable one needs to ensure that the embedding
model is statistically adequate; it captures all the statistical systematic informa-
tion (Spanos, [41]). In this sense, substantive subject matter information (which
might range from vary vague to highly informative) constitutes important supple-
mentary information which, under statistical and substantive adequacy, enhances
the explanatory and predictive power of statistical models.

In the spirit of Lehmann [11], models in this paper are classified into:

(a) statistical (empirical, descriptive, interpolatory formulae, data models), and
(b) structural (explanatory, theoretical, mechanistic, substantive).

The harmonious integration of these two sources of information gives rise to an

(c) empirical model ; the term is not equivalent to that in Lehmann [11].
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In Section 2, the paper traces the development of ideas, issues and problems
surrounding statistical model specification from Karl Pearson [27] to Lehmann [11],
with particular emphasis on the perspectives of Fisher and Neyman. Some of the
ideas and modeling suggestions of these pioneers are synthesized in Section 3 in the
form of the PR modeling framework. Kepler’s first law of planetary motion is used
to illustrate some of the concepts and ideas. The PR perspective is then used to
shed light on certain issues raised by Lehmann [11] and Cox [1].

2. 20th century statistics

2.1. Early debates: description vs. induction

Before Fisher, the notion of a statistical model was both vague and implicit in data
modeling, with its role primarily confined to the description of the distributional
properties of the data in hand using the histogram and the first few sample mo-
ments. A crucial problem with the application of descriptive statistics in the late
19th century was that statisticians would often claim generality beyond the data
in hand for their inferences. This is well-articulated by Mills [16]:

“In approaching this subject [statistics] we must first make clear the distinction
between statistical description and statistical induction. By employing the methods
of statistics it is possible, as we have seen, to describe succinctly a mass of quanti-
tative data.” ... “In so far as the results are confined to the cases actually studied,
these various statistical measures are merely devices for describing certain features
of a distribution, or certain relationships. Within these limits the measures may be
used to perfect confidence, as accurate descriptions of the given characteristics. But
when we seek to extend these results, to generalize the conclusions, to apply them
to cases not included in the original study, a quite new set of problems is faced.”
(p. 548-9)

Mills [16] went on to discuss the ‘inherent assumptions’ necessary for the validity
of statistical induction:

“... in the larger population to which this result is to be applied, there exists a
uniformity with respect to the characteristic or relation we have measured” ..., and
“... the sample from which our first results were derived is thoroughly representative
of the entire population to which the results are to be applied.” (pp. 550-2).

The fine line between statistical description and statistical induction was nebu-
lous until the 1920s, for several reasons. First, “No distinction was drawn between
a sample and the population, and what was calculated from the sample was at-
tributed to the population.” (Rao, [29], p. 35). Second, it was thought that the
inherent assumptions for the validity of statistical induction are not empirically
verifiable; see Mills [16], p. 551). Third, there was a widespread belief, exemplified
in the first quotation from Mills, that statistical description does not require any
assumptions. It is well-known today that there is no such thing as a meaningful
summary of the data that does not involve any implicit assumptions; see Neyman
[21]. For instance, the arithmetic average of a trending time series represents no
meaningful feature of the underlying ‘population’.
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2.2. Karl Pearson

Karl Pearson was able to take descriptive statistics to a higher level of sophistication
by proposing the ‘graduation (smoothing) of histograms’ into ‘frequency curves’;
see Pearson [27]. This, however, introduced additional fuzziness into the distinction
between statistical description vs. induction because the frequency curves were the
precursors to the density functions; one of the crucial components of a statistical
model introduced by Fisher [5] providing the foundation of statistical induction. The
statistical modeling procedure advocated by Pearson, however, was very different
from that introduced by Fisher.

For Karl Pearson statistical modeling would begin with data x :=(x1, x2, . . . , xn)
in search of a descriptive model which would be in the form of a frequency curve
f(x), chosen from the Pearson family f(x; θ), θ :=(a, b0, b1, b2), after applying the
method of moments to obtain θ̂ (see Pearson, [27]). Viewed from today’s perspective,
the solution θ̂, would deal with two different statistical problems simultaneously,
(a) specification (the choice a descriptive model f(x; θ̂)) and (b) estimation of θ

using θ̂. f(x; θ̂) can subsequently be used to draw inferences beyond the original
data x.

Pearson’s view of statistical induction, as late as 1920, was that of induction by
enumeration which relies on both prior distributions and the stability of relative
frequencies; see Pearson [28], p. 1.

2.3. R. A. Fisher

One of Fisher’s most remarkable but least appreciated achievements, was to initiate
the recasting of the form of statistical induction into its modern variant. Instead of
starting with data x in search of a descriptive model, he would interpret the data as
a truly representative sample from a pre-specified ‘hypothetical infinite population’.
This might seem like a trivial re-arrangement of Pearson’s procedure, but in fact
it constitutes a complete recasting of the problem of statistical induction, with the
notion of a parameteric statistical model delimiting its premises.

Fisher’s first clear statement of this major change from the then prevailing mod-
eling process is given in his classic 1922 paper:

“... the object of statistical methods is the reduction of data. A quantity of
data, which usually by its mere bulk is incapable of entering the mind, is to be
replaced by relatively few quantities which shall adequately represent the whole,
or which, in other words, shall contain as much as possible, ideally the whole, of
the relevant information contained in the original data. This object is accomplished
by constructing a hypothetical infinite population, of which the actual data are
regarded as constituting a sample. The law of distribution of this hypothetical
population is specified by relatively few parameters, which are sufficient to describe
it exhaustively in respect of all qualities under discussion.” ([5], p. 311)

Fisher goes on to elaborate on the modeling process itself: “The problems which
arise in reduction of data may be conveniently divided into three types: (1) Prob-
lems of Specification. These arise in the choice of the mathematical form of the
population. (2) Problems of Estimation. (3) Problems of Distribution.

