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Differentiable equivalence of fractional
linear maps

Fritz Schweiger!

University of Salzburg

Abstract: A Moebius system is an ergodic fibred system (B, T) (see [5]) de-
fined on an interval B = [a,b] with partition (J),k € I,#I > 2 such that

Ty = Stdez o € Ji and T|y, is a bijective map from Jp onto B. It is

ap+bga’
well known that for #I = 2 the invariant density can be written in the form
h(z) = fB* (1+d+y)2 where B* is a suitable interval. This result does not hold

for #1 > 3. However, in this paper for #1 = 3 two classes of interval maps are
determined which allow the extension of the before mentioned result.

1. Introduction

Definition 1. Let B be an interval and T : B — B be a map. We assume that
there is a countable collection of intervals (Ji),k € I,#I > 2 and an associated

sequence of matrices
_ ar by
alk) = ( o dy )

where det a(k) = apdy, — bicg, # 0, with the properties:

* UkeITkZEa Im NJp =0 if n#m.

_ crptdipz
o Tx = e b TE Ji

e T, is a bijective map from Jj onto B.

Then we call (B,T) a Moebius system.

Examples of Moebius systems are abundant. We mention the g-adic map Tx = gx

modl, g > 2, g € N or the map related with regular continued fractions Tx = %

mod1. Another important example is the Rényi map
T:100,1] — [0,1]

1_
; Tx= x,
X

Tx = x ,0<x <
1—2
A Moebius system is a special case of a fibred system [5]. Since T, is bijective the
inverse map Vj : B — Jj exists. The corresponding matrix will be denoted by

dr, —bg
sk = (- .
Cr Qg
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We denote furthermore w(k;z) := |V/(z)| = %. Then a nonnegative mea-

surable function h is the density of an invariant measure if and only if the Kuzmin

equation
z) =Y h(Vix)w(k; z)
kel

is satisfied.

Remark. It is easy to see that we can assume B = [a, b], B = [a, co[ or B =] —00, ]
but B = R is excluded: Since #I > 2 there must exist a Moebius map from a
subinterval onto B = R which is impossible.

Definition 2. A Moebius system (B*,T*) is called a natural dual of (B, T) if there
is a partition {J;'}, k € I, of B* such that T*y = %, y € J} ie. the matrix
a*(k) is the transposed matrix of a(k).

Theorem 1. If (B*,T*) is a natural dual of (B, T) then the density of the invariant
measure for the map T is given as h(x fB* (1+xy)2

Proof. Starting with the Kuzmin equation this follows from the relation

—ck +arr |, 9 —b +ary o 2
1+ ————y)*(dx — b =1+ ——"x)(d; — :
(1+ 4 — b y)*(dr — bpz)” = (1 + p— x)*(dy — cry)
Details are given in [5]. O

Definition 3. The Moebius system (B*,T*) is differentiably isomorphic to (B, T)
if there is a bijective map 1) : B — B* such that 1)’ exists almost everywhere and
the commutativity condition ¥ o T' = T* o 1) holds. As an example we consider the
Rényi map. The system

T* : [0, 00[— [0, 00[

1—
Try=—2 0<y<;Ty=-1+y1<y
Y
is a natural dual which is differentiably isomorphic under ¥ (t) = % to the Rényi
map.
Theorem 2. If the natural dual system (B*,T*) is differentiably isomorphic to

(B,T) then (t) = Zi‘éi

Proof. Assume for simplicity B = [0, 1]. Then

/ dy /1 ¢/ (2)] do = | P(1)  Y(0) |
g (L+zy)?  Jo (1+29(2))? L+ap(l)  142¢(0)"

Since the invariant density for 7% is given as h*(y) = - we also find h(z) =

1ty
[¥ ()]
119 ()"

h(x)

Integration gives

$(0) +2(4(1) + ¥ (1)(0) — ¥(0))

v(w) = 1+ 29(0)

O

Remark. Note that if the natural dual system (B*, T*) is differentiably isomorphic
to (B,T) with a map ¥(t) = Zi‘lfi then it follows from the proof of Theorem 2 that
b = c is satisfied.
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Lemma 1. Such a map ) : B — B*, ¢(t) = Zidbi exists if and only if the conditions

abk+b(dk—ak)—dck=0,kel

are satisfied.