It will be clear that when we know (1) what parameters are required to specify
the population from which the sample is drawn, (2) how best to calculate from
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the sample estimates of these parameters, and (3) the exact form of the distri-
bution, in different samples, of our derived statistics, then the theoretical aspect
of the treatment of any particular body of data has been completely elucidated.”
(p. 313-4)

One can summarize Fisher’s view of the statistical modeling process as follows.
The process begins with a prespecified parametric statistical model M (‘a hypo-
thetical infinite population’), chosen so as to ensure that the observed data x are
viewed as a truly representative sample from that ‘population’:

“The postulate of randomness thus resolves itself into the question, ”Of what
population is this a random sample?” which must frequently be asked by every
practical statistician.” ([5], p. 313)

Fisher was fully aware of the fact that the specification of a statistical model
premises all forms of statistical inference. Once M was specified, the original un-
certainty relating to the ‘population’ was reduced to uncertainty concerning the
unknown parameter(s) θ, associated with M. In Fisher’s set up, the parameter(s)
θ, are unknown constants and become the focus of inference. The problems of ‘es-
timation’ and ‘distribution’ revolve around θ.

Fisher went on to elaborate further on the ‘problems of specification’: “As regards
problems of specification, these are entirely a matter for the practical statistician,
for those cases where the qualitative nature of the hypothetical population is known
do not involve any problems of this type. In other cases we may know by experience
what forms are likely to be suitable, and the adequacy of our choice may be tested a
posteriori. We must confine ourselves to those forms which we know how to handle,
or for which any tables which may be necessary have been constructed. More or
less elaborate form will be suitable according to the volume of the data.” (p. 314)
[emphasis added]

Based primarily on the above quoted passage, Lehmann’s [11] assessment of
Fisher’s view on specification is summarized as follows: “Fisher’s statement im-
plies that in his view there can be no theory of modeling, no general modeling
strategies, but that instead each problem must be considered entirely on its own
merits. He does not appear to have revised his opinion later... Actually, following
this uncompromisingly negative statement, Fisher unbends slightly and offers two
general suggestions concerning model building: (a) “We must confine ourselves to
those forms which we know how to handle,” and (b) “More or less elaborate forms
will be suitable according to the volume of the data.”” (p. 160-1).

Lehmann’s interpretation is clearly warranted, but Fisher’s view of specification
has some additional dimensions that need to be brought out. The original choice
of a statistical model may be guided by simplicity and experience, but as Fisher
emphasizes “the adequacy of our choice may be tested a posteriori.” What comes
after the above quotation is particularly interesting to be quoted in full: “Evidently
these are considerations the nature of which may change greatly during the work
of a single generation. We may instance the development by Pearson of a very
extensive system of skew curves, the elaboration of a method of calculating their
parameters, and the preparation of the necessary tables, a body of work which has
enormously extended the power of modern statistical practice, and which has been,
by pertinacity and inspiration alike, practically the work of a single man. Nor is the
introduction of the Pearsonian system of frequency curves the only contribution
which their author has made to the solution of problems of specification: of even
greater importance is the introduction of an objective criterion of goodness of fit. For
empirical as the specification of the hypothetical population may be, this empiricism
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is cleared of its dangers if we can apply a rigorous and objective test of the adequacy
with which the proposed population represents the whole of the available facts. Once
a statistic suitable for applying such a test, has been chosen, the exact form of its
distribution in random samples must be investigated, in order that we may evaluate
the probability that a worse fit should be obtained from a random sample of a
population of the type considered. The possibility of developing complete and self-
contained tests of goodness of fit deserves very careful consideration, since therein
lies our justification for the free use which is made of empirical frequency formulae.
Problems of distribution of great mathematical difficulty have to be faced in this
direction.” (p. 314) [emphasis (in italic) added]

In this quotation Fisher emphasizes the empirical dimension of the specification
problem, and elaborates on testing the assumptions of the model, lavishing Karl
Pearson with more praise for developing the goodness of fit test than for his family
of densities. He clearly views this test as a primary tool for assessing the validity of
the original specification (misspecification testing). He even warns the reader of the
potentially complicated sampling theory required for such form of testing. Indeed,
most of the tests he discusses in chapters 3 and 4 of his 1925 book [6] are misspeci-
fication tests: tests of departures from Normality, Independence and Homogeneity.
Fisher emphasizes the fact that the reliability of every form of inference depend
crucially on the validity of the statistical model postulated. The premises of statis-
tical induction in Fisher’s sense no longer rely on prior assumptions of ‘ignorance’,
but on testable probabilistic assumptions which concern the observed data; this was
a major departure from Pearson’s form of enumerative induction relying on prior
distributions.

A more complete version of the three problems of the ‘reduction of data’ is
repeated in Fisher’s 1925 book [6], which is worth quoting in full with the major
additions indicated in italic: “The problems which arise in the reduction of data
may thus conveniently be divided into three types:

(i) Problems of Specification, which arise in the choice of the mathematical form
of the population. This is not arbitrary, but requires an understanding of the way
in which the data are supposed to, or did in fact, originate. Its further discussion
depends on such fields as the theory of Sample Survey, or that of Experimental
Design.

(ii) When the specification has been obtained, problems of Estimation arise. These
involve the choice among the methods of calculating, from our sample, statistics fit
to estimate the unknown parameters of the population.

(iii) Problems of Distribution include the mathematical deduction of the exact
nature of the distributions in random samples of our estimates of the parameters,
and of the other statistics designed to test the validity of our specification (tests of
Goodness of Fit).” (see ibid. p. 8)

In (i) Fisher makes a clear reference to the actual Data Generating Mechanism
(DGM), which might often involve specialized knowledge beyond statistics. His
view of specification, however, is narrowed down by his focus on data from ‘sample
surveys’ and ‘experimental design’, where the gap between the actual DGM and
the statistical model is not sizeable. This might explain his claim that: “... for those
cases where the qualitative nature of the hypothetical population is known do not
involve any problems of this type.” In his 1935 book, Fisher states that: “Statistical
procedure and experimental design are only two aspects of the same whole, and that
whole comprises all the logical requirements of the complete process of adding to
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natural knowledge by experimentation” (p. 3)
In (iii) Fisher adds the derivation of the sampling distributions of misspecification

tests as part of the ‘problems of distribution’.
In summary, Fisher’s view of specification, as a facet of modeling providing the

foundation and the overarching framework for statistical induction, was a radical
departure from Karl Pearson’s view of the problem. By interpreting the observed
data as ‘truly representative’ of a prespecified statistical model, Fisher initiated
the recasting of statistical induction and rendered its premises testable. By ascer-
taining statistical adequacy, using misspecification tests, the modeler can ensure
the reliability of inductive inference. In addition, his pivotal contributions to the
‘problems of Estimation and Distribution’, in the form of finite sampling distribu-
tions for estimators and test statistics, shifted the emphasis in statistical induction,
from enumerative induction and its reliance on asymptotic arguments, to ‘reliable
procedures’ based on finite sample ‘ascertainable error probabilities’:

“In order to assert that a natural phenomenon is experimentally demonstrable we
need, not an isolated record, but a reliable method of procedure. In relation to the
test of significance, we may say that a phenomenon is experimentally demonstrable
when we know how to conduct an experiment which will rarely fail to give us a
statistically significant result.” (Fisher [7], p. 14)

This constitutes a clear description of inductive inference based on ascertainable
error probabilities, under the ‘control’ of the experimenter, used to assess the ‘opti-
mality’ of inference procedures. Fisher was the first to realize that for precise (finite
sample) ‘error probabilities’, to be used for calibrating statistical induction, one
needs a complete model specification including a distribution assumption. Fisher’s
most enduring contribution is his devising a general way to ‘operationalize’ the
errors for statistical induction by embedding the material experiment into a statis-
tical model and define the frequentist error probabilities in the context of the latter.
These statistical error probabilities provide a measure of the ‘trustworthiness’ of
the inference procedure: how often it will give rise to true inferences concerning the
underlying DGM. That is, the inference is reached by an inductive procedure which,
with high probability, will reach true conclusions from true (or approximately true)
premises (statistical model). This is in contrast to induction by enumeration where
the focus is on observed ‘events’ and not on the ‘process’ generating the data.

In relation to this, C. S. Peirce put forward a similar view of quantitative in-
duction, almost half a century earlier. This view of statistical induction, was called
the error statistical approach by Mayo [12], who has formalized and extended it
to include a post-data evaluation of inference in the form of severe testing. Severe
testing can be used to address chronic problems associated with Neyman-Pearson
testing, including the classic fallacies of acceptance and rejection; see Mayo and
Spanos [14].

2.4. Neyman

According to Lehmann [11], Neyman’s views on the theory of statistical modeling
had three distinct features:

“1. Models of complex phenomena are constructed by combining simple building
blocks which, “partly through experience and partly through imagination, appear
to us familiar, and therefore, simple.” ...
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2. An important contribution to the theory of modeling is Neyman’s distinction
between two types of models: “interpolatory formulae” on the one hand and “ex-
planatory models” on the other. The latter try to provide an explanation of the
mechanism underlying the observed phenomena; Mendelian inheritance was Ney-
man’s favorite example. On the other hand an interpolatory formula is based on a
convenient and flexible family of distributions or models given a priori, for example
the Pearson curves, one of which is selected as providing the best fit to the data. ...

3. The last comment of Neyman’s we mention here is that to develop a “genuine
explanatory theory” requires substantial knowledge of the scientific background of
the problem.” (p. 161)

Lehmann’s first hand knowledge of Neyman’s views on modeling is particularly
enlightening. It is clear that Neyman adopted, adapted and extended Fisher’s view
of statistical modeling. What is especially important for our purposes is to bring
out both the similarities as well as the subtle differences with Fisher’s view.

Neyman and Pearson [26] built their hypothesis testing procedure in the con-
text of Fisher’s approach to statistical modeling and inference, with the notion of a
prespecified parametric statistical model providing the cornerstone of the whole in-
ferential edifice. Due primarily to Neyman’s experience with empirical modeling in
a number of applied fields, including genetics, agriculture, epidemiology and astron-
omy, his view of statistical models, evolved beyond Fisher’s ‘infinite populations’
in the 1930s into frequentist ‘chance mechanisms’ in the 1950s:

“(ii) Guessing and then verifying the ‘chance mechanism’, the repeated opera-
tions of which produces the observed frequencies. This is a problem of ‘frequentist
probability theory’. Occasionally, this step is labelled ‘model building’. Naturally,
the guessed chance mechanism is hypothetical.” (Neyman [25], p. 99)

In this quotation we can see a clear statement concerning the nature of specifi-
cation. Neyman [18] describes statistical modeling as follows: “The application of
the theory involves the following steps:

(i) If we wish to treat certain phenomena by means of the theory of probability
we must find some element of these phenomena that could be considered as random,
following the law of large numbers. This involves a construction of a mathematical
model of the phenomena involving one or more probability sets.

(ii) The mathematical model is found satisfactory, or not. This must be checked
by observation.

(iii) If the mathematical model is found satisfactory, then it may be used for
deductions concerning phenomena to be observed in the future.” (ibid., p. 27)

In this quotation Neyman in (i) demarcates the domain of statistical modeling
to stochastic phenomena: observed phenomena which exhibit chance regularity pat-
terns, and considers statistical (mathematical) models as probabilistic constructs.
He also emphasizes the reliance of frequentist inductive inference on the long-run
stability of relative frequencies. Like Fisher, he emphasizes in (ii) the testing of the
assumptions comprising the statistical model in order to ensure its adequacy. In
(iii) he clearly indicates that statistical adequacy is a necessary condition for any
inductive inference. This is because the ‘error probabilities’, in terms of which the
optimality of inference is defined, depend crucially on the validity of the model:

“... any statement regarding the performance of a statistical test depends upon
the postulate that the observable random variables are random variables and posses



Statistical models: problem of specification 107

the properties specified in the definition of the set Ω of the admissible simple hy-
potheses.” (Neyman [17], p. 289)

A crucial implication of this is that when the statistical model is misspecified,
the actual error probabilities, in terms of which ‘optimal’ inference procedures are
chosen, are likely to be very different from the nominal ones, leading to unreliable
inferences; see Spanos [40].