Proof. From v oT =T o 1) we get the equations

a b ar be \ _  ap cx a b
b d er dp ) P\ b dy b d

with a constant p # 0. If aax +bex # 0 or bby, +ddy, # 0 then p = 1 and the equation
abg + bd, = apb+ cpd remains. If aar + bep, = 0 and bby, + ddy, = 0 then we see that
p? = 1. Only the case p = —1 needs to be considered. We obtain the equations

aar +be, =0
bby + ddi, =0
aby, + b(ag + di) + deg, = 0.

A non-trivial solution exists if
(ak + dk)(bkck — akdk) =0.

Since det a(k) # 0 we obtain ay + dy = 0. But then a(k)? = (a? + bycy)1. This
means that T2z = x on .J, which is not possible. Therefore only p = 1 remains. [

Remark. Let I = {1,2} then the system of two equations
abk—l—b(dk —ak) —dcp,=0,k=1,2

is always soluble. This explains the result given in [4]. Note that the degenerate
case that B* reduces to a single point carrying Dirac measure is included. This
happens for Tx = 22,0 < x < %; Tr =2x—1, % < x < 1. Then formally we obtain
two branches T*y = 2y and T*y = f%’y Here B* = {0} and h(z) = 1.

Remark. Haas [1] constructs invariant measures for a family of Moebius systems.
It is easy to verify that in all cases (B, T) has a natural dual (B*, T™*) which explains
the invariant densities given under corollary 2 in [1].

Definition 4. A natural dual system (B*,T*) which is not differentiably isomor-
phic to (B,T) is called an exceptional dual. We will first give an example of an
exceptional dual. We consider a special case of Nakada’s continued fractions [3].

Setting
—1++5 1
=—— k=||—- 1—
g= =2 k=2 +1g
1 1
B=lg—1g}Te=——ka>0To=———kx<0
1 1 2 1 11
B*:O—jw< = - —k — _,T* - - k=
[a2]7 Yy y 72k+1<y<k7 Y y"' ,k<y<—2k_1

then we consider the equation
YoTyoT 30T 4 =T 0T 30T, 0.
However, the equation
a b 18 5 26 -7 a b
(b d><11 3)2"’(11 —3)(b d>’|p|:1

leadstoa=b=d =0.
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In this paper we will consider in more detail the case I = {1,2,3}. To avoid
complications with parameters we fix the partition as 0 < % < % < 1. Note that
a different partition would give a Moebius system which is not isomorphic by a

. _ ctdt
Moebius map 9(t) = Zibt‘

2. Differentiably isomorphic dual systems

It is easy to see that on every subinterval [0, %],[%, %],[%, 1] we can choose a fractional
linear map depending on one parameter A, u, v say. Furthermore, T restricted to one
of these subintervals can be increasing or decreasing. We call T' of type (€1, €2, €3)
where ¢; = 1 stands for ”increasing” and ¢; = —1 for "decreasing”. The parameters
satisfy the equations

erdet a(l) = A\ ea det a(2) = p, ez det a(3) = 1.

By the choice of the parameters A, u, v we have A > 0, . > 0, and v > 0 but due to
the fact that no attractive fixed point is allowed some additional restrictions hold
e.g 0<A<lifege=1lorl<vifey=1.

Now let us assume that a natural dual (B*,T™*) exists. Then the branches of T*
corresponding to the parameters A, u,v could appear in six possible orders from
left to right. More precisely, if Jy, J,, J, are the intervals such that T™ is defined
piecewise by the matrices of, a3, a3 then the three intervals Jy,J,,J, could be
arranged in six possible orders, namely Apv, vuX, Avp, pv X, pAv, vAu.

We give a list of the matrices «, 3, and 3*.

61:1

A1 =2\ 1 2x2-1 1 0
(0 1 ) (0 A ) (2)\—1 )\)
61:—1

-1 =A+2 2 A—2 2 1
<—1 2 ) (1 -1 > </\—2 —1)
62—1

2u—1 2—-3u 2 3u—2 2 1
< -1 2 ) (1 2,u—1> (3/1—2 2,u—1)
62:—1

uw—2 3-2u 3 2u—3 3 2

-2 3 > (2 u—2> (2@—3 ,u—2)
63:1

v—2 —v+43 3 v—3 3 2
( -2 3 ) <2 1/—2) (V—3 1/—2>
63:—1

2v—1 1-3v 1 3vr—1 1 1
( -1 1 ) (1 21/1) (31/1 21/1)

Lemma 2. The natural dual (B*,T*) is differentiably isomorphic to (B,T) if and
only if the following condition C holds.

by di—a1
b2 dg —as C2 =0
bg d3 —as C3

Proof. This is clear from Lemma 1. O
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Lemma 3. If (B*,T*) is differentiably isomorphic to (B,T), then only the orders
AUV, VA can appear.

Proof. Since ¥(t) = % is either order preserving or order reversing the assertion

is immediate. O

Theorem 3. If the natural dual (B*,T*) has the order A\uv or vu\, then (B*,T*)
is differentiably isomorphic to (B,T). In other words: No exceptional dual exists
with orders A\uv or vu.

Proof. The proof considers all types (€1, €2, €3). It first lists the form of condition
C and then the ’boundary conditions’ which means that the three maps of T* fit
together to form a Moebius system.

Type (1,1,1)

20\ + 2 = v+ A
Vi§E=EV,E=Vio, V{ =V o,0=V]o.
Then we find 2\ — 1 + A = £ which gives 2\ — 1 = £(1 — \). Furthermore

v—3+ (-2
3+ 20

g =

202 +o(—v+5)—v+3=0.

If o =—1then Vio =p—1,Vio=A=1,Vi§ = Au+p—1, Ve = 2l
Hence we obtain the equations Ay + 4 = A\, Ap + p = Av which show v = 1 and
20+ 20 = Av + A,

Therefore we concentrate on o = ¥=3

2
Then we calculate V5§ = p+ A — 1,Vio = 223=2 from which we again arrive at
242 = v+ A

Type (17 17 _1)

AMAp=w+A+v
VXE=EVE=VIB VB =V B,V §=p.
We find again 2\ — 1 = £(1 — A). Then we calculate V;§ = p+ Ap — 1, V¢ =

A=A — BVEB = Av+ A+v—1and we see that pA+pu—1=vA+A+v—1
Wthh is condltlon C.

‘Type (1,-1,-1) ‘

2+ A+ 20 =p
VXE=EViE=V B, V) E=B,VXB=V,p
We find again 2)\ — 1 = f(l — A). Further we calculate V*¢ = M =0B,V)B =

2”’;7_5{’1 Vi€ = . This shows g — A = 2\v + 2v.

A+1
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‘ Type (1,—1,1) ‘

AV =p
VXE=& Ve =V Vio =V o,0=V]o

As before 2\ — 1 = £(1 — A) and further calculations show V7§ = _’\At’ﬁ_l,

Ve = % hence Av = p. It is easy to see that Vio = Vo gives the same
condition. Note that ¢ = —1 corresponds to v = 1.

| Type (~1,1,-1)|

2+ p =2 v+ A
ViB=a,Vja=Via, V3=V 3,8=V o
Then a = ViV a and we obtain o?(1 +2v) + a(5v +2 —A) +3v — A+ 1 = 0.

_ _ —=3v+A—1 _ —3v+Ai—-1 * _ =142 v—v
Therefore & = =1 or @ = =3757—. If o = =575— then Via = =577 and
Via= W which gives immediately condition C. If « = —1 then 8 =

and an easy calculation gives Via = A—1,Via=pu—-1Vy8=2v-1, Vi3 =2u—1
which shows A =y =wv.

| Type (~1,1,1)

dpud+pv 4+ p=Iv+v

Vio=a,Vja=Via,Vie=V a, Vo =o.

As before 0 = —1 or 0 = ”T’S If o =—-1thena=XA-1, Via = Q—&,Vja =
%, Via= %7 Vo =p—1. Hence p+2Ap = A, p+2Apu = Av which

implies ¥ = 1 and C is satisfied.

Ifo= "773 then calculation gives

22A—-v—-1 _ A+ pv + p L AV 4+ A
= 0= — o= — —
v+1 M A+ v+1 A A+v+1
2\ 2uv
Voa AN+v+1 Vo v+1

hence \v + A = uv + 4 pu + p.

| Type (-1,-1,1)|

20\ =2 p+ pv +p
Vio=a,Vjo=Via,Vija=V a, Vo =o.