Neyman’s experience with modeling observational data led him to take statistical
modeling a step further and consider the question of respecifying the original model
whenever it turns out to be inappropriate (statistically inadequate): “Broadly, the
methods of bringing about an agreement between the predictions of statistical the-
ory and observations may be classified under two headings:(a) Adaptation of the
statistical theory to the enforced circumstances of observation. (b) Adaptation of
the experimental technique to the postulates of the theory. The situations referred
to in (a) are those in which the observable random variables are largely outside the
control of the experimenter or observer.” ([17], p. 291)

Neyman goes on to give an example of (a) from his own applied research on the
effectiveness of insecticides where the Poisson model was found to be inappropriate:
“Therefore, if the statistical tests based on the hypothesis that the variables follow
the Poisson Law are not applicable, the only way out of the difficulty is to modify
or adapt the theory to the enforced circumstances of experimentation.” (ibid., p.
292)

In relation to (b) Neyman continues (ibid., p. 292): “In many cases, particularly
in laboratory experimentation, the nature of the observable random variables is
much under the control of the experimenter, and here it is usual to adapt the
experimental techniques so that it agrees with the assumptions of the theory.”

He goes on to give due credit to Fisher for introducing the crucially important
technique of randomization and discuss its application to the ‘lady tasting tea’
experiment. Arguably, Neyman’s most important extension of Fisher’s specification
facet of statistical modeling, was his underscoring of the gap between a statistical
model and the phenomena of interest :

“...it is my strong opinion that no mathematical theory refers exactly to hap-
penings in the outside world and that any application requires a solid bridge over
an abyss. The construction of such a bridge consists first, in explaining in what
sense the mathematical model provided by the theory is expected to “correspond”
to certain actual happenings and second, in checking empirically whether or not
the correspondence is satisfactory.” ([18], p. 42)

He emphasizes the bridging of the gap between a statistical model and the ob-
servable phenomenon of interest, arguing that, beyond statistical adequacy, one
needs to ensure substantive adequacy : the accord between the statistical model and
‘reality’ must also be adequate: “Since in many instances, the phenomena rather
than their models are the subject of scientific interest, the transfer to the phenom-
ena of an inductive inference reached within the model must be something like this:
granting that the model M of phenomena P is adequate (or valid, of satisfactory,
etc.) the conclusion reached within M applies to P .” (Neyman [19], p. 17)

In a purposeful attempt to bridge this gap, Neyman distinguished between a sta-
tistical model (interpolatory formula) and a structural model (see especially Neyman
[24], p. 3360), and raised the important issue of identification in Neyman [23]: “This
particular finding by Polya demonstrated a phenomenon which was unanticipated
– two radically different stochastic mechanisms can produce identical distributions



108 A. Spanos

of the same variable X! Thus, the study of this distribution cannot answer the
question which of the two mechanisms is actually operating. ” ([23], p. 158)

In summary, Neyman’s views on statistical modeling elucidated and extended
that of Fisher’s in several important respects: (a) Viewing statistical models pri-
marily as ‘chance mechanisms’. (b) Articulating fully the role of ‘error probabilities’
in assessing the optimality of inference methods. (c) Elaborating on the issue of re-
specification in the case of statistically inadequate models. (d) Emphasizing the
gap between a statistical model and the phenomenon of interest. (e) Distinguishing
between structural and statistical models. (f) Recognizing the problem of Identifi-
cation.

2.5. Lehmann

Lehmann [11] considers the question of ‘what contribution statistical theory can po-
tentially make to model specification and construction’. He summarizes the views
of both Fisher and Neyman on model specification and discusses the meagre sub-
sequent literature on this issue. His primary conclusion is rather pessimistic: apart
from some vague guiding principles, such as simplicity, imagination and the use of
past experience, no general theory of modeling seems attainable: “This requirement
[to develop a “genuine explanatory theory” requires substantial knowledge of the
scientific background of the problem] is agreed on by all serious statisticians but it
constitutes of course an obstacle to any general theory of modeling, and is likely
a principal reason for Fisher’s negative feeling concerning the possibility of such a
theory.” (Lehmann [11], p. 161)

Hence, Lehmann’s source of pessimism stems from the fact that ‘explanatory’
models place a major component of model specification beyond the subject matter
of the statistician: “An explanatory model, as is clear from the very nature of such
models, requires detailed knowledge and understanding of the substantive situation
that the model is to represent. On the other hand, an empirical model may be
obtained from a family of models selected largely for convenience, on the basis
solely of the data without much input from the underlying situation.” (p. 164)

In his attempt to demarcate the potential role of statistics in a general theory of
modeling, Lehmann [11], p. 163, discusses the difference in the basic objectives of the
two types of models, arguing that: “Empirical models are used as a guide to action,
often based on forecasts ... In contrast, explanatory models embody the search for
the basic mechanism underlying the process being studied; they constitute an effort
to achieve understanding.”

In view of these, he goes on to pose a crucial question (Lehmann [11], p. 161-2):
“Is applied statistics, and more particularly model building, an art, with each new
case having to be treated from scratch, ..., completely on its own merits, or does
theory have a contribution to make to this process?”

Lehmann suggests that one (indirect) way a statistician can contribute to the
theory of modeling is via: “... the existence of a reservoir of models which are well
understood and whose properties we know. Probability theory and statistics have
provided us with a rich collection of such models.” (p. 161)

Assuming the existence of a sizeable reservoir of models, the problem still remains
‘how does one make a choice among these models?’ Lehmann’s view is that the
current methods on model selection do not address this question:

“Procedures for choosing a model not from the vast storehouse mentioned in
(2.1 Reservoir of Models) but from a much more narrowly defined class of models



Statistical models: problem of specification 109

are discussed in the theory of model selection. A typical example is the choice of
a regression model, for example of the best dimension in a nested class of such
models. ... However, this view of model selection ignores a preliminary step: the
specification of the class of models from which the selection is to be made.” (p.
162)

This is a most insightful comment because a closer look at model selection pro-
cedures suggests that the problem of model specification is largely assumed away
by commencing the procedure by assuming that the prespecified family of models
includes the true model; see Spanos [42].

In addition to differences in their nature and basic objectives, Lehmann [11] ar-
gues that explanatory and empirical models pose very different problems for model
validation: “The difference in the aims and nature of the two types of models
[empirical and explanatory] implies very different attitudes toward checking their
validity. Techniques such as goodness of fit test or cross validation serve the needs
of checking an empirical model by determining whether the model provides an ad-
equate fit for the data. Many different models could pass such a test, which reflects
the fact that there is not a unique correct empirical model. On the other hand,
ideally there is only one model which at the given level of abstraction and general-
ity describes the mechanism or process in question. To check its accuracy requires
identification of the details of the model and their functions and interrelations with
the corresponding details of the real situation.” (ibid. pp. 164-5)

Lehmann [11] concludes the paper on a more optimistic note by observing that
statistical theory has an important role to play in model specification by extending
and enhancing: (1) the reservoir of models, (2) the model selection procedures, as
well as (3) utilizing different classifications of models. In particular, in addition
to the subject matter, every model also has a ‘chance regularity’ dimension and
probability theory can play a crucial role in ‘capturing’ this. This echoes Neyman
[21], who recognized the problem posed by explanatory (stochastic) models, but
suggested that probability theory does have a crucial role to play: “The problem
of stochastic models is of prime interest but is taken over partly by the relevant
substantive disciplines, such as astronomy, physics, biology, economics, etc., and
partly by the theory of probability. In fact, the primary subject of the modern
theory of probability may be described as the study of properties of particular
chance mechanisms.” (p. 447)

Lehmann’s discussion of model specification suggests that the major stumbling
block in the development of a general modeling procedure is the substantive knowl-
edge, beyond the scope of statistics, called for by explanatory models; see also Cox
and Wermuth [3]. To be fair, both Fisher and Neyman in their writings seemed to
suggest that statistical model specification is based on an amalgam of substantive
and statistical information.

Lehmann [11] provides a key to circumventing this stumbling block: “Exami-
nation of some of the classical examples of revolutionary science shows that the
eventual explanatory model is often reached in stages, and that in the earlier ef-
forts one may find models that are descriptive rather than fully explanatory. ... This
is, for example, true of Kepler whose descriptive model (laws) of planetary motion
precede Newton’s explanatory model.” (p. 166).

In this quotation, Lehmann acknowledges that a descriptive (statistical) model
can have ‘a life of its own’, separate from substantive subject matter information.
However, the question that arises is: ‘what is such model a description of?’ As
argued in the next section, in the context of the Probabilistic Reduction (PR)
framework, such a model provides a description of the systematic statistical infor-
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mation exhibited by data Z :=(z1, z2, . . . , zn). This raises another question ‘how
does the substantive information, when available, enter statistical modeling?’ Usu-
ally substantive information enters the empirical modeling as restrictions on a sta-
tistical model, when the structural model, carrying the substantive information,
is embedded into a statistical model. As argued next, when these restrictions are
data-acceptable, assessed in the context of a statistically adequate model, they give
rise to an empirical model (see Spanos, [31]), which is both statistically as well as
substantively meaningful.

3. The Probabilistic Reduction (PR) Approach

The foundations and overarching framework of the PR approach (Spanos, [31]–[42])
has been greatly influenced by Fisher’s recasting of statistical induction based on
the notion of a statistical model, and calibrated in terms of frequentist error proba-
bilities, Neyman’s extensions of Fisher’s paradigm to the modeling of observational
data, and Kolmogorov’s crucial contributions to the theory of stochastic processes.
The emphasis is placed on learning from data about observable phenomena, and
on actively encouraging thorough probing of the different ways an inference might
be in error, by localizing the error probing in the context of different models; see
Mayo [12]. Although the broader problem of bridging the gap between theory and
data using a sequence of interrelated models (see Spanos, [31], p. 21) is beyond the
scope of this paper, it is important to discuss how the separation of substantive and
statistical information can be achieved in order to make a case for treating statisti-
cal models as canonical models which can be used in conjunction with substantive
information from any applied field.

It is widely recognized that stochastic phenomena amenable to empirical model-
ing have two interrelated sources of information, the substantive subject matter and
the statistical information (chance regularity). What is not so apparent is how these
sources of information are integrated in the context of empirical modeling. The PR
approach treats the statistical and substantive information as complementary and,
ab initio, are described separately in the form of a statistical and a structural model,
respectively. The key for this ab initio separation is provided by viewing a statis-
tical model generically as a particular parameterization of a stochastic processes
{Zt, t∈T} underlying the data Z, which, under certain conditions, can nest (para-
metrically) the structural model(s) in question. This gives rise to a framework for
integrating the various facets of modeling encountered in the discussion of the early
contributions by Fisher and Neyman: specification, misspecification testing, respec-
ification, statistical adequacy, statistical (inductive) inference, and identification.

3.1. Structural vs. statistical models

It is widely recognized that most stochastic phenomena (the ones exhibiting chance
regularity patterns) are commonly influenced by a very large number of contribut-
ing factors, and that explains why theories are often dominated by ceteris paribus
clauses. The idea behind a theory is that in explaining the behavior of a variable, say
yk, one demarcates the segment of reality to be modeled by selecting the primary
influencing factors xk, cognizant of the fact that there might be numerous other
potentially relevant factors ξk (observable and unobservable) that jointly determine
the behavior of yk via a theory model:

(3.1) yk = h∗(xk, ξk), k ∈ N,
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where h∗(.) represents the true behavioral relationship for yk. The guiding principle
in selecting the variables in xk is to ensure that they collectively account for the
systematic behavior of yk, and the unaccounted factors ξk represent non-essential
disturbing influences which have only a non-systematic effect on yk. This reasoning
transforms (3.1) into a structural model of the form:

(3.2) yk = h(xk; φ) + ε(xkξk), k ∈ N,

where h(.) denotes the postulated functional form, φ stands for the structural pa-
rameters of interest, and ε(xkξk) represents the structural error term, viewed as a
function of both xk and ξk. By definition the error term process is:

(3.3) {ε(xkξk) = yk − h(xkφ), k ∈ N} ,

and represents all unmodeled influences, intended to be a white-noise (non-
systematic) process, i.e. for all possible values (xkξk)∈Rx×Rξ:

[i] E[ε(xkξk)] = 0, [ii] E[ε(xkξk)2] = σ2
ε , [iii] E[ε(xkξk) · ε(xjξj)] = 0, for k �= j.