If o = —1 then a = XA — 1. Calculation shows Via = 1:_—1”
%,Vja = )‘";\7?{1 This gives A = u+ Ay, Av = p+ Ap and v = 1 as
expected. Condition C is satisfied.

Now suppose 0 = ”T’3 the a similar calculation shows again that condition C is

Vio=pu—-1Va =
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satisfied.

| Type (~1,-1,-1)]

AN+ A+ v=pu+ A+ p
ViB=a,V;B=Via,Via=V3V a=p.

)

Since a = Vy'VJ o, we obtain
?(1+2v) +aBv—A+2)+3v—A+1=0.
Ifa =—1then B =o0Via=A-1V:B="E2 Via=p—LV3 =21

therefore v = A and p = 2. Condition C is satisfied.
Now let o = 253Y=L then (A — )8 = 2v 4 2v\ — \. Furthermore we obtain

2v+1
2 4+ A A+ 2 pv
Via=-14+—-—"-Vf3=-14—"-—""—
A +1+)\+V’ ul +/\+V—|—4)\V
. —“1+p+pv+Ip—21 _ v+4v—-A—-1
V = =
o 20 +1 Vol 20 +1
From V;;3 = Vya we obtain 1+/1\+V = )\er‘jr“l, and from Via = VB we get

=14 p+pv+ A — 2\ = v+ 4 v — A — 1. Both equations lead to condition C. O

2. Exceptional dual systems

Exceptional dual systems exist for some orders. A full discussion of all possible
cases is not only lengthy but also of limited value since the method is similar in
all cases. Therefore we give some examples for existence and non-existence of such
systems.

Type (1,1,-1)
Orders Avp and pvA
E=VX&EVIy =V Ve =V 6y =V,y

We find £(1 — A) = 2X — 1 as before. Then Vjj¢ = “HA¢=2 'V«¢ = X+ y — 1. This
gives the equation v + v\ = pA? + pA and eventually v = p). From Viv =~ we
find that

V(3 —2u) —3u+2=0.
We use Viy =2\ -1+ Ay and Vy = W and find the equation
VX 4+ (3N = 20) +2X — 3v = 0.
Comparing both equations we find again v = Ap.
Type (1,1,-1)
Orders pAv and vAp

Y=V, Xy =ViB VXB=VB. Vv =0
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Again we obtain
24+ y(3—2u) —3u+2=0.
Therefore v # —1. From Vv = 3 we obtain § = -1 + %
The equation Viy = V7B gives B(2u—2A—\y) = —3u+4A+2\y. If 2u—2 -y =0
then —3pu 4+ 4\ + 2Ay = 0 which gives u = 0, a contradiction.
Therefore

(Br—14+~(20 — 1) (21— 22 = A7) = (1 + ) (=3u + 4\ + 2)\y)
which gives the equation
Y24 200) + Y(BA — o+ TAv — 4pv) — pu+ 2\ — 6 + 6 v = 0.

Therefore

3N —pu+ T —duy
B A+ 2w

— i+ 2\ — 6pr + 6Av
A+ 2w

From this we get
AApv + Av — 4py + 220 — = 0,6 pr 4+ 2 v — 6pv + 3Ap — p = 0.

Eliminating Aur we obtain Av 4+ p = 0 which is a contradiction since A, pu,v > 0.
Therefore no exceptional system exists with this configuration.
If one uses V'3 = V3 one gets the equation

BN+ B3N —2v) + 2\ — 3v = 0.

If we insert v = —1 + m in the quadratic equation for v we obtain a second
equation for 8 which leads again to p+ vA = 0.

Let us give another example of an exceptional dual system with an unforeseen com-
plicated condition.

Type (1,1,1)
Orders Avp and pvA
E=VXEVIE=Vi, Vv =V, y =V, y

We find again £(1—\) = 2XA — 1 and 72 + (3 —2u) — 3u+2 = 0. Note that v # _73
Calculation gives
A=A -1

= = 2X — 14+ A
V7§ 1 Vi + My

v—3+7v-2)