In addition, (3.2) represents a ‘nearly isolated’ generating mechanism in the sense
that its error should be uncorrelated with the modeled influences (systematic com-
ponent h(xkφ)), i.e. [iv] E[ε(xkξk)·h(xkφ)] = 0; the term ‘nearly’ refers to the
non-deterministic nature of the isolation - see Spanos ([31], [35]).

In summary, a structural model provides an ‘idealized’ substantive description of
the phenomenon of interest, in the form of a ‘nearly isolated’ mathematical system
(3.2). The specification of a structural model comprises several choices: (a) the
demarcation of the segment of the phenomenon of interest to be captured, (b) the
important aspects of the phenomenon to be measured, and (c) the extent to which
the inferences based on the structural model are germane to the phenomenon of
interest. The kind of errors one can probe for in the context of a structural model
concern the choices (a)–(c), including the form of h(xk; φ) and the circumstances
that render the error term potentially systematic, such as the presence of relevant
factors, say wk, in ξk that might have a systematic effect on the behavior of yt; see
Spanos [41].

It is important to emphasize that (3.2) depicts a ‘factual’ Generating Mechanism
(GM), which aims to approximate the actual data GM. However, the assumptions
[i]–[iv] of the structural error are non-testable because their assessment would in-
volve verification for all possible values (xkξk)∈Rx×Rξ. To render them testable
one needs to embed this structural into a statistical model; a crucial move that
often goes unnoticed. Not surprisingly, the nature of the embedding itself depends
crucially on whether the data Z :=(z1, z2, . . . , zn) are the result of an experiment
or they are non-experimental (observational) in nature.

3.2. Statistical models and experimental data

In the case where one can perform experiments, ‘experimental design’ techniques,
might allow one to operationalize the ‘near isolation’ condition (see Spanos, [35]),
including the ceteris paribus clauses, and ensure that the error term is no longer a
function of (xkξk), but takes the generic form:

(3.4) ε(xkξk) = εk ∼ IID(0, σ2), k = 1, 2, . . . , n.

For instance, randomization and blocking are often used to ‘neutralize’ the phenom-
enon from the potential effects of ξk by ensuring that these uncontrolled factors
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cancel each other out; see Fisher [7]. As a direct result of the experimental ‘con-
trol’ via (3.4) the structural model (3.2) is essentially transformed into a statistical
model:

(3.5) yk = h(xk; θ) + εk, εk ∼ IID(0, σ2), k = 1, 2, . . . , n.

The statistical error terms in (3.5) are qualitatively very different from the struc-
tural errors in (3.2) because they no longer depend on (xkξk); the clause ‘for all
(xkξk)∈Rx×Rξ’ has been rendered irrelevant. The most important aspect of em-
bedding the structural (3.2) into the statistical model (3.5) is that, in contrast to
[i]–[iv] for {ε(xkξk), k∈N}, the probabilistic assumptions IID(0, σ2) concerning the
statistical error term are rendered testable. That is, by operationalizing the ‘near
isolation’ condition via (3.4), the error term has been tamed. For more precise in-
ferences one needs to be more specific about the probabilistic assumptions defining
the statistical model, including the functional form h(.). This is because the more
finical the probabilistic assumptions (the more constricting the statistical premises)
the more precise the inferences; see Spanos [40].

The ontological status of the statistical model (3.5) is different from that of the
structural model (3.2) in so far as (3.4) has operationalized the ‘near isolation’
condition. The statistical model has been ‘created’ as a result of the experimen-
tal design and control. As a consequence of (3.4) the informational universe of
discourse for the statistical model (3.5) has been delimited to the probabilistic in-
formation relating to the observables Zk. This probabilistic structure, according
to Kolmogorov’s consistency theorem, can be fully described, under certain mild
regularity conditions, in terms of the joint distribution D(Z1,Z2, . . . ,Zn; φ); see
Doob [4]. It turns out that a statistical model can be viewed as a parameterization
of the presumed probabilistic structure of the process {Zk, k∈N}; see Spanos ([31],
[35]).

In summary, a statistical model constitutes an ‘idealized’ probabilistic descrip-
tion of a stochastic process {Zk, k∈N}, giving rise to data Z, in the form of an
internally consistent set of probabilistic assumptions, chosen to ensure that this
data constitute a ‘truly typical realization’ of {Zk, k∈N}.

In contrast to a structural model, once Zk is chosen, a statistical model relies
exclusively on the statistical information in D(Z1,Z2, . . . ,Zn; φ), that ‘reflects’
the chance regularity patterns exhibited by the data. Hence, a statistical model
acquires ‘a life of its own’ in the sense that it constitutes a self-contained GM de-
fined exclusively in terms of probabilistic assumptions pertaining to the observables
Zk:= (yk,Xk) . For example, in the case where h(xk; φ)=β0+β�

1 xk, and εk � N(., .),
(3.5) becomes the Gauss Linear model, comprising the statistical GM:

(3.6) yk = β0 + β�
1 xk + uk, k ∈ N,

together with the probabilistic assumptions (Spanos [31]):

(3.7) yk � NI(β0 + β�
1 xk, σ2), k ∈ N,

where θ := (β0,β1, σ
2) is assumed to be k-invariant, and ‘NI’ stands for ‘Normal,

Independent’.

3.3. Statistical models and observational data

This is the case where the observed data on (yt,xt) are the result of an ongoing
actual data generating process, undisturbed by any experimental control or inter-
vention. In this case the route followed in (3.4) in order to render the statistical
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error term (a) free of (xt,ξt), and (b) non-systematic in a statistical sense, is no
longer feasible. It turns out that sequential conditioning supplies the primary tool
in modeling observational data because it provides an alternative way to ensure the
non-systematic nature of the statistical error term without controls and interven-
tion.

It is well-known that sequential conditioning provides a general way to trans-
form an arbitrary stochastic process {Zt, t∈T} into a Martingale Difference (MD)
process relative to an increasing sequence of sigma-fields {Dt, t∈T}; a modern form
of a non-systematic error process (Doob, [4]). This provides the key to an alterna-
tive approach to specifying statistical models in the case of non-experimental data
by replacing the ‘controls’ and ‘interventions’ with the choice of the relevant con-
ditioning information set Dt that would render the error term a MD; see Spanos
[31].

As in the case of experimental data the universe of discourse for a statisti-
cal model is fully described by the joint distribution D(Z1,Z2, . . . ,ZT ; φ), Zt:=
(yt,X�

t )�. Assuming that {Zt, t∈T} has bounded moments up to order two, one
can choose the conditioning information set to be:

(3.8) Dt−1 = σ (yt−1, yt−2, . . . , y1,Xt,Xt−1, . . . ,X1) .

This renders the error process {ut, t∈T}, defined by:

(3.9) ut = yt − E(yt|Dt−1),

a MD process relative to Dt−1, irrespective of the probabilistic structure of
{Zt, t∈T}; see Spanos [36]. This error process is based on D(yt| Xt,Z

0
t−1; ψ1t),

where Z0
t−1:=(Zt−1, . . . ,Z1), which is directly related to D(Z1, . . . ,ZT ; φ) via:

D(Z1, . . . ,ZT ; φ)

= D(Z1; ψ1)
∏T

t=2
Dt(Zt| Z0

t−1; ψt)

= D(Z1; ψ1)
∏T

t=2
Dt(yt| Xt,Z

0
t−1; ψ1t)·Dt(Xt| Z0

t−1; ψ2t).(3.10)

The Greek letters φ and ψ are used to denote the unknown parameters of the
distribution in question. This sequential conditioning gives rise to a statistical GM
of the form:

(3.11) yt = E(yt | Dt−1) + ut, t ∈ T,

which is non-operational as it stands because without further restrictions on the
process {Zt, t∈T}, the systematic component E(yt | Dt−1) cannot be specified ex-
plicitly. For operational models one needs to postulate some probabilistic structure
for {Zt, t∈T} that would render the data Z a ‘truly typical’ realization thereof.
These assumptions come from a menu of three broad categories: (D) Distribution,
(M) Dependence, (H) Heterogeneity; see Spanos ([34]–[38]).

Example. The Normal/Linear Regression model results from the reduction (3.10)
by assuming that {Zt, t∈T} is a NIID vector process. These assumptions ensure
that the relevant information set that would render the error process a MD is
reduced from Dt−1 to Dx

t ={Xt= xt}, ensuring that:

(3.12) (ut| Xt= xt) ∼ NIID(0, σ2), k=1, 2, . . . , T.
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This is analogous to (3.4) in the case of experimental data, but now the error term
has been operationalized by a judicious choice of Dx

t . The Linear Regression model
comprises the statistical GM:

(3.13) yt = β0 + β�
1 xt + ut, t ∈ T,

(3.14) (yt| Xt= xt) ∼ NI(β0 + β�
1 xt, σ2), t ∈ T,

where θ := (β0,β1, σ
2) is assumed to be t-invariant; see Spanos [35].

The probabilistic perspective gives a statistical model ‘a life of its own’ in the
sense that the probabilistic assumptions in (3.14) bring to the table statistical in-
formation which supplements, and can be used to assess the appropriateness of, the
substantive subject matter information. For instance, in the context of the struc-
tural model h(xt; φ) is determined by the theory. In contrast, in the context of
a statistical model it is determined by the probabilistic structure of the process
{Zt, t∈T} via h(xt; θ)=E(yt| Xt= xt), which, in turn, is determined by the joint
distribution D(yt,Xt; ψ); see Spanos [36].

An important aspect of embedding a structural into a statistical model is to
ensure (whenever possible) that the former can be viewed as a reparameteriza-
tion/restriction of the latter. The structural model is then tested against the bench-
mark provided by a statistically adequate model. Identification refers to being able
to define φ uniquely in terms of θ. Often θ has more parameters than φ and the
embedding enables one to test the validity of the additional restrictions, known as
over-identifying restrictions; see Spanos [33].

3.4. Kepler’s first law of planetary motion revisited

In an attempt to illustrate some of the concepts and procedures introduced in the
PR framework, we revisit Lehmann’s [11] example of Kepler’s statistical model pre-
dating, by more than 60 years, the eventual structural model proposed by Newton.

Kepler’s law of planetary motion was originally just an empirical regularity that
he ‘deduced’ from Brahe’s data, stating that the motion of any planet around the
sun is elliptical. That is, the loci of the motion in polar coordinates takes the form
(1/r)=α0 +α1 cos ϑ, where r denotes the distance of the planet from the sun, and ϑ
denotes the angle between the line joining the sun and the planet and the principal
axis of the ellipse. Defining the observable variables by y := (1/r) and x := cosϑ,
Kepler’s empirical regularity amounted to an estimated linear regression model:

(3.15) yt = 0.662062
(.000002)

+ .061333
(.000003)

xt + ût, R2 = .999, s = .0000111479;

these estimates are based on Kepler’s original 1609 data on Mars with n = 28.
Formal misspecification tests of the model assumptions in (3.14) (Section 3.3),
indicate that the estimated model is statistically adequate; see Spanos [39] for the
details.

Substantive interpretation was bestowed on (3.15) by Newton’s law of universal
gravitation: F=G(m·M)

r2 , where F is the force of attraction between two bodies of
mass m (planet) and M (sun), G is a constant of gravitational attraction, and r is
the distance between the two bodies, in the form of a structural model:

(3.16) Yk = α0 + α1Xk + ε(xk,ξk), k∈N,
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where the parameters (α0, α1) are given a structural interpretation: α0 = MG
4κ2 ,

where κ denotes Kepler’s constant, α1 = ( 1
d−α0), d denotes the shortest distance

between the planet and the sun. The error term ε(xk,ξk) also enjoys a structural
interpretation in the form of unmodeled effects; its assumptions [i]–[iv] (Section 3.1)
will be inappropriate in cases where (a) the data suffer from ‘systematic’ observation
errors, and there are significant (b) third body and/or (c) general relativity effects.

3.5. Revisiting certain issues in empirical modeling

In what follows we indicate very briefly how the PR approach can be used to shed
light on certain crucial issues raised by Lehmann [11] and Cox [1].