ViE=\ —1,Viy =
nE=A+p—1,Vy 372

v—A—1
A+1

Equating V¢ = Vv gives v = —1 +
Aptp
2uA2p—v -

and Vv = V7§ gives v = —1 —

From this the condition

QA+ 2uv + A+ v =2 £ 2u\ + ud\? + p

follows. If we use (y+1)%+ (y+1)(1—2u) — u = 0 and substitute y+1 = 237 we
get the same condition. As the example A = %, w= %, v = 2 shows this condition
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can be satisfied easily.
Type (1,1,1)
Orders vAp and pAv
o=VSo,Vioc =V v, Vjo=Viy,y=V,y
We get v2 +7(3 —2p) —3u+2 = 0. From Vo = Vv and Vo = Vv we calculate

v+vy 1
3 A Yy iy w

and eventually we get
VAV 4 y(3A\v + 2\p — 2uv) + 3Ap — 2ur + 2 v = 0.

Therefore comparing the coefficients of the quadratic equations for v we get 3—2u =
3+ 2)"{\#, 2-3u=2+ ?”\’f\# which shows pr = 0, a contradiction.

‘Type (1,-1,-1) ‘

Orders vAp and piv
§=ViBVis=Vi6VyB=ViB,8=V0
Therefore V) V73 = 8 which gives the quadratic equation
B2+ B3 — 2vp — 2v) — dvp — 3v 4 2 = 0.
The equation V3 = V3 gives
BZA+ B3\ — 2v) + 2\ — 3v = 0.

Therefore
3 —2vp—2v  3N—20 —dvp—3v+2u 2\ —3v
u R [ DY

and then
v + v = pv, dvp + 3v = 3uv.

Hence vuA = 0, a contradiction.

| Type (1,-1,-1)]

Orders Avp and pvA
E=VXEVXo=V6,VyE=V566=V]¢

Wenote (1 —X) =2A—-1, V}¢=-1+ ”‘L;‘”, Vi€ =6 = -1+ y5. The equation
Vo = V)6 gives
82N+ 0(3X — 2v) +2)\ — 3v = 0.

If one inserts 6 = —1 + 345 we get

X 4 A% 4 g\ = 20p\ + v+ 2up + 20w + v
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We further calculate Vjo = —1+ % The equation V7§ = V6 = -1+ %

gives the same condition. Therefore exceptional systems exist. An example is given
by \=1Lu=4,v= g.

| Type (1,-1,1)

Orders Avp and pvA
E=VXEVXo =V V)=V 6,0=V;¢

Calculation gives §(1 —A) =2\ — 1, § = —1+ y45. The condition V;}§ = V;§ gives
v = A+u+1 but the condition Vy'§ = V,€also leads to A2+ A+ = Av. Since A > 0
this is an equivalent condition. Examples are easy to find (A=1,p4=1,v = 3).

| Type (1,-1,1)]

Orders uAv and vAp

Vid =V, Ve =6V 0=Vio,0=Vo
We obtain 0 = ¥32 or 0 = —1 (which is formally included for v = 1) and § =
—1+ 252 The equation V76 = Vo gives A(v+1)(v+ p+ ) = pv(v+1). Since
v+ 1> 0 we obtain A\(v + p + pr) = pv. The equation V5 = V{4 leads to the

same condition. An example is given by A = i, w= %, v=1.

3. Closing remarks

The question remains what can be said about a suitable dual system (B*,T*)
(see [4] for the general notion of a dual system) if no natural dual system exists.
The following conjecture seems reasonable. There is a closed set B* such that
(B*,T*) is a fibred system where T™* is piecewise defined by the transposed matrices.
Generally, the set B* supports a 1-conformal measure (see e.g. [2] and [6]). This
property is based on the fact that the equation

s ki)
o 1+ V*(ky,...,ks)y 14y

1y--e5lvs
holds. In the case of a dual Moebius system B* is an interval and this measure
clearly is Lebesgue measure. However, there exist examples where B* is a union of
infinitely many intervals. We give one such example.

B =10,1] and

L, f0<z <3,
Tx = %, if%§x<%,
Lz ifi<z<l,

x

B* = Upe)2k, 2k 4+ 1] and

Ty = l;—y, ifyGUZO:o]%lﬁ’ﬁH]’
]

1-2y - 0o 1.1 1
TR ify € Upmol arrs mnr2)



Differentiable equivalence 247

Therefore the invariant density for T is given as

> 2k +1 2k
=>

1+ (2k + 1)z 1+2kx)'

k=0

I want to express my sincere thanks to the referee whose advice was very helpful.
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