Specification: a ‘Fountain’ of statistical models. The PR approach broad-
ens Lehmann’s reservoir of models idea to the set of all possible statistical models
P that could (potentially) have given rise to data Z. The statistical models in
P are characterized by their reduction assumptions from three broad categories:
Distribution, Dependence, and Heterogeneity. This way of viewing statistical mod-
els provides (i) a systematic way to characterize statistical models, (different from
Lehmann’s) and, at the same time it offers (ii) a general procedure to generate new
statistical models.

The capacity of the PR approach to generate new statistical models is demon-
strated in Spanos [36], ch. 7, were several bivariate distributions are used to derive
different regression models via (3.10); this gives rise to several non-linear and/or
heteroskedastic regression models, most of which remain unexplored. In the same
vein, the reduction assumptions of (D) Normality, (M) Markov dependence, and
(H) Stationarity, give rise to Autoregressive models; see Spanos ([36], [38]).

Spanos [34] derives a new family of Linear/heteroskedastic regression models by
replacing the Normal in (3.10) with the Student’s t distribution. When the IID as-
sumptions were also replaced by Markov dependence and Stationarity, a surprising
family of models emerges that extends the ARCH formulation; see McGuirk et al
[15], Heracleous and Spanos [8].

Model validation: statistical vs. structural adequacy. The PR approach
also addresses Lehmann’s concern that structural and statistical models ‘pose very
different problems for model validation’; see Spanos [41]. The purely probabilis-
tic construal of statistical models renders statistical adequacy the only relevant
criterion for model validity is statistical adequacy. This is achieved by thorough
misspecification testing and respecification; see Mayo and Spanos [13].

MisSpecification (M-S) testing is different from Neyman and Pearson (N–P) test-
ing in one important respect. N–P testing assumes that the prespecified statistical
model class M includes the true model, say f0(z), and probes within the boundaries
of this model using the hypotheses:

H0: f0(z)∈M0 vs. H1: f0(z)∈M1,

where M0 and M1 form a partition of M. In contrast, M-S testing probes outside
the boundaries of the prespecified model:

H0: f0(z)∈M vs. H0: f0(z)∈ [P−M] ,

where P denotes the set of all possible statistical models, rendering them Fisherian
type significance tests. The problem is how one can operationalize P−M in order to
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probe thoroughly for possible departures; see Spanos [36]. Detection of departures
from the null in the direction of, say P1⊂[P−M], is sufficient to deduce that the
null is false but not to deduce that P1 is true; see Spanos [37]. More formally, P1 has
not passed a severe test, since its own statistical adequacy has not been established;
see Mayo and Spanos ([13], [14]).

On the other hand, validity for a structural model refers to substantive adequacy :
a combination of data-acceptability on the basis of a statistically adequate model,
and external validity - how well the structural model ‘approximates’ the reality
it aims to explain. Statistical adequacy is a precondition for the assessment of
substantive adequacy because without it no reliable inference procedures can be
used to assess substantive adequacy; see Spanos [41].

Model specification vs. model selection. The PR approach can shed light on
Lehmann’s concern about model specification vs. model selection, by underscoring
the fact that the primary criterion for model specification within P is statistical
adequacy, not goodness of fit. As pointed out by Lehmann [11], the current model
selection procedures (see Rao and Wu, [30], for a recent survey) do not address the
original statistical model specification problem. One can make a strong case that
Akaike-type model selection procedures assume the statistical model specification
problem solved. Moreover, when the statistical adequacy issue is addressed, these
model selection procedure becomes superfluous; see Spanos [42].

Statistical Generating Mechanism (GM). It is well-known that a statistical
model can be specified fully in terms of the joint distribution of the observable
random variables involved. However, if the statistical model is to be related to any
structural models, it is imperative to be able to specify a statistical GM which
will provide the bridge between the two models. This is succinctly articulated by
Cox [1]:

“The essential idea is that if the investigator cannot use the model directly to
simulate artificial data, how can “Nature” have used anything like that method to
generate real data?” (p. 172)

The PR specification of statistical models brings the statistical GM based on the
orthogonal decomposition yt = E(yt|Dt−1)+ut in (3.11) to the forefront. The onus is
on the modeler to choose (i) an appropriate probabilistic structure for {yt, t ∈ T},
and (ii) the associated information set Dt−1, relative to which the error term is
rendered a martingale difference (MD) process; see Spanos [36].

The role of exploratory data analysis. An important feature of the PR
approach is to render the use of graphical techniques and exploratory data analysis
(EDA), more generally, an integral part of statistical modeling. EDA plays a crucial
role in the specification, M-S testing and respecification facets of modeling. This
addresses a concern raised by Cox [1] that:

“... the separation of ‘exploratory data analysis’ from ‘statistics’ are counter-
productive.” (ibid., p. 169)

4. Conclusion

Lehmann [11] raised the question whether the presence of substantive information
subordinates statistical modeling to other disciplines, precluding statistics from
having its own intended scope. This paper argues that, despite the uniqueness of
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every modeling endeavor arising from the substantive subject matter information,
all forms of statistical modeling share certain generic aspects which revolve around
the notion of statistical information. The key to upholding the integrity of both
sources of information, as well as ensuring the reliability of their fusing, is a purely
probabilistic construal of statistical models in the spirit of Fisher and Neyman. The
PR approach adopts this view of specification and accommodates the related facets
of modeling: misspecification testing and respecification.

The PR modeling framework gives the statistician a pivotal role and extends
the intended scope of statistics, without relegating the role of substantive informa-
tion in empiridal modeling. The judicious use of probability theory, in conjunction
with graphical techniques, can transform the specification of statistical models into
purpose-built conjecturing which can be assessed subsequently. In addition, thor-
ough misspecification testing can be used to assess the appropriateness of a sta-
tistical model, in order to ensure the reliability of inductive inferences based upon
it. Statistically adequate models have a life of their own in so far as they can be
(sometimes) the ultimate objective of modeling or they can be used to establish
empirical regularities for which substantive explanations need to account; see Cox
[1]. By embedding a structural into a statistically adequate model and securing sub-
stantive adequacy, confers upon the former statistical meaning and upon the latter
substantive meaning, rendering learning from data, using statistical induction, a
reliable process.
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